
Entity Recommendations in Web Search

Roi Blanco1, B. Barla Cambazoglu1, Peter Mika1, and Nicolas Torzec2

1 Yahoo! Labs
Diagonal 177, 08018
Barcelona, Spain

{roi,barla,pmika}@yahoo-inc.com
2 Yahoo! Labs

701 First Avenue
Sunnyvale, California, USA
torzecn@yahoo-inc.com

Abstract. While some web search users know exactly what they are
looking for, others are willing to explore other topics related to an initial
interest. Often, the user’s initial interest can be uniquely linked to an en-
tity in a knowledge base, and in this case it is natural to recommend the
explicitly linked entities for further exploration. In real world knowledge
bases, however, the number of linked entities may be very large and not
all related entities may be equally relevant. Thus there is a need for rank-
ing related entities. In this paper, we describe Spark, a recommendation
engine that links a users’ initial query to an entity within a knowledge
base and provides a ranking of the related entities. Spark extracts several
signals from a variety of data sources, including user sessions, Twitter
and Flickr, using a large cluster of computers running Hadoop. These
signals are combined with a machine learned ranking model in order
to produce a final recommendation of entities to user queries, which is
currently powering Yahoo! Search results pages.

1 Introduction

While there are many situations in which users know exactly what they are
looking for and would like immediate answers, in other cases they are willing
to explore and extend their knowledge. This is the case, for example, when
learning about people in the news, following a long term interest in music, movies
or sports or when exploring destinations for a future travel. There are many
tools that help search users with finding the most precise formulation of their
initial query, including suggestions for query expansions and information boxes
providing direct answers. Similarly, we need tools for users who would like to
browse.

Traditional search assistance tools support exploration by suggesting related
queries, which is based on observing co-occurrences of exact queries in query
sessions [5]. Yet we know that most queries have simple, but recognizable internal
structure and semantics. In particular, previous analysis has shown that over 50%
web search queries pivot around a single entity that is explicitly named in the

query [9]. These queries name an entity by one of its names and might contain
additional words that disambiguate or refine the intent.

This observation leads to an alternate way of offering search assistance. Once
we are able to identify the real-world entity that is being referenced in a query,
and link it to a knowledge base, we can provide recommendations of related
entities based on the relationships explicitly encoded in the knowledge base.
Since knowledge bases also encode the types of entities and their relationships in
a domain, such a tool can provide powerful additional features such as grouping
related entities by type and explaining the relationships that are being presented
to the user.

In this paper, we introduce a semantic search assistance tool named Spark,
which exploits public knowledge bases from the Semantic Web, in combina-
tion with proprietary data, to provide related entity suggestions for web search
queries. Our entity recommendation task is fundamentally a ranking task: given
the large number of related entities in the knowledge base, we need to select the
most relevant ones to show based on the current query of the user. Unlike the
standard task addressed in semantic search where most related work has focused
on, our goal is not to find information related to the user’s current query but to
recommend possible future queries to explore.

Our goal is to design a system that is scalable, efficient, and provides the best
possible results for a large variety of queries. In the following, we will describe
our system, and how we addressed the particular challenges involved. We show
how we combine public RDF datasets as well as private resources to create a
knowledge base that is both extensive and high quality. We also describe how we
mine support for relationships from usage logs as well as user generated content,
and how we combine this evidence in a single ranking function that works across
entities and entity types. Lastly, we discuss how we disambiguate (link) entities
when resolving queries online.

2 Related Entity Recommendations

Our task is defined by the needs of casual web users and we call it related

entity recommendation to distinguish it from similar tasks in the literature, see
Section 6.

We are given a (telegraphic) keyword query q that references (either by its
name or an alias) a real-world entity ei. We are given a knowledge base K =
{(s, p, o)} of subject, predicate and object triples where all subjects as well as
objects are resources and it is possible to uniquely identify a single resource
ri ∈ R as the representation of the entity where R is the set of all resources
in the KB, R = {s|(s, p, o) ∈ K} ∪ {o|(s, p, o) ∈ K}. Further, we are given
resources {rj |∃p : (ri, p, rj), rj ∈ R}, i.e. resources related by asserted triples in
the knowledge base. Our goal is to find the resource ri, i.e. disambiguate the
query entity ei, as well as rank the related resources {rj} to match the feedback
from expert evaluators who provide judgment for a subset of the triples. Note
that we do not consider for ranking all resources in the knowledge base but rely

on the asserted triples. This way we only need to compute scores for |(s, p, o)|
items, the number of unique triples, instead of |R|2 items, which is the number
of potential resource pairs.

In building our system, we also address a number of challenges that are not
inherent in the above description but are potentially useful to other practitioners
building similar systems. In reality, there is no single publicly available knowledge
base that could serve the query needs of all of our users. Thus our knowledge
base needs to be constructed from multiple existing datasets, both public and
private, to provide coverage and it needs to be regularly updated to address
freshness, in particular in fast moving domains. Second, we are interested in
solving this problem in the context of a web search engine. This means that
we are also concerned with the user impact of the system, in particular what
percentage of the query volume can be addressed and how users interact with
the results. It also means that we need a system that is efficient both in offline
processing and in the online serving stage.

3 Spark: An Entity Recommender System

In the remainder of this paper we describe our system called Spark, which ad-
dresses the problem introduced above. The architecture of our system is shown
in Figure 1. The remainder of this Section is organized in parts that match the
components of this architecture. In Section 3.1, we will describe how we construct
our knowledge base. In Section 3.2 we characterize the features that provide ev-
idence for the relevance of entities and relations. These features are combined
using a state-of-the-art machine learning framework shown in Section 3.3. The
resulting ranking function is applied to all of the knowledge base to compute rec-
ommendations. In Section 3.4 we address our solution for serving the resulting
data to end users, including disambiguation.

3.1 Knowledge Base Creation

Spark takes a large entity graph as input, and applies a ranking function to
extract a weighted subgraph consisting of the most important entities, their
most important related entities, and their respective types. This entity graph is
drawn from a larger Yahoo! Knowledge Graph, a unified knowledge base that
provides key information about all the entities we care about, and how they
relate to each others.
Knowledge acquisition. Entities, relations, and information about them are
extracted from multiple complementary data sources. Data acquisition and infor-
mation extraction are done on an ongoing basis, automatically. Data sources con-
sist of Web extractions, structured data feeds, and editorial content. Both open
data sources and closed data sources from paid providers are leveraged. Reference
data sources such as Wikipedia and Freebase provide background information
for a wide variety of domains while domain-specific data sources provide rich
information for domains such as Movie, TV, Music, or Sport. We use wrappers

Knowledge

base

Feature

extraction

Model

learning

Feature

sources

Editorial

judgements

Datapack

Ranking

model

Entity

ranking

Features

Knowledge

base creation

Entity

sources

Post-

processing
Entity

rankings

1 2 3

45

Serving

6

Fig. 1. High-level architecture of the Spark entity recommender system.

for extracting information from structured data feeds but use more advanced
information extraction systems for other types of data sources. Wikipedia and
Freebase are especially challenging because of their size, heterogeneity, complex-
ity, and ever-changing nature. We monitor Wikipedia and Freebase continuously,
and fetch new content (i.e. Web extraction or RDF data dumps) on an ongoing
basis. We extract structured data from Wikipedia (infoboxes, links, tables, lists,
categories, etc.) using the DBpedia Extraction Framework and complementary
information extraction solutions developed at Yahoo!. Most of our knowledge
acquisition systems are distributed systems running on Hadoop.

Knowledge base construction. All the entities, relations and information that
we extract are integrated and managed centrally in a unified knowledge base.
Within this knowledge base, knowledge is modeled as a property graph with a
common ontology. Our ontology was developed over 2 years by the Yahoo! edito-
rial team and is aligned with schema.org. It consists of 250 classes of entities and
800 properties for modeling the information associated to them. When ingested
into the knowledge base, entities, relations and information associated to them
are aligned with our common ontology. The knowledge base persists knowledge
in a native graph database. Entities typically have an ID, a canonical name,
aliases, alternate keys, types, and data properties. Relations typically have an
ID, a subject, an object, a type, and data properties. We use editorial curation
and knowledge reconciliation techniques (aka record linkage, coreference resolu-
tion, link discovery) to match, de-duplicate and link together entities that refer
to the same thing, especially across different data sources. Siloed, incomplete,

inconsistent, and possibly inaccurate information are turned into a rich, unified,
disambiguated knowledge graph. Todays knowledge graph focuses on the do-
mains of interest of key Yahoo! site, including the News domain (various types
of entities), the Movie domain (movies, actors, directors, etc.), the TV domain
(TV shows, actors, hosts, etc.), the Music domain (albums, music artists, etc.),
the Sport domain (leagues, teams, athletes, etc.), and the Geo domain (points
of interests, etc.).

Table 1. Spark input graph

Domain # of entities # of relations

Movie 205,197 9,642,124
TV 88,004 17,126,890
Music 294,319 77,673,434
Notability 585,765 89,702
Sport 75,088 1,281,867,144
Geo 2,195,370 4,655,696

Total 3,443,743 1,391,054,990

Knowledge export. In order to power Spark, we run offline graph queries
on the knowledge graph to select domain-specific subgraphs, enrich them with
indirect relations, and export the resulting subgraphs to Spark. Overall, the
graph that Spark uses as input consists of 3.5M entities and 1.4B direct and
indirect relations from the Movie, TV, Music, Sport and Geo domains. See table
1 for details.

3.2 Feature Extraction

For every triple in the knowledge base, Spark extracts over 100 features. The
extracted features can be grouped under three main headings: co-occurrence,
popularity, and graph-theoretic features. Spark also extracts a few additional
features that do not fall into these three categories. Note that some of these
features are unary, i.e. relate to the importance of an entity on its own. Other
features are binary and capture the strength of the relation between entities.
Co-occurrence features. The features in this set are motivated by the fact
that entities which frequently occur together in a given set of observations (i.e.,
sets of short text pieces) are more likely to be related to each other. In Spark, we
use three different text sources to extract the co-occurrence information: Yahoo!
Search, Twitter, and Flickr. In case of Yahoo! Search, each query is treated as an
individual observation, and we identify pairs of entities that appear together in
the query. For example, in query “flight from barcelona to madrid”, “Barcelona”
and “Madrid” are identified as two entities that occur together.3 In addition to
query terms, we extract more coarse-grained co-occurrence information, relying

3 To recognize entities, we extract all possible subsequences of terms from the text and
check for their presence in a dictionary which is built using the input entity data.

on search sessions of users. In this case, all query terms issued in a search ses-
sion form a single observation. In case of Twitter and Flickr, the observations
correspond to tweets and user tags associated with photos, respectively.

For every given related entity pair, we compute a number of statistical fea-
tures using the co-occurrence information, separately for each distinct sets of
observations mentioned above. The two important features are joint and condi-
tional occurrence probabilities. Since the latter is not symmetric, we also com-
pute the reverse conditional probability as another feature. In addition, we com-
pute these features at the level of users by treating all observations associated
with a user as an individual observation. Finally, we extract some statistical fea-
tures that exploit various probability distributions, such as probabilistic mutual
information, KL divergence, and entropy.
Popularity features. The popularity features simply represent the frequency
of an entity in a given data source. We compute the frequency in two different
ways, based on the entity string (e.g., “brad pitt”) or the Wikipedia ID associated
with the entity (e.g., “Brad Pitt”). In the former case, the frequency information
is obtained from the previously mentioned sets of observations: queries, query
sessions, tweets, and photo tags. We also compute the number of matching results
in Yahoo! Search when the entity string is used as a query. In the latter case,
we identify the Wikipedia URL that corresponds to the entity and compute
the frequency at which this URL is viewed in web search results. Similarly, we
compute the click frequency of the URL. Note that all popularity features are
computed both for the subject and the object of the triple.
Graph-theoretic features. We compute features on two types of graphs. We
first build an entity graph, where vertices represent entities (more specifically,
entity IDs) and there is an edge between two vertices if the corresponding entities
are connected through a relationship. We also form a hyperlink graph obtained
from a large web page collection. In both graphs, we run the PageRank algorithm
and compute authority scores for entities. We use the entity graph to compute
also the number of shared vertices (common neighbors) between two entities.
Other features. The additional features include types of entities and types of
their relations as well as the number of terms in the entity string. We also create
features using various linear combinations of the features mentioned before.

Feature extraction is implemented as a series of Hadoop MapReduce jobs,
where we reuse basic statistics computed at the beginning of the pipeline to speed
up the computation of features that rely on similar statistics. The extracted
feature vectors are the sole input to the ranking process described next.

3.3 Ranking

Spark makes use of learning to rank approaches in order to derive an efficient
ranking function for entities related to a query entity. In general, systems that
are able to accommodate a large number of features benefit from automated
approaches to derive a way to combine feature values into a single score. This is
at the expense of needing enough quality training data to be able to generalize
well and perform meaningful predictions.

Formally speaking, the goal of the Spark ranking system is to learn a func-
tion h(·) that generates a score for an input a query qi and an entity ej that
belongs to the set of entities related to the query ej ∈ Eqi . Both qi and ej are
represented as a feature vector wij that contains one entry per feature extracted
(see Section 3.2). The input of the learning process consists of training data of
the form {T (qi) = {wij, lij}}qi∈Q, where lij ∈ L is a manually assigned label
from a pre-defined set. Spark uses a 5-level label scale (l ∈ Bad, Fair, Good, Per-

fect, Excellent) and the assignment from examples (qi, ej) was done manually by
professional editors, according with a pre-defined set of judging guidelines. The
query set Q is comprised of editorially picked entities and random samples from
query logs, which is expected to mimic the actual entity and query distribution
of the live system. The training set might also contain preference data, this is,
labels in this case indicate that an entity is preferred over another one for a
particular query: {T (qi) = {wij, lij}}qi∈Q The ranking function has to satisfy
the set of preferences as much as possible and at the same time is has to match

the label in the sense that a particular loss function is minimized, for instance
square loss 1

|Q|

∑
qi∈Q

1
|Eqi |

∑
ej∈Eqi

(lij − h(wij)
2), for a set of test examples.

Similarly to [11], we employ Stochastic Gradient Boosted Decision Trees
(GBDT) for ranking entities to queries [2, 3]. In brief, gradient tree boosting
creates an ensemble of decision trees (weak learners) using an iterative boosting
procedure. At each iteration, the algorithm creates a new regression tree that is
fitted to the gradient of the loss function (squared loss in our case). Among the
advantages over other learning methods (shared by decision trees) is that they
are easy to interpret. In general, it is possible to calculate the relative importance
of each input variable (feature) and which are more influential in computing the
function h [3]. On the other hand, stochastic GBDT can be trained on a ran-
domly selected subset of the available data and are less prone to over-fitting.4

GBRank is a variant of GBDT that is able to incorporate both label infor-
mation and pairwise preference information into the learning process [10], and
is the function of choice we adopted for ranking in Spark.

3.4 Post-processing and Serving

The final results for the web search context are generated after two main steps.
Disambiguation. The final system need to provide a mapping between queries
and the entity that must be triggered. In Spark, query strings used as triggers
are mainly derived from entity names and a fixed set of context terms, e.g. “brad
pitt actor” for the entity “Brad Pitt”. We also use a list of aliases computed from
query logs, which, for example, provides a mapping between the alias “jlo” and
the entity “Jennifer Lopez”.

In post-processing, we also address the issue of disambiguation among trig-
gers that may refer to different entities. In practice, certain entity strings may

4 Over-fitting refers to a statistical model picking up random noise from spurious
patterns in the data, and it is unable to predict well unseen examples. In general, this
happens when the model is unnecessarily complex (it has too many free variables).

Also try: jennifer aniston dress, jennifer aniston perfume, jennifer aniston tattoo, more...

Jennifer Aniston - News Results

Jennifer Aniston Talks Bad Hair Days

E! Online - May 13 01:37pm

Jennifer Aniston is speaking out about something most gals

(and guys!) can relate to: bad hair days. Although she's known

for her perfect golden locks, the actress swears she's... more »

How Jennifer Aniston Really Feels About 'The ...

ABC News - May 10 10:57am

Jennifer Aniston’s hair started one of the biggest style trends in America. In the 1990s,

Aniston’s haircut, called “The Rachel,” named after her character on “Friends,” became one

of the most ... more »

more Jennifer Aniston stories »

Jennifer Aniston - Image Results

More Jennifer Aniston images »

Actress: Friends (1994) · Office Space (1999) · The Iron Giant

(1999) · Bruce Almighty (2003). Born in Sherman Oaks, California,

Jennifer Aniston spent a year of ...

www.imdb.com/name/nm0000098 - Cached

Jennifer Aniston - IMDb

More results from imdb.com »

Jennifer Aniston - IMDb
www.imdb.com

Born: February 11, 1969 in Sherman Oaks, California,

USA (Full bio)

Best Known For

• Friends (1994)

• Office Space (1999)

• The Iron Giant (1999)

• Bruce Almighty (2003)

Latest Projects

• She's Funny That Way (2014)

• Miss You Already (2013)
IMDb Image Gallery

Early life | Career | Other work | Philanthropy

Jennifer Aniston (born Jennifer Joanna Aniston February 11, 1969) is an American

actress, film director, and producer. She has received an Emmy Award, a Golden Globe

...

en.wikipedia.org/wiki/Jennifer_Aniston - Cached

Jennifer Aniston - Wikipedia, the free encyclopedia

More results from en.wikipedia.org »

RELATED PEOPLE

David Schwimmer

Brad Pitt

Gerard Butler

Lisa Kudrow

Matthew Perry

Matt LeBlanc

Courteney Cox

RELATED MOVIES

The Object of M...

Love Happens

Just Go with It

IMAGES VIDEO NEWS SHOPPING BLOGSWEB MORE

RELATED SEARCHES

jennifer aniston dress

jennifer aniston perfume

jennifer aniston tattoo

angelina jolie

brad pitt

TRENDING SEARCHES

jennifer aniston pregnant

jennifer aniston movies

FILTER BY TIME

Anytime

Past day

Past week

Past month

Searchjennifer aniston Options

Fig. 2. Search result page for the query jennifer aniston. Spark results (persons and
movies) appear on the right.

match multiple entities (e.g., “brad pitt” may refer to the actor entity “Brad Pitt”
or the boxer entity “Brad Pitt (boxer)”). Moreover, there may be cases with a
common meaning for the string (e.g., the entity “XXX (movie)” is not the most
likely intent for query string “xxx”). Hence, the problem here is to identify the
most likely intent for a given entity string. To this end, we adopt a simple yet
very effective disambiguation strategy. We define the view count of an entity as
the number of times its respective Wikipedia page is viewed in the search results.
Given the set of entities matching a query string, we pick only the entity with
the highest view count as the intended meaning. Moreover, through a simple
linear model using as parameters the view count of the entity and the frequency
of the query string, we decide whether the entity corresponds to the most likely
meaning in order to avoid matching common concepts. For example, the query
management should not trigger the entity “Management (film)” because there
exist a more general concept of management represented by the Wikipedia en-
tity “Management”. The datapack contains a mapping between a query string
and the ranking of an entity only if the entity is the most likely meaning for the
query string with sufficiently high probability.

Serving. Once the final datapack is generated, it is deployed in the frontend
system. This involves loading the materialized rankings in the datapack into an
online serving system, which is essentially a fielded inverted index over subjects,
predicates, and objects. This system provides state-of-the-art (<100 ms) retrieval
times for online query processing and can sustain sufficient throughput when
serving production query traffic. The user interface of Spark currently displays
only the names of related entities and small thumbnail images which correspond
to the displayed entity.

Figure 2 shows the related entity recommendations made by Spark in Yahoo!
web search. Related entities in the context of web search are historically called
facets (see e.g. [11]) due to their similarity in display to faceted search. This is
somewhat of a misnomer, in that these facets are not narrowing or broadening
the original query. In our case, after clicking one of the related entities a new
query is launched with the related entity.

4 Evaluation

In the following we report on some of the evaluations we have carried out us-
ing both relevance assessments and usage data. These evaluations are regularly
repeated for each new release of the system, for example when adding new or
improved data to the Knowledge Base or incorporating new features into the
ranking function.

4.1 Relevance Assessment

We carried out a number of experiments to assess ranking with GBrank within
the context of our task. In the following, we describe how we optimize the model,

the training data required, how it influences performance, and what are the most
important features, as decided by the model, to assess relevance.

GBDTs have a number of tunable parameters that will have an impact on
the final performance. Thus, we split the training data into ten folds and decide
on the final values for those parameters using cross-validation. Those parameters
include the number of nodes and number of trees, which in general are the ones
that impact performance the most in our setting. The parameter values used for
the final model are the ones that maximize a particular choice of a relevance
metric. We settled on Normalized Discounted Cumulative Gain (NDCG) [4] as
the final performance metric we optimize for, as it is capable of handling different
relevance grades. NDCG is defined for a cut-off level k as:

nDCG@k =
DCG@k

DCGideal@k
, (1)

where

DCG@k =

k∑

i=0

2g(li) − 1

log2 g(li) + 1
, (2)

and DCGideal@k is the maximum attainable DCG value, g(li) is the gain as-
signed to label li.

Table 2. Number of labeled examples

Type # of examples Proportion

Locations 24,843 46.61%
People 23,198 43.52%
Movies 4,346 8.15%
TV shows 785 1.47%
Sport teams 120 0.22%

Total 53,292 100.00%

In order to collect training data, Spark samples regularly a set of queries
submitted to the Yahoo! Search engine. The entities evaluated for a particular
query are bootstrapped from the current production models of Spark. Results are
evaluated manually by a group of trained expert editors on different dimensions,
most notably including relevance, freshness, timeliness, etc. Hereinafter we focus
on relevance assessment.

Table 2 breaks down the amount of training data per query class (recall that
each query belongs to a particular entity class, as it must contain a particular
entity for Spark to trigger). There is a clear bias in the training data towards
popular entity types. Given that in general more training data reflects in a better
ranking outcome, we ask for more labelled examples of those types.

Table 3 reveals which features are more important, as selected by GBDT (see
[3] for a detailed explanation on how this importance is computed).

We can observe that type is the most important feature for the model. This
is partly natural in that some relation types (e.g. being the spouse of someone)

Table 3. Top-10 features for ranking sorted by their importance

Rank Feature description Importance

1 Type of the relation 100.0
2 Frequency of the related entity in Flickr photo tags 70.3
3 Frequency of the related entity in search query terms 54.8
4 Conditional probability in Flickr photo tags 51.6
5 PageRank of the query entity in the entity graph 45.8
6 Probability of the related entity in the search sessions 44.6
7 Number of words in the related entity name 39.1
8 Number of search results matching the related entity 35.9
9 Conditional probability in search sessions 33.6
10 PageRank of the related entity in the entity graph 33.4

are much stronger than other (e.g. acting together in a movie). We believe that
the fact that it’s picked by the model for the first split also reflects the fact that
different signals for ranking naturally differ in their importance across entity
types, as noted in [1]. Signals computed from the entity graph also make a
remarkable contribution to the final ranking model, as well as co-occurrence
features, especially those computed over Flickr data and user query sessions.

Now we investigate the retrieval NDCG per query type, displayed in Table 4.
Performance numbers are cross-validated by splitting the data available into ten
folds, each fold using 1/10th of the data for testing and the rest for training.
The final values are averaged throughout the ten folds. Note that ranking related
entities for locations is significantly more difficult than for any other entity type,
despite of being the one having the largest fraction of training data.

Table 4. Retrieval performance per query type

NDCG
Type @1 @5 @10

Locations 0.776 0.820 0.872
Movies 0.910 0.958 0.960
People 0.863 0.906 0.937
Sports 0.941 0.941 0.955
TV shows 0.882 0.954 0.967

Figure 3 report on how NDCG is impacted by varying the amount of training
data (the x-axis reflect the number of examples). The initial performance values
are high, because the evaluated editorial data is computed over an instance of
the model that is high-performing already. In any case, the increase is log-linear
with respect to the number of training examples, meaning that improvements
are exponentially harder to achieve just by adding more training data.

100 500 1000 2000 5000 17404 23271 26094 31019

Number of training examples

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
D

C
G

NDCG@10
NDCG@5
NDCG@1

Fig. 3. Retrieval performance with varying amount of training data.

4.2 Usage Evaluation

Click-through rate (CTR) and coverage are usage metrics that are able to assess
what is the precise impact the system is making in final users and search traffic.

CTR is defined as
clicksspark

viewsspark

and Coverage is defined as
viewsspark
queries where the

variables refer to the number of clicks on the Spark module, the number of
views (queries that triggered the Spark module) and the total number of queries
submitted to the Search engine. The coverage metric indicates the fraction of
queries for which we display an entity ranking in the result page. The CTR
metric indicates the likelihood that the user will click on an entity link or image
when a Spark ranking is displayed in the result page. The product of these two
metrics gives us the fraction of query volume generated by Spark.

Figs. 4 and 5 display the coverage and CTR metrics, respectively. We refrain
from providing absolute values due to the confidential nature of this information.
Therefore, the y axes labels are absent in both figures. The plots show the point-
wise values of CTR and Coverage for a period of 80 days, which is broken up
into two parts: the first half before Spark was launched in production (replacing
a previous system) and the second half right after Spark was deployed (marked
on the graphs) in February, 2013. There are a number of take-aways from these
experiments. Firstly, the coverage trend before and after deployment is flat.
This is because there is no change in the number of queries that trigger Spark
during the observation period, except for the deployment day of Spark, when we
observe a quick jump in coverage. There are two periods of system stabilization
after deployment, which are apparent from the dips in coverage .Regarding CTR,
before deployment, the module was gradually attracting less and less clicks over
the time, most likely because the data was not fresh. The Spark deployment
changed the CTR trend, due to improved ranking and higher data quality. There
is a positive trend effect that is added up over time, because users increasingly
engage with the renewed module.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Days

C
o

v
er

ag
e

Coverage before Spark

Trend before Spark

Coverage after Spark

Trend after Spark

Spark is deployed

in production

Fig. 4. Coverage values before and after Spark is deployed in production.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Days

C
T

R

CTR before Spark

Trend before Spark

CTR after Spark

Trend after Spark

Spark is deployed
in production

Fig. 5. CTR values before and after Spark is deployed in production.

5 Lessons Learned

Feature importance. The performance of individual features show variation
depending on the type of an entity or the type of the relation between entities.
For example, for movies, useful popularity or co-occurrence information can be
obtained by the features extracted from the query logs, whereas the features
obtained from the photo tags are not very helpful for entities of this type. This
explains the reason why the relation type is the most important feature. We note
that the relation type implicitly contains the type information for the entity and
facet as well.

Feature sources. Flickr turns out to be the most important source of infor-
mation for co-occurrence. It is relatively high quality and provides the highest
coverage, especially for locations. Search logs provide limited co-occurrence in-
formation because most queries do not contain more than one entity. In general,

the Twitter data is not very helpful because of the informal nature of the tweet
texts.
Weak relations. In our initial attempts, we experimented without any pruning
on the relations. It later turned out that certain weak relations (for example,
voice actors of the same movie) introduce too much noise into the generated
rankings. Eventually, we excluded some weak relations from our input data.
Coverage vs. CTR. The trade-off between coverage and CTR is important
as these metrics often act against each other: Increased coverage most often
implies decreased CTR and vice versa. As an example, poor disambiguation
implies increased coverage, but has a significant negative impact on CTR.
CTR per type. We observe that person entities are more likely to be clicked
by the users. Location entities are the second most important in terms of the
CTR metric. In general, albums receive a relatively lower number of clicks on
average.

6 Related Work

Previous methods for generating query recommendations (search assistance)
have focused on the analysis of query logs at the level of entire query strings
or tokens, without any concern for the linguistic or semantic structure of query
strings [5]. However, more recent work has recognized that queries have inter-
nal structures and can be classified based on their semantic intent [8, 7]. These
observations have led to the development of the area of semantic search.

The broad area of semantic search in general refers to finding information in
knowledge bases using unstructured, keyword queries typical for search engines.
The task we address in this paper can be placed in the context of the related
work as shown in Figure 6. Within semantic search, three broad tasks have
attracted attention so far. Entity search or ad-hoc object retrieval as defined by
Pound et al. [9] requires finding the resources in a knowledge base that refer to
an entity explicitly named in the query. For example, finding the resource http:
//dbpedia.org/resource/Brad_Pitt for the query brad pitt actor. While this
task may seem rather trivial at first, it encapsulates many of the key challenges
in semantic search, in particular query interpretation. This task has been the
focus of evaluations at the Semantic Search Challenge evaluations organized in
2010 and 20115.

Semantic search becomes more complex and closer to question answering in
general when the query only provides a description of the target entity. This is
generally referred to as category or list search. An example is the query actors

who played in fight club. List completion is a variant of this task where some
instances of the target list are explicitly given. Related entity finding is another
variant where the list is defined by the list member’s relationship to a single
entity. The Related Entity Finding in Linked Open Data (REF-LOD) task at
the TREC Entity Track in 2010 and 2011 are of this type. In this particular case,

5 http://semsearch.yahoo.com/

the type of relation to the target entity as well as the type of the target entity
were both given as constraints. An example query from 2011 was What recording

companies now sell the Kingston Trio’s songs?. Here the name of a musical band
is given, and the task is to find entities of a given type that are related by selling
the songs of this band. In the related entity recommendation task we consider
neither the relation type nor the type of the target entity are specified as con-
straints. A further difference is that the systems in the Entity Track have had to
perform relation extraction from text, because the relationship between the two
entities were not explicitly specified in a knowledge base but had to be discov-
ered from text. In our case, we are ranking relations that are explicitly defined
in our Knowledge Base and consider only the task of ranking those relations.
In other words, our task is recommendation as opposed to extraction or finding.

list search

related entity finding

entity search
SemSearch 2010/11

list completion

SemSearch 2011

TREC ELC task

TREC REF-LOD task

semantic search

related entity recommendation

Fig. 6. Taxonomy of semantic search tasks

Although recommendations simi-
lar to ours appear on the result pages
of Google Search and Bing Search, de-
tails of these systems have not been
published. Previous versions of our
system have been described in [11, 6].
These papers have focused largely on
ranking and provided limited descrip-
tions of the overall process of gen-
erating entity recommendations. Our
system has evolved considerably since
the publication of these papers, including the ranking model, which does not
rely any more on a click-based objective as described in [6].

7 Future Work

We have presented Spark, a semantic entity recommendation engine. Spark
provides a ranking of related entities based on a knowledge base and signals
mined from multiple sources, including the knowledge base itself as well as user-
generated text from query logs, Twitter and Flickr. Though no baselines exist
for comparison, we have described our experiments in evaluating and optimiz-
ing Spark against manually created relevance assessments and usage data. Our
framework is generally applicable to ranking related entities in RDF data, as it
only relies on typed entities, relationships and natural language labels for enti-
ties. Though some of the sources we have used to extract ranking features may
not be generally available, they can be substituted by others without changing
the general architecture of the system.

Our system is currently live in Yahoo! Search in the US, as well as in other
English language markets, Taiwan, Hong Kong and Spain. We are continuously
improving the system by incorporating new data sources as well as devising new
features. In the future, we are also planning to significantly extend the types of
queries we are able to answer. At the moment, our system only handles entity

queries such as brad pitt actor, while in the future we would also like answer
list queries such as brad pitt movies and brad pitt movies 2010. The ultimate
scope of our work is question-answering, i.e. answering arbitrary keyword queries
regarding entities on the Web.

8 Acknowledgment

We would like to acknowledge members of the Yahoo! Search product manage-
ment team (in particular, Libby Lin), our editorial support (Alice Swanberg)
and the members of the Taiwan search engineering team (Gibson Yang, Rong-
En Fan, Yikai Tsai).

References

1. Blanco, R., Mika, P., Vigna, S.: Effective and Efficient Entity Search in RDF Data.
In: International Semantic Web Conference. pp. 83–97 (2011)

2. Friedman, J.H.: Stochastic gradient boosting. vol. 38, pp. 367–378 (1999)
3. Friedman, J.H.: Greedy function approximation: A gradient boosting machine.

vol. 29, pp. 1189–1232 (2000)
4. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant

documents. In: Proceedings of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information retrieval. pp. 41–48. SIGIR ’00,
ACM, New York, NY, USA (2000), http://doi.acm.org/10.1145/345508.345545

5. Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In:
Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW. pp.
387–396. ACM (2006)

6. Kang, C., Vadrevu, S., Zhang, R., van Zwol, R., Pueyo, L.G., Torzec, N., He,
J., Chang, Y.: Ranking related entities for web search queries. In: Srinivasan, S.,
Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.)
WWW (Companion Volume). pp. 67–68. ACM (2011)

7. Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects: actions
for entity-centric search. In: Mille, A., Gandon, F.L., Misselis, J., Rabinovich, M.,
Staab, S. (eds.) WWW. pp. 589–598. ACM (2012)

8. Mika, P., Meij, E., Zaragoza, H.: Investigating the semantic gap through query log
analysis. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) International Semantic Web Conference.
Lecture Notes in Computer Science, vol. 5823, pp. 441–455. Springer (2009)

9. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In:
Proceedings of the 19th international conference on World wide web. pp. 771–780.
WWW ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/
1772690.1772769

10. Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G.: A general boosting
method and its application to learning ranking functions for web search. In: Inf.
Proc. Sys. Conf. pp. 1697–1704 (2008)

11. van Zwol, R., Garcia Pueyo, L., Muralidharan, M., Sigurbjörnsson, B.: Ranking
entity facets based on user click feedback. In: Proceedings of the Fourth IEEE
International Conference on Semantic Computing (ICSC 2010). (2010)

