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We consider the scaling of the mass-flux and entrainment velocity across the turbulent /non-
turbulent interface (TNTI) in the far-field of an axisymmetric jet at high Reynolds
number. Time-resolved, simultaneous multi-scale-particle image velocimetry (PIV) and
planar laser-induced fluorescence (PLIF) are used to identify and track the TNTI, and
directly measure the local entrainment velocity along it. Application of box-counting and
spatial filtering methods, with filter sizes A spanning over two decades in length, show
that the mean length of the TNTT exhibits a power-law behaviour with a fractal dimen-
sion D =~ 0.31 — 0.33. More importantly, we invoke a multi-scale methodology to confirm
that the mean mass-flux, which is equal to the product of the entrainment velocity and
the surface area, remains constant across the range of filter sizes. The results, within
experimental uncertainty, also show that the entrainment velocity along the TNTI ex-
hibits a power-law behaviour with A, such that the entrainment velocity increases with
increasing A. In fact, the mean entrainment velocity scales at a rate that balances the
scaling of the TNTT length such that the mass-flux remains independent of the coarse-
grain filter size, as first suggested by Meneveau & Sreenivasan (Phys. Rev. A, vol. 41, no.
4, 1990, pp. 2246-2248). Hence, at the smallest-scales the entrainment velocity is small
but is balanced by the presence of a very large surface area, whilst at the largest-scales
the entrainment velocity is large but is balanced by a smaller (smoother) surface area.
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1. Introduction

A thorough understanding of turbulent entrainment has been a long standing challenge
in fluid mechanics. Turbulent entrainment represents the transport of non-turbulent fluid
across the boundary between the turbulent and non-turbulent regions of a flow. The
turbulent entrainment process and the mechanisms that control the transport of mass,
momentum, and scalars from a turbulent region of a fluid to a non-turbulent region are
also of widespread interest in science and engineering. The early studies of Brown &
Roshko (1974), Dahm & Dimotakis (1987), and Liepmann & Gharib (1992) attributed
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entrainment to the role of large-scale eddies in a process known as engulfment, in which
parcels of irrotational fluid are encased in a large turbulent structure and brought into
contact with turbulent fluid. However, investigations by Mathew & Basu (2002), West-
erweel et al. (2005), Taveira et al. (2013), and others do not find significant amounts of
unmixed fluid within the turbulent fluid (see figure 1). Similarly, da Silva et al. (2014)
report that the “bubbles” of irrotional fluid that are found inside of the turbulent re-
gion are the same as the weakly-rotational pockets of fluid found within fully-developed
isotropic turbulence simulations. These findings indicate that entrainment is mostly hap-
pening at the edges of the turbulent/non-turbulent interface (TNTI) rather than inside
the turbulent core. More generally, there is some ambiguity when ascribing a length-scale
to engulfment processes (e.g. encasing parcels of unmixed fluid) because this process is
difficult to measure and quantify. For clarification, in this paper we define engulfment
as a predominantly inviscid entrainment process that is characterised by its association
with large-scales.

There is much greater consensus that viscous and molecular diffusion at the smallest-
scales near the TNTTI is responsible for the transfer of vorticity and scalar concentration
to irrotational and unmixed fluid, respectively; this process is known as viscous nibbling.
The concept of viscous nibbling was first suggested by Corrsin & Kistler (1955), and
has been more recently supported by simulations and experiments by Mathew & Basu
(2002), Westerweel et al. (2005), da Silva & Taveira (2010), Holzner & Liithi (2011), Wolf
et al. (2013), and Taveira et al. (2013). These researchers report that irrotational fluid
particles in the non-turbulent region of the flow acquire vorticity near the TNTI over
length, velocity, and time-scales that are representative of the smallest-scales of the flow.
It is important to note that Holzner & Liithi (2011) show that the local entrainment rate
along the TNTT is in fact decorrelated from the local dissipation field. In other words,
local entrainment along the TNTI proceeds at the smallest-scales of the flow, however,
it is not highly influenced by the small-scale turbulence.

Rather, it is reasonable to expect that a full description of the entrainment process will
need to account for the multi-scale nature of turbulence, as suggested by Sreenivasan et al.
(1989), Mathew & Basu (2002), Philip & Marusic (2012), and van Reeuwijk & Holzner
(2014). Townsend (1976) (p. 232) provides a succinct description of entrainment as a
multi-scale process:

[T]he development of vorticity in previously irrotational fluid depends in the first place
on viscous diffusion of vorticity across the bounding surface. Since the rate of entrainment

is not dependent on the magnitude of the fluid viscosity, the slow process of diffusion into

the ambient fluid must be accelerated by interaction with the velocity fields of eddies of

all sizes, from the viscous eddies to the energy-containing eddies so that the overall rate

of entrainment is set by large-scale parameters of the flow.

It is not straight-forward to delineate the role of the large-scales on entrainment. For
example, along the TNTI in a turbulent jet and a shear-free flow it is shown that the in-
viscid contribution to entrainment is much weaker than the viscous contribution (Holzner
& Liithi 2011; Wolf et al. 2012). However, other researchers have found evidence support-
ing the role of the large-scales in determining the overall entrainment rate in a range of
turbulent flows. Moser et al. (1998) report a larger growth rate in a forced-temporal wake
compared to the unforced case. Forcing induces large-scale modulations in the topology
of the shear layers, and therefore the TNTI that promotes mixing (e.g. Bisset et al.
2002; Mathew & Basu 2002). Similarly, Krug et al. (2015) observe a greater entrainment
rate in an unstratified flow compared with a stratified flow; they attribute this differ-
ence in entrainment rate to the increased surface area of the TNTI that is generated in
the unstratified case from the large-scale convolutions. Conversely, altering the smallest-
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FIGURE 1. Instantaneous scalar concentration field of the far-field of a turbulent jet at
Re = 25300. The TNTI is denoted by the blue line, and the coordinate along the TNTI, s,
is also presented. Note the absence of unmixed fluid within the jet.

scales of the flow by changing the viscosity does not modify the overall entrainment rate
(Townsend 1976). The influence of the large-scales on entrainment was also observed by
Philip & Marusic (2012), who applied a large-scale hairpin model, in a manner similar to
Nickels & Marusic (2001), that was able to recover the mean entrainment rate in a round,
turbulent jet. The hairpin model correctly predicted the radial inflow of non-turbulent
fluid, which determines the overall entrainment rate, despite neglecting the small-scales
of the flow. These studies allude to an entrainment process in which viscous nibbling
adjusts to the imposed entrainment rate defined by the large-scales of turbulence.

1.1. Towards the present study

The focus of the present study is to consolidate the roles of large-scale (global) and small-
scale (local) entrainment processes using a multi-scale framework. The global entrainment
is typically calculated using the mean TNTI surface area and the ensemble averaged
radial velocity (Morton et al. 1956). Comparatively, the local entrainment is typically
calculated using the highly-corrugated instantaneous TNTI surface area and the local
entrainment velocity at each point along the surface; this definition of the net mass
entrainment may be written as pV,,S. Here, p is the constant fluid density, which we
shall henceforth ignore, and S is the TNTI surface area. The mean entrainment velocity,
V, = [[(=vn)dalrnti/ [[ dalonrr, is the integral of the local entrainment velocity (vy,)
over the TNTT surface, which is then ensemble averaged over many realisations (denoted
by an over-line, ()). The local entrainment velocity is defined more precisely in §2.5, but
we simply note here that a negative v, implies mass-flux into the turbulent region, or a
positive entrainment. Measurement of V,, has only recently become possible with direct
numerical simulations (DNS) and high resolution experiments (Holzner & Liithi 2011;
Wolf et al. 2012; van Reeuwijk & Holzner 2014; Krug et al. 2015). For velocity fields on
a 2D axisymmetric plane in an axisymmetric jet, such as that studied in this paper, the
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mean entrainment velocity is approximated with

]

fOLS rids

Vi = (1.1)

In this expression the integration is performed along the TNTI (schematically shown in
figure 1) where L, is the length of the interface, and ry is the radial location of the TNTI;
details regarding this 2D approximation is discussed later in the paper.

A multi-scale analysis is necessary to connect the global and local entrainment. Indeed,
the notion that entrainment is a multi-scale phenomena has been proposed by Meneveau
& Sreenivasan (1990), who suggest that total flux across the TNTI should be constant
and scale-independent,

VVSY = VASA =V, (A)S(A) = constant. (1.2)

Here, the superscript v represents the viscous flux, superscript A represents the advective
flux (at the ensemble averaged mean flow level), and A is the filter size (see for example
appendix D in Philip et al. 2014 for further details). In other words, V.V is the mean
entrainment velocity at the smallest scales (with the corresponding highly corrugated
surface area, S¥), VnA is the mean entrainment velocity at the largest mean scales (with
S4. the smooth mean surface area), and V;,(A) and S(A) the corresponding quantities
at intermediate length scales. The scaling rate in (1.2) was put to test by Philip et al.
(2014) but they were not able to confirm it because of the limited spatial resolution
of their measurements and their use of “indirect” methods to measure the entrainment
velocity. In this paper we resolve these limitations by implementing an interface-tracking
technique that directly measures the entrainment velocity and is unaffected by spatial
resolution; this technique is detailed in §2.5.

The primary aim of this paper is (i) to confirm the scale-independent mass-flux hy-
pothesis (1.2); this not only requires high Re, but also a high resolution measurement
system that is capable of interface tracking. Equation (1.2) illustrates the intrinsic roles
of S(A) and V,(A) in testing the scale-independent mass-flux hypothesis. For this rea-
son, we also seek to (ii) understand the scaling of the TNTT surface area, S, and to (iii)
understand the scaling of the mean entrainment velocity, V,,. Although the the scaling
of S(A) has been presented as a constant power-law (fractal) scaling, there is yet to be
clear consensus on this finding because of suggestions of a scale-dependent (non-constant)
power-law scaling (e.g. Miller & Dimotakis 1991). We aim to use our high Re novel mea-
surement system to shed light on this matter. Examining the scaling of the entrainment
velocity, V,,, inherently leads us to look deeper into the local entrainment velocity (vy,),
and the radial position of the TNTI (), at multi-scales, and the relationship between
them. Achieving these aims will clarify the roles of large-scale engulfment and small-scale
nibbling to the entrainment process in an axisymmetric jet.

1.2. The multi-scale nature of the TNTI area, S

Turbulence is characterised by irregular motions that exhibit a large span of length,
time, and velocity scales. The multi-scale nature of these features may be described
by considering the scale-dependent fractal behaviour of turbulence. Mandelbrot (1982)
describes fractal self-similarity as “[invariance] under certain transformations of scale.”
One result of this self-similarity is the non-trivial scaling of the area of a turbulent
surface as a function of the measurement resolution. Experimental evidence to support
the fractal nature of turbulence was presented by Sreenivasan & Meneveau (1986) and
Sreenivasan et al. (1989) for a range of shear flows such as jets, wakes, and boundary
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layers. Box-counting techniques are commonly implemented in fractal studies to establish
the scaling of turbulent surfaces (or contours in 2D); this technique is described in §4.1.
It is suggested that there is an intermediate range of scales between the dissipation scales
and the inertial scales over which the box count along a turbulence isosurface scales as
N ~ A=P3 where A is the box side-length and Ds is the fractal dimension. Using a
fractal framework, Mathew & Basu (2002) proposed that the large-scales of turbulence
contort the TNTI to generate a large surface area over which viscous nibbling may act
to mix the turbulent and non-turbulent fluid; this argument links large-scale turbulent
quantities to the entrainment that results from small-scale nibbling. Early experiments
that measured the fractal dimension were performed at only moderate Reynolds numbers
that are limited by a narrow scale separation, which introduces some ambiguity with
regards to establishing a universal fractal dimension for any turbulent flow (Dimotakis
& Catrakis 1999; Catrakis 2000). Also, the fractal dimension of isosurfaces is dependent
on the fractal method and threshold value of the interface (Sreenivasan 1991; Zubair &
Catrakis 2009). For these reasons, it has been suggested that the fractal dimension of a
turbulent surface may be scale-dependent rather than exhibit a constant scaling (Miller &
Dimotakis 1991; Catrakis & Dimotakis 1996). On the other hand, recent work by de Silva
et al. (2013) implemented high-resolution PIV to examine the scaling of the TNTI of a
high Reynolds number turbulent boundary layer; their experimental set-up flow addresses
the limitations that hindered earlier measurements of interface scaling. de Silva et al.
(2013) report that the fractal dimension of the TNTI is scale-independent and falls in
the range D3 = 2.3 to 2.4 using a box-counting and a spatial-filtering technique. Similar
fractal dimensions are also observed by Chauhan et al. (2014b) and Zubair & Catrakis
(2009). However, “a purely geometric analysis of the surface area is, by itself, insufficient
to answer questions directly related to physical fluxes and rates of entrainment” (Philip
et al. 2014). Tt is for this reason that we also consider a multi-scale analysis of the fluxes
across the TNTIL.

1.3. Further organisation of the paper

In this paper we present results from measurements taken in a high Reynolds number
jet that experimentally confirm that, within experimental uncertainty, the mass-flux rate
across the TNTI is a scale-independent process (1.2) and that the entrainment velocity,
Uy, exhibits a power-law scaling that is the inverse of the TNTI length scaling. These re-
sults are achieved with the implementation of a multi-scale technique that spatially-filters
the velocity and scalar fields and evaluates the mass-flux rate at different length-scales.
The multi-scale approach requires a large scale-separation and a high dynamic range to
capture it. This is achieved with the experimental setup that is first described in §2. We
then discuss the identification criterion for the TNTI and the planar measurement of the
local entrainment velocity, v,,, along the TNTI. In §3 a comparison is made between local
and global descriptions of the mean entrainment rate in turbulent jets. Furthermore, we
present an alternative method of calculating the entrainment rate in jets by considering a
conditional velocity distribution at the TNTT; this is similar to the technique introduced
by Chauhan et al. (2014a) for entrainment in turbulent boundary layers. The scaling of
the TNTI length, mass-flux, and entrainment velocity are presented in §4. In this last
section we confirm the hypotheses of Meneveau & Sreenivasan (1990) and Philip et al.
(2014) that the entrainment velocity does indeed scale inversely to the TNTT length to
give a scale-independent mass-flux.
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FIGURE 2. Schematic of the arrangement of (a) the water tank, (b) jet nozzle, (c) pumps, (d)
dyed-fluid reservoir, (e) laser, (f) laser-sheet-forming optics, (g) PIV high-speed cameras, and
(h) PLIF high-speed camera (not shown).

2. Experimental methods
2.1. Apparatus

Experiments were performed in a 7 m long water tank with a cross section of 1 m x 1 m
and transparent acrylic side-walls to provide optical access. A schematic is provided in
figure 2. A round nozzle with an exit diameter D = 10 mm and flow conditioning via a
series of wire-meshes, honeycomb grid, and a 5*"-order polynomial contraction was used
to produce a top-hat velocity profile at the jet exit; the nozzle was positioned 520D away
from the end-wall of the tank. A separate reservoir containing dyed-fluid for the scalar
measurements was used in combination with a pump to supply the jet, which produced
Reynolds numbers of Re = 25300 (based on D and U,, the average nozzle exit velocity)
and Rey = 260 (measured at the jet centreline, see table 1). A constant volumetric flow-
rate was maintained throughout the experiments, as determined from the pressure drop
across a calibrated orifice plate. The streamwise, radial, and spanwise coordinates are
denoted by x, r, and z, with component velocities denoted by u, v, and w as usual. The
scalar concentration is represented by ¢.

Two experimental set-ups of Particle Image Velocimetry (PIV) and Planar Laser-
Induced Fluorescence (PLIF) measurements were implemented. The first used a very
large-scale field of view (FOV) to measure bulk flow characteristics that are presented in
§2.2. The second set-up used a multi-scale arrangement that was obtained using large-
scale and small-scale FOVs, and is described in detail in §2.3. This latter set-up is used
to investigate the entrainment process in the turbulent jet.

2.2. Flow characterisation

Flow characterisation experiments using PIV and PLIF are used to confirm that this flow
does indeed follow classical scaling laws for free, turbulent jets. Even though these ex-
periments are different from the experiments described in §2.3, the set-up and processing
methods are similar, and will be described in detail in §2.3.

Figure 3 presents the normalised mean and rms velocity and scalar profiles in the far-
field of the jet. These profiles are measured across 30D of streamwise extent, starting
from x/D = 35. There is very good collapse of the profiles when normalised by the jet
half-width, b /2, and are also in good agreement with the mean profiles of Panchapakesan
& Lumley (1993), as denoted by the red lines in figure 3, and with the scalar profiles
of Lubbers et al. (2001), as denoted by the blue lines. The collapse of the mean and
rms profiles across a span of streamwise distances indicates that the jet achieved self-
similarity in the far-field. The slight increase in the data scatter in the radial velocity
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FIGURE 3. Self-similar profiles of the jet, normalised by the local centreline velocity (U.) and
scalar concentration (¢.), and the local jet half-width (by,3); the radial location from the jet
centreline is given by 7. The mean profiles of (a) axial velocity, (b) radial velocity, and (c) scalar
concentration are presented in the top row; the respective rms profiles are shown in the bottom
row. The red lines denote the self-similar profiles reported in Panchapakesan & Lumley (1993)
and the blue lines denote the scalar profiles reported in Lubbers et al. (2001).

profile, 7/U,, in figure 3(b) is an artefact of the coarse PIV measurement resolution rather

than actual flow non-uniformities. Similarly, the slight asymmetry of the ¢’ 2!/2 profile
(figure 3f) is attributed to the attenuation of laser energy intensity through the fluorescent
dye; the laser beam travels from the r < 0 side of the jet. Corrections using the Beer-
Lambert law are applied to the PLIF images, which yield the symmetric profile of ¢ in
figure 3(c). However, limitations of this normalisation technique becomes apparent when

considering higher-order statistics. A similar asymmetry of the ¢’ 2'/? profile has also been
observed in comparable PLIF measurements of a turbulent jet by Fukushima et al. (2002).
The limitations of the PLIF image correction do not significantly affect the TNTI and
entrainment velocity measurements in §§2.4-2.5 because the TNTT identification does not
involve high-order scalar statistics, and the FOV only considers half of the radial extent
that is shown in figure 3(c,f).

Further confirmation of the self-similar behaviour of the turbulent jet is presented in
figure 4. As expected for free jets, the inverse of the centreline velocity, U,, in figure 4(a)
scales linearly with streamwise distance, x. The scaling coefficient for the centreline ve-
locity (see Pope 2000, p. 100) is B = 5.87 and is in good agreement with Hussein et al.
(1994), who report B = 5.8 — 5.9. For comparison we also consider an integral measure
of the velocity that is defined by U, = M/Q, where M is the momentum flux and Q
is the volumetric flow rate. Variables M and @ are defined in appendix B. The inverse
of this integral velocity, U,,, also exhibits linear scaling with streamwise distance. In
figure 4(b) we present the inverse scaling of the mean centreline scalar concentration,
¢.. This quantity is normalised by an arbitrary constant, ¢z, because the source scalar
concentration could not be measured at the measurement location. The inverse centreline
scalar profile exhibits linear scaling with streamwise distance, which is consistent with
self-similar scaling (Fischer et al. 1979). Also included in figure 4(b) is the scaling of the
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FIGURE 4. (a) Inverse centreline axial velocity decay profile (Ue, circles) and integral velocity
decay profile (Un, squares). U. = 2.53 m/s represents the nozzle-exit velocity of the jet. (b)
Inverse centreline scalar concentration decay profile (¢, circles) and the global integral mass-flux
rate profile (squares) defined by (2.1). (c) Measures of the local mean jet width. Points are
down-sampled for clarity.

global integral mass-flux, which is defined as

oo

h = 27rp/ﬂrdr. (2.1)
0

Although the upper limit of the integral is at infinity, we integrate this expression up to
the edge of the PIV field of view. The overall entrainment rate of the jet is determined
from the streamwise-gradient of the mass-flux, dr/dx; figure 4(b) shows that this rate is
measured to be 5.15 kg/ms. We note that this bulk global measurement of entrainment
comes as a stringent check when we measure entrainment using small-scale information,
which is carried out later in the paper.

Profiles of the spreading rate of the jet are plotted in figure 4(c), in which we present
both the scalar (bs) and axial velocity (b,,) spreading rates of the time-averaged flow field.
The half-widths (bs 1 /2 and b, 1 /2) are measured as the radial distance from the centreline
to the points at which the mean velocity and mean scalar concentration decay to half
of the local centreline values; the e~! profile widths (bp,e-1 and by, .-1) are measured
in a similar manner. These jet width spreading rates are in good agreement with the
summarised data found in Pope (2000). We also consider an integral measure of the
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Reynolds number Re 25300
Turbulent Reynolds number Re 260
Jet-exit velocity U. 2.53 m/s
Dissipation (z = 50D) € 0.0088 m?/s*
Rms axial velocity (x = 50D) w? 7.85 x 1072 m/s
Kolmogorov length-scale (z = 50D) n 0.10 mm
Taylor micro-scale (x = 50D) A 3.31 mm
Jet half-width (z = 50D) bu1/2 43.63 mm
Large PIV/PLIF FOV — /200 mm x 200 mm
Small PIV FOV - 45 mm X 45 mm
LFOV PIV resolution, vector spacing | Ax 40n, 10n
SFOV PIV resolution, vector spacing | Ax 127, 3n
PLIF pixel spacing - 2n
Laser sheet thickness Az 157
LFOV particle-image separation time | ot 3 ms
SFOV particle-image separation time | dt 2 ms
Vector /scalar field separation time At 1 ms
No. vector/scalar fields - 32724

TABLE 1. Experimental parameters and measured length, velocity, and time-scales of the tur-
bulent jet. Note that here Re = U.D/v, Rex = u/\/v, € = 150(du/dx)2, n = (v*/€)'/*, and
A = uy/15v/€; these quantities are measured at the jet centreline.

jet width that is defined as b,, = Q/v/M; this measure of the jet width also scales
linearly with streamwise distance, x. In addition to the mean scaling in the far-field, we
also evaluate the turbulence statistical quantities at the primary measurement location
(x/D = 50). These quantities are summarised in table 1.

2.3. Simultaneous PIV/PLIF measurements

Simultaneous, time-resolved, planar multi-scale-PIV/PLIF measurements were taken in
the far-field at z/D = 50 in the streamwise-radial (x —r) plane. The measurement set-up
described here is used for the entrainment velocity analysis discussed in this paper. A two-
camera set-up was implemented for the PIV measurements. A large field of view (LFOV)
region of flow was captured with one camera, whilst a small field of view (SFOV) focussing
on the region around the TNTI was captured by the second camera. The measurement
regions of the PIV cameras are illustrated in figure 5 (also see figure 2). To track the
evolution of the TNTI in time, simultaneous PLIF measurements were performed using
rhodamine 6G (Sigma-Aldrich Co. LLC) as the passive dye; this dye exhibits maximum
light absorptivity at 525 nm and maximum light emissivity at 555 nm (Crimaldi 2008).
The molecular diffusivity rate of rhodamine 6G is 1.2 x 107! m?s~! and the Schmidt
number of the scalar field is S¢ = 8000. Although the Batchelor scale, ny = 1.1 pm, is
too small to capture, we are primarily interested in the scaling of the mass-flux across
the inertial range rather than resolving the fluxes at the very smallest scalar scales. This
is reflected in the fact that we apply spatial filters to the velocity and scalar data.

For the PIV measurements the flow was seeded with 10 um silver-coated, hollow glass
sphere particles (Dantec Dynamics A/S). A single high-speed 527 nm Nd:YLF laser
(Quantronix Darwin Duo) illuminated both the particles and dye. The laser beam was
passed through a series of beam-collimating spherical optics (Thorlabs Inc.) before pass-
ing through plano-concave cylindrical lenses to form a 1.5 mm thick light sheet. The laser
sheet thickness was selected to approximately match the in-plane resolution of the PIV.
Notch filters were placed in front of the 1024 x 1024 pixel high speed cameras (Photron



10 D. Mistry, J. Philip, J. R. Dawson, and I. Marusic
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FIGURE 5. (a) The instantaneous scalar concentration field of the jet, shown in logarithmic
scaling in the background, with the TNTI superimposed with the black line. The instantaneous
velocity vectors from the LFOV camera are superimposed onto the figure in grey; only every
third velocity vector is shown for clarity. The red box indicates the spatial extents of the SFOV
PIV. (b) As in (a) but for the SFOV PIV camera.

SA1.1) to separate the PLIF signal from the intensity field produced by Mie scattering
of particles for the PIV measurement. The velocity and scalar fields were recorded at
1 kHz, which gives a vector /scalar field spacing (1 ms) that captures the smallest tempo-
ral evolutions of the flow as determined by the Kolmogorov time-scale, 7 = 10.7 ms. Each
experimental run consisted of 5457 sequential images that generate 5454 time-resolved
velocity and scalar fields; 6 runs were performed to yield a total of 32724 vector/scalar
fields. The use of a high-repetition laser also allowed us to optimise the particle-image sep-
aration times independently for the LFOV PIV (6t = 3 ms) and SFOV PIV (§t = 2 ms)
measurements. PTV processing was performed using DaVis 8.2.2 (LaVision GmbH). We
implemented multi-pass processing in which the interrogation windows are shifted and
deformed as per the previous cross-correlation pass. The initial particle image correla-
tions were performed with 64 x 64 px? interrogation windows, followed by 32 x 32 px?
windows for the SFOV PIV, and then 24 x 24 px? for the LFOV PIV.

The scalar concentration data was captured by each pixel of the PLIF camera sensor to
give 1024 x 1024 points of data across the FOV. It is necessary to downsample this data
to match the vector spacing of the LFOV and SFOV for analysis of scalar fluxes. Alterna-
tively, it is possible to interpolate the velocity field onto the same grid as the scalar field.
However, this would become computationally and expensive and would require imprac-
tical amounts of computer memory (Aanen 2002). To downsample the scalar images we
first apply a low-pass 2"d-order Butterworth filter to eliminate wavenumber fluctuations
that are larger than the spatial resolution of the PIV fields. The low-pass filter technique
has the added advantage of more effectively removing the random, high-frequency cam-
era noise from the scalar images. The filtered scalar fields are then interpolated (bi-linear
interpolation) onto a grid that matches the PIV measurements.

An example of the data captured with the setup described here is presented in figure 5.
The use of this multi-scale experimental setup makes possible the measurement of a large
dynamic range from the small-scales (SFOV) to the integral length-scales (LFOV) of the
flow. In combination with PLIF, we simultaneously measure the scalar field that is used
to identify the TNTI. Details of the measurement resolution and data-set description are
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given in table 1. From the 32724 vector and scalar fields we extract 1080 equally-spaced
fields with which we calculate the results presented in §4.

2.4. Identification and some characteristics of the turbulent/non-turbulent interface

Isosurfaces of vorticity are commonly used in DNS and particle tracking experiments
to identify the TNTI (Holzner et al. 2007; da Silva & Pereira 2008; Wolf et al. 2012;
van Reeuwijk & Holzner 2014). However, a surrogate marker for the turbulent region
is required for planar measurements that only capture one component of vorticity. We
use isocontours of the scalar concentration field, ¢, to identify the TNTI. This marker
has been used previously in a mixing layer DNS by Sandham et al. (1988) and in planar
experiments on a jet by Westerweel et al. (2009). The scalar concentration field (S¢ = 1)
has recently been shown to agree very well with the 3D vorticity field by Gampert et al.
(2014) in the DNS of a temporal mixing layer. Following these researchers, we identify the
TNTI by applying a threshold to the scalar concentration field that has been normalised
by the local mean centreline concentration value, ¢/¢.. An empirical process is used to
identify the threshold value that best represents the TNTI. This is achieved by evaluating
the area-averaged values of four variables across all the points inside the region where the
local scalar concentration is larger than the given threshold value, ¢ > ¢;. For a given
variable, f, the conditional average at threshold ¢; is defined as

Fon=LY da)lee. (2.2)
fda|¢>¢t

Evidently, any such quantity will be a function of ¢;, and we look for a distinct change
in such quantities as ¢, is varied. Similar techniques have been suggested by Prasad &
Sreenivasan (1989) and Westerweel et al. (2002) for identifying the TNTI using scalar
fields. The variables that we measure are: (i) scalar concentration, ¢/¢., (ii) spanwise
vorticity, w,, (iii) turbulence kinetic energy, k, and (iv) streamwise velocity, u. Area-
averaged distributions of these quantities are presented in figure 6(a-d). Points that
exceed the scalar concentration threshold but exist outside of the primary scalar region
(i.e. islands of scalar concentration present in the ambient fluid region) are not included
in the calculation of the conditional averages. Points that are less than the scalar concen-
tration threshold but exist within the primary scalar region (i.e. holes in the turbulent
region) are included in the calculation of the conditional averages. That ¢ is much larger
than the scalar threshold, ¢, in figure 6(a) is to be expected because the area-average
includes the turbulent region for which the scalar concentration is typically O(¢.); see
also Westerweel et al. (2002) and their figure 4.

We identify the interface between the turbulent and non-turbulent regions by determin-
ing the scalar threshold that coincides with the inflection points of the conditional mean
value profiles in figure 6(a-d); this process has similarities to that described by Prasad
& Sreenivasan (1989). We identify each inflection point by considering the derivative
of the conditional profiles, df /d¢y, that is shown in figure 6(e-h). The scalar concen-
tration, spanwise vorticity, and axial velocity exhibit inflection points at ¢;/¢. = 0.18.
The turbulence kinetic energy, k, field exhibits an inflection point at a lower threshold
(¢1/de = 0.17). This may be attributed to the presence of irrotational fluctuations in
the non-turbulent region of the flow. We therefore use the inflection point of the scalar
concentration, spanwise vorticity, and velocity fields to identify the TNTI, for which
¢+/p. = 0.18. This scalar threshold is applied to each centreline-normalised, instanta-
neous scalar concentration field. The TNTI is extracted by applying the contour func-
tion in Matlab (MathWorks) and selecting the longest continuous isocontour. “Islands”
of scalar concentration that exist outside of the turbulent region and “holes” of un-dyed
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FIGURE 6. (a) Mean scalar concentration ¢(¢;) conditioned on points over the whole domain that
satisfy ¢ > ¢, where ¢, is a given scalar threshold value. (b) Conditional mean spanwise vorticity
magnitude |w.|(¢¢). (c) Conditional mean turbulent kinetic energy k(¢:). (d) Conditional mean
axial velocity u(¢¢). Plots (a-d) are presented with logarithmic scaling. Plots (e-h) represent the

derivative df/ d¢ of the conditional profiles in plots (a-d). The derivative profiles are presented
with linear scaling.

fluid inside the turbulent region are excluded from analysis pertaining to the TNTIL. The
justification for this is presented later in this section.

The conditionally-averaged profiles (denoted by (~)TnT1) presented in figure 7 con-
firms that the Sc¢ > 1 passive scalar successfully demarcates the turbulent region of the
flow. In this figure we present the conditionally-averaged profiles profiles of ¢ and |w.,|
that are calculated along coordinates that are locally-normal to the TNTI, z,,. In some
instances x,, crosses another point along the TNTI; this results in another transition from
turbulent to non-turbulent fluid or vice versa. Points beyond any secondary crossings of
the TNTTI are excluded from the conditional average. In figure 7 we observe a jump in the
scalar concentration profile across the TNTI, x,, = 0. The region over which the scalar
concentration jump occurs, denoted by the vertical grey bars, is approximately 2\. How-
ever, this measured thickness is strongly influenced by spatial resolution; resolution on
the order of the Batchelor scale is required to recover the true scalar gradient across the
TNTI. More importantly, however, we observe that the spanwise vorticity profile in figure
7(b) exhibits a jump that coincides with the jump in scalar concentration. The spanwise
vorticity magnitude is not zero in the non-turbulent region (z,, < 0) due to particle dis-
placement measurement error in PIV (Westerweel et al. 2009). In any case, the fact that
the spanwise vorticity exhibits a steep jump across the isocontours that are defined from
the scalar concentration field indicates that a Sc > 1 passive scalar is a reliable marker
of the turbulent region in the jet flow discussed here. In other words, the passive dye is
not decoupled from the vorticity field. The TNTI is a region of finite thickness across
which the vorticity smoothly transitions from the non-turbulent levels to the magnitude
of the turbulent region (Chauhan et al. 2014a; Taveira & da Silva 2014). Therefore, the
scalar threshold that we identify (¢/¢. = 0.18) falls within the finite thickness of the
TNTI, as given by the sharp transition in spanwise vorticity in figure 7(b).

One of the consequences of the self-similarity of the flow is that the distribution of the
TNTI radial position, ry, is also self-similar (Bisset et al. 2002; Westerweel et al. 2005;
Gampert et al. 2014; Chauhan et al. 2014b). Here, the subscript I denotes values along the
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FIGURE 8. (a) PDFs of the TNTI radial position, 71, for short streamwise sections z/D + 2.5
across values shown in legend; the radial positions are normalised by the nozzle exit diameter, D.
(b) PDF's of the TNTI radial height for same streamwise sections as (a) but the radial positions
are normalised by local jet velocity half-width, b, 1/2. A Gaussian fit is shown in the dashed red
line.

interface. The self-similarity of the TNTT radial position is confirmed in figure 8 in which
we present (a) the PDFs of the radial position of the TNTI across short streamwise spans
of the flow and (b) the PDF's of the radial position normalised by the local jet half-width.
The normalised PDF profiles in figure 8(b) are approximately Gaussian (red dashed line)
and exhibit good collapse over 30D of streamwise extent. Moreover, the mean radial
position of the TNTI scales linearly with streamwise distance, as shown in figure 4(c).
The TNTI is much wider than the usual measures of the e~! and half-widths of jets,
which suggests these latter spatial locations (b, -1 and b, 1/2) remain in the turbulent
region.

The planar intersection of the measurement plane with the turbulent jet yields “holes”
in the turbulent region and detached eddies (“islands”) in the non-turbulent region.
Without access to volumetric information, we cannot infer if the holes are engulfed parcels
of irrotational fluid or if the holes are connected to the ambient region. Similarly, the
detached eddies that are isolated in the non-turbulent region may be completely detached
from the turbulent region or may be attached but in a different azimuthal plane. With
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FIGURE 9. Depiction of the measurement of the local entrainment velocity, v,, using time-re-
solved velocity and scalar data. A description of this process is given in §2.5. Note that the
interface-normal vectors n = (V¢/|V¢|); in (c) are pointing into the turbulent region.

regards to the “holes”, researchers have found very little irrotational fluid within the
turbulent region of different shear flows (see the Introduction). Indeed, we determine
that the percentage of the turbulent area that contains engulfed fluid only amounts to
0.44%. The engulfed fluid area is determined by measuring the number of points within
the turbulent region that exhibit a scalar concentration that is less than the TNTT scalar
threshold of ¢/¢. = 0.18. This definition of engulfed fluid follows from the “scalar cut-
and-connect” description given by Sandham et al. (1988). The size of the turbulent
region is given by the number of points between the centreline of the jet and the TNTI;
we exclude detached eddies in the measurement of the total turbulent area. We also
evaluate the area of the detached eddies in the non-turbulent region. This is determined
by measuring the number of points in the non-turbulent region that exhibit a scalar
concentration that is greater than the TNTT scalar threshold. The area of detached eddies
amounts to 0.86% of the turbulent area. It this paper we disregard holes in the turbulent
region and detached eddies in the non-turbulent region from our analysis because these
features constitute less than 1% of the measured flow area and may be considered to
have a negligible effect on the presented results. The box-counting results presented in
84.2 neglects the “holes” and “islands” that are present in the instantaneous fields; only
boxes that intersect the TNTT contour are counted.

2.5. Entrainment velocity: measurement technique and characterisation

The motion of the TNTI in the laboratory frame of reference is attributed to (i) the
local flow field advecting the turbulence in space, and (ii) the spreading of the turbulent
region due to the entrainment of non-turbulent fluid. The former represents the local
fluid velocity along the TNTI and the latter represents the entrainment velocity, vy,
along the TNTI. To isolate the local entrainment velocity we must subtract the effects
of the local fluid velocity from the motion of the TNTI. This requires simultaneous
tracking of the TNTI and measurement of the surrounding velocity field. We achieve this
by implementing high-speed PLIF to identify and track the TNTI, whilst simultaneously
measuring the fluid velocity using the high-speed PIV. This process is similar to the
“graphical” approach of Wolf et al. (2012), who employed 3D particle tracking data in
a relatively low Re = 5000 turbulent jet flow. We present a series of plots in figure 9
that illustrate the process to calculate the local entrainment velocity. The entrainment
velocity is obtained by subtracting the local fluid velocity from the net interface motion
and a description of this process is given below.
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(a) Consider the TNTI at two points in time: Figure 9(a) shows the scalar concentra-
tion field (background contours) and the corresponding TNTI (thick black line) at an
arbitrary time, tg. The TNTI at time ¢y + dt will have moved because of the sum of the
local flow advection and the local entrainment. This second interface is shown in purple,
with the local fluid velocity, uy, interpolated along the interface (purple vectors).

(b) Subtract local advection: We subtract the effects of local advection by displacing the
second interface (purple) by distance —ujdt; the resultant shifted-interface is presented
as the green line in figure 9(b). Compared with the interface at ¢ty + 0t (purple), the
advection-subtracted interface (green) exhibits much closer overlap with the original
interface at ¢y (black).

(¢) Calculate normal distance: We finally calculate the local entrainment velocity by
considering the local normal distance, 6¢ - n, from the original interface (black) to the
advection-subtracted interface (green): v, = (0¢-n)/ot; see figure 9(c). The black arrows
in this final plot represent the local normals along the original TNTI that are calculated
by n = (V¢/|V¢|);. Note that the interface normals are pointing into the turbulent
region.

Selecting the interface-separation time, dt, for the entrainment velocity calculation
requires an empirical approach, and depends on the dataset and flow-type being consid-
ered. This approach is described in appendix A. Briefly, the measurement of the local
entrainment velocity along the TNTI is affected by the random errors in the PIV and
PLIF measurements and the effects of out-of-plane motion. We implement a sensitivity
analysis to determine the §t that minimises the rms-fluctuations of v,, and also exhibits
a mean entrainment velocity that is insensitive to changes in §t. The combination of
these two criteria minimises the errors of the entrainment velocity calculation. From this
approach we select dt/7 = 1.68 for the LFOV data and 6t/7 = 0.65 for the SFOV data;
these interface-separation times are used across all filter sizes, A (the filtering analysis is
explained further in §4.1). That this method does indeed accurately capture the local en-
trainment velocity is supported by the PDF of entrainment velocity, P(v,,), presented in
figure 10(a). The distribution of v, is qualitatively in very good agreement with the PDFs
from 3D measurements by Holzner & Liithi (2011) and Wolf et al. (2012). The negative
skewness of the PDF indicates the preference for the outward growth of turbulence into
the non-turbulent region, which is as expected for a turbulent jet. Furthermore, the dis-
tribution of v, is non-Gaussian, as evidenced by the wide tail of the PDF in comparison
with the Gaussian distributions shown by the red line in figure 10(a).

Notice that, in order to understand V;, in (1.1), we must explore the relationship
between v,, and ry, or more specifically how v, changes depending of the distance at
which the TNTI is located. We clarify this using the conditionally averaged value of v,
on ri, Uply. If we denote P(v,, 1) as the joint PDF of v,, and r1, and P(rq) as the PDF
of ry, from the well known result, P(vy,|,) P(r1) = P(vp,r1) (e.g. Papoulis 1991):

Tyl Pry) = /v"P(vn,rl) dv,,. (2.3)

Evidently, the LHS of (2.3) is only a function of 71, and represents the average value of
v, at a given r1. Integrating (2.3) over all possible values of r; will result in the ensemble
average value of v, along the TNTI, 7, TN, The dark (black) line in figure 10(b) shows
the LHS of (2.3), the area under which is equal to o, "~ '1. Recall that negative v,, implies
that fluid is being entrained into the turbulent region. The vertical dashed-dotted line
shows the average radial position of the TNTL, or [ P(r) dry. It is clear that most of the
entrainment is occurring at a radial location that is closer to the jet centreline that the
mean position, and we also observe slight “detrainment” (positive v,) far from the jet
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FIGURE 10. Characteristics of the entrainment velocity (v,) along the TNTI. (a) PDF of vy,
P(vy,), including both the SFOV () and LFOV () measurements. A Gaussian distribution
(red line) is superimposed on the PDF. (b) The entrainment velocity conditioned on the radial
location of the TNTI (71), Tn|r P(r1). The light (grey) line represents Ty '™ * P(r1).

centreline. This undoubtedly shows a strong dependence of v,, on r1. In fact, if we assume
(incorrectly) that v, and r are independent, i.e. P(vy,r1) = P(v,)P(r1), then the RHS
of (2.3) reduces to v, "N P(r1). This quantitatively is shown in 10(b) by the light (grey)
line, and by comparing it with the dark line visually illustrates the dependence of v,, on
T1.

3. Measurement of the local and global mass-fluxes

This section introduces different methods of estimating the mass-flux rate, d®/dx, to
characterise the spreading of the jet. The purpose of this section is to compare interpre-
tations of the mass-flux rate in a broader context. We present definitions for (a) the local
mass-flux rate, (b) the global integral mass-flux rate, and (c) the mass flux estimates from
the global entrainment hypothesis. Furthermore, in §3.1 we employ an un-conventional
technique that calculates the entrained mass-flux rate based on a velocity distribution
conditioned on the TNTI. This procedure provides a unique view of mean entrainment
based on the average TNTI location. Note that ascertaining the agreement between the
numerical values for the local and global mass-flux rates is crucial before proceeding with
any multi-scale measurement procedure. In fact, calculation of global and local mass-flux
rates is the first step towards checking the validity of (1.2).

(a) The local mass-flux rate represents the instantaneous flux that occurs along the
TNTI. In three-dimensions, this would represent the product of the local entrainment
velocity and the TNTI surface area (1.2). The local 2D mass-flux rate is similarly eval-
uated by integrating the entrainment velocity, v,, along a planar intersection with the
TNTI,

L,

d‘I)lOC 1 .

o - L—/(—vn)rlds. (3.1)
0

In this expression L, is the streamwise extent of the measured TNTI, L, is the length of
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the instantaneous TNTI, and s is the coordinate along the TNTI. The negative-sign is
added to the entrainment velocity because positive entrainment (i.e. a growing turbulent
region) corresponds to negative v,, since the orientation of the interface-normal, n, points
towards the turbulent region. Recall that the over-line indicates ensemble average over
all the different realisations. The results for the local mass-flux rate are presented in §4
and summarised in table 2 under d®/dz: local.

(b) The global integral 2D flux rate is evaluated using a modified form of the mass-flux
rate integral for a round jet that was presented in (2.1),

oo

dd glob d
pro /ﬂrdr , (3.2)
0

where 7 is the time-averaged axial velocity. Data from separate flow-characterisation
experiments, presented in figure 3(a), provide % from which we determine (d®/dz)8°? =
8.20 x 104 m2s~! for the jet flow discussed here. For reference, we provide the integral
(top-hat) width in table 2 that is defined as b,, = Q/vM (see figure 4c).

(¢) An alternative global 2D mass-flux rate is evaluated using the entrainment hy-
pothesis described in Morton et al. (1956) and Turner (1986). The modified entrainment
hypothesis for the 2D mass-flux rate is

do entr
dz
where b(x) is a streamwise-dependent jet width and « is the entrainment coefficient.

Early studies of entrainment, often undertaken using single-point measurements, cal-
culated « in (3.3) by using the mass-flux rate from (3.2) and the measured profiles of
by,e—1(z) and U(z). Using the scaling rates for the jet flow that are presented in figure 4,
bye-1 = 0.107(z — z¢) and U, = 5.87U.D(z — z9) !, we measure an entrainment coeffi-
cient of o = 0.052. This value is in good agreement with Fischer et al. (1979) (p. 371),
who report a = 0.0535 for round jets, and also falls within the range o = 0.05 — 0.08
reported by Carazzo et al. (2006).

We now introduce a more representative derivation of the entrainment coefficient based
on the definition that the entrainment velocity is the rate “at which external fluid flows
into the turbulent flow across its boundary” (Turner 1986). This is achieved by directly
measuring the velocity at which non-turbulent fluid flows into the turbulent region, in a
manner similar to Chauhan et al. (2014b); a description of this process follows.

= b(x)aU.(x), (3.3)

3.1. Entrainment calculations based on conditional mean velocity distributions

Applications of the entrainment hypothesis commonly use the e~!-width (based on veloc-
ity) as a characteristic jet width. In this section we evaluate the conditionally-averaged
velocity distributions about instantaneous e~!-isocontours. Consider a planar, instanta-
neous snapshot of the axial velocity field in the far-field region of a jet where the axial
velocity along radial planes is normalised by the local mean centreline velocity. We may
identify a contour along the points that satisfy u/U. = e~!, similar to the way we mea-
sure the TNTI. We then apply conditional averaging in a manner similar to Westerweel
et al. (2002) to evaluate the fluid behaviour on either side of the contour, although in
the immediate vicinity of the e~ !-contours the flow on both sides are turbulent. To do
this we measure the longest contour along u/U. = e~! and select the outermost points
along the contour such that the contour does not come back on itself (i.e. the streamwise
coordinates along the contour are monotonic). Points along the radial coordinate, r, from
the contour are extracted for each instantaneous field and normalised using local mean
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FiGure 11. Top row: mean profiles conditioned on radial distance from isocontours of
u/U, = e~ ! (black circles) and u/U. = 0.5 (light blue squares). Bottom row: as above, but
conditioned on radial distance from the TNTI (isocontours of ¢/¢. = 0.18). (a,d) Condition-
ally-averaged axial velocity profile, (b,e) mean vorticity profile given by Q. = d{(u)/0r, (c,f)
conditionally-averaged radial velocity profile.

quantities, such as the mean centreline velocity and jet half-width. These instantaneous
profiles are finally averaged to generate conditionally-averaged profiles along radial co-
ordinates from the e~ '-isocontours. The resultant profiles for the axial velocity, mean
vorticity, and radial velocity are presented in the top row of figure 11.

Along isocontours of u/U, = e~ we observe the presence of a strong shear layer, as
illustrated by the jump in axial velocity in figure 11(a). Internal shear layers have also
been reported in turbulent boundary layers by Adrian et al. (2000) and Eisma et al.
(2015), and in isotropic turbulence by Hunt et al. (2014). We determine the width of this
shear layer by calculating the mean vorticity profile, 2, = d(u)/0r, in figure 11(b) and
measuring the distance across the vorticity peak. The shear layer width is defined as the
distance to-and-from where the peak starts to appear on either side of (r — 1) = 0, as
highlighted by the grey region. We are interested in the rate of radial inflow across this
shear layer, which represents an alternative definition of the entrainment velocity. The
radial velocity jump measured in figure 11(c) is determined to be Av = 0.051U,.. Thus,
direct measurement of the radial inflow across the u/U. = e~! boundary in the turbulent
jet gives an entrainment coefficient a = 0.051. Note that this value is consistent with the
entrainment coefficient measured from mean-flow quantities and (3.3) (o = 0.052) and
also the published values of Fischer et al. (1979) (o = 0.0535). Using the entrainment
coefficient measured from the conditional velocity profile and (3.3) we determine a 2D
mass-flux rate of (d®/dz)®™ = 8.10 x 10~* m2s~!, which is in very good agreement with
(d®/dz)8°P that is measured using (3.2).

An alternative means of applying the entrainment hypothesis is to consider the jet
width defined by the TNTI, byyr;. We follow the above-described conditional averaging
procedure to determine the radial inflow velocity across the TINTI; this is presented in
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d®/dx Localt Global*  Cond. avg.} Cond. avg.f Cond. avg.f
Equation (3.1) (3.2) (3.3) (3.3) (3.3)
Mass-flux rate (m2s™*) 8.88 x 107* 820 x 10™* 8.10 x 10™* 8.63 x 107* 7.10 x 10™*
Entrainment coefficient («) 0.032 0.052 0.051 0.037 0.052
Radial boundary TNTI Integral u, et TNTI u,1/2
Spreading rate (b) 0.157 0.127 0.107 0.157 0.092

TABLE 2. Comparison of the mass-flux rates using the local and global entrainment definitions.
tMass-flux rate is directly obtained by the knowledge of the local entrainment velocity (v,) and
integrating it over the filtered TNTI (A = 15.6)) using (3.1); « is calculated from « = V,,/U.,
where V,, is defined by (1.1). *After calculating the mass-flux rate from (3.2) using the mean
streamwise velocity, « is obtained from (3.3) and the measured spreading-rate, b, .—1. The in-

tegral radial boundary, b,,, is determined from the expression b,, = Q/ /M these symbols are
defined in appendix B. {For these cases, the entrainment coefficient, o« = Av/U., is directly ob-
tained from the conditional radial velocity profiles in figure 11, which is then used in conjunction
with the relevant spreading rate, b (figure 4), to calculate the corresponding mass-flux rates.

the bottom row of figure 11. The measured entrainment coefficient for the TNTT in figure
11(f) is determined to be a = 0.037. Combining this coefficient with the spreading rate
of the TNTT (bryr = 0.157(x — xy), figure 4c) and (3.3) we measure a 2D mass-flux rate
of (d®/dx)®™™ =8.63 x 10~* m2s~1.

For comparison, we also determine the 2D mass-flux rate using the velocity half-
width contours. Equation (3.3) is applied to the velocity half-width of the jet, where
bujise = 0.092(x — x0), and o = 0.052 that is determined using the same process as
above from the conditional radial velocity profile in figure 11(c). This combination gives
a mass-flux rate of (d®/dx)®"" = 7.10 x 10~% m?s~ 1.

Results for mass-flux rates and entrainment coefficients using different methods are
summarised and tabulated in table 2. The mass-flux rates determined from these different
methods are reasonably close to each other, except for the last column (b, ; /o) which is
understandably lower because the average location of the half-width is far inside the
turbulent region (see figure 4c). It is also worth noting that « from both the local and
conditionally-averaged methods for the TNTT are similar (« ~ 0.03), which is lower than
the usual value of o ~ 0.05 because the e~!-contour is interior to the TNTI. Recently,
there have been applications of kinetic-energy and momentum conservation equations to
understand the physical components of the entrainment coefficient (e.g. Kaminski et al.
2005; Craske & van Reeuwijk 2015) following the seminal work of Priestley & Ball (1955).
In appendix B we apply this approach for evaluating « to the extent made possible from
the present experimental data.

4. Multi-scale entrainment results

In this section we investigate the scaling of the TNTI surface area, or in our case of 2D
fields the TNTI length (L), the mass-flux rate (d®/dx), and the entrainment velocity
(V) as functions of the filter size (A). The main aims of this section is to demonstrate that
(i) TNTTI surface area exhibits a power-law scaling (S ~ A~P), (ii) the local mass-flux
rate is independent of scale (d®'°¢/dz = d®? /dz = d®#'°P /dz), and (iii) the entrainment
velocity scales at a rate that is the inverse of the TNTI length scaling (V,, ~ AP).
First, we introduce the spatial filtering techniques that are implemented in this study.
We then present our results on the scaling of the TNTI length with the use of a box-
counting technique and a spatial filtering technique. The multi-scale FOV correction is
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then discussed, which is necessary for the subsequent mass-flux and entrainment velocity
results.

The interface length scaling is measured using the scalar fields from the PLIF data
set; these points are denoted by triangles (A) in the figures to follow. The mass-flux rate
and the entrainment velocity scaling are measured using the combined multi-scale-PIV
and PLIF datasets; these points are denoted by squares () for SFOV data and circles
(O) for LFOV data. We also assess the sensitivity of these scaling results on the scalar
threshold that identifies the TNTI by considering different scalar thresholds. We evaluate
the scaling results for scalar thresholds of ¢/¢. = 0.14 (light pink) and ¢/¢. = 0.22 (light
blue); these values are £20% of the TNTT threshold (¢/¢. = 0.18) determined in §2.4.

4.1. Data filtering procedure

We follow the procedure of Philip et al. (2014) to implement a spatial filtering technique
to evaluate the entrainment scaling. The instantaneous velocity and scalar concentration
fields are filtered with box-averaging filters across a range of filter sizes, A. This is
achieved with the convolution of the velocity and scalar fields with filter Ga, tan = uxGa,

where
0, Ir| > A/2
G = . 4.1
alr) {1/A2, r| < A2 (“4.1)

The multi-scale-PIV measurements allow for over 2 decades of filter size scaling from
A/X = 0.11 to A/X = 16. We apply the same threshold (¢/¢. = 0.18) across all A to
identify the TNTI. The effects of spatial filtering are shown in figure 12, which compares
instantaneous scalar concentration (top row) and spanwise vorticity (bottom row) fields,
and the respective TNTI (blue lines) for different filter sizes. The bottom row of figure 12
shows that the scalar interface closely encloses the spanwise vorticity field of the turbulent
jet. That the scalar concentration boundary and vorticity boundary do indeed overlap
was also illustrated in figure 7, in which we showed that the jump in ¢ across the TNTI
coincides with a jump in |w,|. Hence, the scalar concentration threshold chosen for this
study successfully isolates the turbulent from the non-turbulent (irrotational) regions.

4.2. Scaling of the TNTI surface area

The box-counting technique applied to turbulent surfaces is commonly used to determine
the fractal dimension of a surface (e.g. Mandelbrot 1982 and Sreenivasan & Meneveau
1986). This process counts the number of boxes (V) of side width A that occupy the
TNTI, which is then repeated for a large range of box sizes. We apply the box counting
technique to all 1080 scalar fields, the results of which are presented in figure 13(a).
The box widths span from a few Kolmogorov length-scales to beyond the jet half-width.
A least-squares fit applied in the range 0.3\ < A < 10\ determines that the TNTI
exhibits a fractal dimension of Dy = 1.33, where N ~ A~P2, This scaling of the TNTI
jet agrees well with the recent fractal scaling results of surfaces in a turbulent boundary
layer presented by de Silva et al. (2013), who report a fractal dimension of Dy = 1.31 for
the TNTT measured in a turbulent boundary layer. More generally, de Silva et al. (2013)
report that the fractal dimension of the TNTT in a boundary layer falls within the range
Dy = 1.3 to 1.4. This is also supported by Chauhan et al. (2014b) who report a fractal
dimension of Dy = 1.3, and by Zubair & Catrakis (2009) who report a fractal dimension
for scalar isocontours in a shear layer flow of Dy = 1.3. For a planar intersection with a
fractal surface, the 3D fractal dimension is given by D3 = Dy +1 = 2.33 (see Mandelbrot
1982), which also is in very good agreement with the theoretical analysis of Sreenivasan
et al. (1989) based on the Kolmogorov similarity hypothesis, where D = 7/3 and is
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FIGURE 12. Comparison of 3 different filter lengths applied to an instantaneous scalar concentra-
tion field (top row) and the spanwise vorticity fields |w.| (bottom row). The TNTI is depicted by
the thick blue line and is determined using the ¢/¢. = 0.18 threshold. The scalar and spanwise
vorticity fields are shown in logarithmic scaling.

| 7r<
@ ®
2L A\é ] AN
10 A A \
N N
& \‘ A N\
< = \‘\‘ § slope = -0.31
8 — .
- > N
— ! N
= 00 f lope = -1.33 T 2r \ \%%
Z 10 siope - . N
N, ‘N
\»
N \
slope =-1/3 [+ %%
U A b H N eA\A '
w,1/2 N,
1072 ’ ’ ’ ’ ’ —_
107! 10° 10" 107! 10° 10"
A/A A/A

FIGURE 13. (a) Box-counting applied to the TNTI from the full resolution scalar images. The ver-
tical grey bars in the background indicate the Kolmogorov length-scale, 7, the Taylor microscale,

A, and the jet half-width, b, 1,2, at 50D from left-to-right, respectively. (b) The scaling of the

mean TNTI length, L, ', with box-filter size, A. The expected scaling of Ly ~ A~/3 i

plotted as a grey dash-dotted line for comparison.

determined by assuming a Reynolds number independent entrainment rate. In addition,
the fractal dimension does not change for the ¢/¢. = 0.18 + 20% scalar thresholds that
are also considered; these data are shown in light pink and light blue. Hence, the fractal
dimension is not particularly sensitive to the particular choice of threshold for the TNTI.
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Figure 13(b) presents an alternative means of measuring the fractal dimension of a
2D boundary. A similar procedure is also applied to the TNTI in turbulent boundary
layers by de Silva et al. (2013). We spatially filter each instantaneous scalar concentration

field at each filter size, A, and directly measure the corresponding mean length of the
TNTI, [TSTNTI. The interface length is expected to scale as ZTNTI ~ A=DP2 because
KTNTI ~ AN. In figure 13(b) we apply a least-squares fit between 0.5A < A < 3\

that measures a fractal dimension of —0.31 (Dy = 1.31), which is in good agreement
with the box-counting technique for which Dy = 1.33. The interface length scaling for
¢/de. = 0.18 £ 20% also agrees well with the TNTI data; this supports the idea that
the interface length scaling is not dependent on a specific scalar threshold for the TNTI.
Note that the “tailing-off” effect for very small and large filter lengths in figure 13(b) is
indicative of the fact that the fractal scaling ceases to exist beyond those limits. In any
case, our primary interest is the scaling rate across the inertial range, for which the data
exhibits almost a decade of linear scaling on the log-log plot in figure 13(b).

It is worth mentioning that Sc > 1 isoscalar surfaces will exhibit two distinct scaling
regimes: a viscous advective regime (with a suggested fractal scaling of 7/3) that is the
focus of this paper, and a diffusive viscous regime that exists between the Batchelor
length-scale and the Kolmogorov length-scale (Sreenivasan et al. 1989; Sreenivasan &
Prasad 1989). It is expected that the diffusive viscous regime exhibits a different fractal
dimension, Dy = 2.65, with experimental measurements suggesting Dp ~ 2.7 at a rel-
atively low Re = 1500 (Sreenivasan & Prasad 1989). The results presented in figure 13
do not exhibit the steeper power-law scaling that is expected for the latter regime. This
is because the results presented in figure 13 are limited by the spatial resolution of the
scalar concentration field that is larger than the Kolmogorov length-scale.

4.3. Correction for SFOV data

A compromise of the multi-scale PIV arrangement is that while the LFOV captures the
full radial extent of the TNTI, the SFOV cannot, which instead focusses on a smaller
region and providing higher resolution. Figure 14(a) shows a PDF of the radial position
of the TNTI normalised by the local velocity half-width. The measurement area of the
SFOV is represented by the greyed region. It is apparent that the SFOV PIV does
not capture the entrainment that occurs when the TNTI is far from the turbulent core
(11/by,1/2 = 2). In the following analysis we compare the SFOV and LFOV entrainment
scaling across the same radial extent to account for any bias introduced by the TNTI
moving out of the FOV. In other words, we present scaling results from the LFOV that
are calculated using points that are within the radial confines of the SFOV. This data
processing step is illustrated in figure 14(b) in which the spatial extents of the LFOV
(full image) is compared with that for the SFOV (shown in the white-dashed square).
The coloured section of the plot represents the radial span in which the LFOV data is
used for comparison with the SFOV data. In figure 15 (to be discussed in §§ 4.4 and
4.5), the LFOV data points that are from the limited radial extents are shown in hollow
black circles whereas data measured across the full radial extent of the LFOV are shown
in filled grey circles. The SFOV data is represented by the hollow black squares.

4.4. Mass-fluz rate across the TNTI at multi-scales

As discussed in the introduction (see eq. 1.2), the theoretical analysis of Meneveau &
Sreenivasan (1990) and Philip et al. (2014) suggests that the mass-flux across the TNTI
should be independent of scale. To test this hypothesis, we first filter the velocity and
scalar fields and determine the TNTI from the filtered fields at different filter sizes, A, as
discussed in §4.1. Subsequently, we calculate the entrainment velocity along the TNTT at
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FIGURE 14. (a) PDF of the radial position of the TNTI, normalised by the local jet velocity
half-width, b, 1/2; the red line represents a Gaussian fit and the dot-dashed line is the mean

interface position (7T "1 /by 1 /2 = 1.79). The greyed region represents the radial extents of the
SFOV PIV. (b) Instantaneous scalar concentration field of the LFOV with the SFOV extents
shown in the white dashed line. The coloured section of the plot represents the LFOV entrain-
ment velocity points along the TNTI (green) that are used in comparisons of the 2D flux rate
and entrainment velocity with the SFOV data.

varying filter sizes, v, (A4), as detailed in §2.5. Mass-flux rates at different length-scales,
d®4 /dz can be found from the RHS of (3.1), where the different quantities are now
functions of A. Figure 15(a) shows d®4 /dx as a function of A, and it is evident that the
mass-flux is scale-independent. The hollow markers from the multi-scale measurements
fall within the range (10.78 £ 0.30) x 10~* m2s~! (hatched grey region) across a range
of over two decades in scale. Hence, these results support the aforementioned scale-
independent mass-flux hypothesis defined in (1.2). In other words, the mass-flux across
the contorted (long) TNTI at small-scales agrees with the mass-flux across the smooth
(short) TNTT at large-scales. The mass flux scaling for ¢/¢. = 0.18 £20%, shown in light
pink and light blue, are also independent of filter size, A. This further evidences that the
constant mass-flux scaling result is less dependent on a specific scalar threshold.

For comparison, we also plot the global integral mass-flux rate, d®&'°? /dz = 8.20 x
107* m?s™! (horizontal grey dashed line), that is determined using (3.2). The observed
discrepancy between the local mass-flux rate (hollow black markers) and the global mass-
flux rate in figure 15(a) is attributed to the bias error of the limited radial extent of
the SFOV measurements. That our measurements do indeed accurately measure the
turbulent entrainment is confirmed by the mass-flux rates that are determined using the
full radial extent of the LFOV measurements (filled grey markers). In this case, the local
mass-flux rate measured across the full FOV in figure 15(a) is in excellent agreement
with the global flux rate from (3.2). Note that there is a slight increase in the mass-flux
rates with filter size for A > 7\, which is artefact of the effect of the spatial filtering
technique on the mean radial position of the TNTI. This is discussed further in appendix
C, but we simply note here that this effect does not change the fractal dimension of the
scaling that we observe across the viscous advective regime.

4.5. Scaling of the entrainment velocity

In addition to the mass-flux scaling, we are also interested in evaluating the scaling of the
mean entrainment velocity, V;,. From (1.2), the entrainment velocity is expected to scale
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FIGURE 15. (a) The scaling of the local 2D flux rate (3.1) for the SFOV (squares) and LFOV
(circles) data; the horizontal dashed line represents the global 2D flux rate (equation 3.2). The
hollow black markers indicate data measured within the radial limits shown in figure 14 and the
hatched lines indicate the span of the minimum and maximum measured mass-flux rates. The
filled grey markers indicate the LFOV flux rate data measured across the full radial extent of
the FOV. (b) The scaling of the mean entrainment velocity, V,, normalised by the local mean
centreline velocity, U.. The hatched region represents the entrainment coefficient range from
figure 11 and (3.3) with (d®/dx)s"P.

inversely to the TNTI surface area or length scaling. Measurement of the entrainment
velocity scaling was first attempted by Philip et al. (2014), although they fell short in
showing the scaling primarily because resolution issues with their experiments. Here,
we evaluate the mean entrainment velocity in figure 15(b) to determine the scaling of
V, along the TNTI for different filtered fields; the entrainment velocity is calculated
using the integral in (1.1). Note that for each filter size, A, the entrainment velocity
is recalculated employing the procedure described in §2.5 with the filtered PIV and
PLIF data. We also normalise the entrainment velocity by the local mean centreline
velocity to draw comparisons with the entrainment coefficient, a, obtained using the
entrainment hypothesis. A least-squares fit between 0.5\ < A < 3\ determines that the
entrainment velocity scales as V;, ~ A%3! which is indicative of a power-law behaviour
of the entrainment velocity. We exclude the outlying points consistent with the data
shown in figure 13(b). Thus, within the experimental uncertainty, these results support

the conclusion that the entrainment velocity scales at a rate that balances the interface
e T INTI —0.31 Ty s :
length scaling, Lg ~ A . It is for this reason that we observe a constant mass-

flux rate in figure 15(a). We anticipate that the effect of improved spatial resolution on
this result would be that the measured entrainment velocity would continue to follow
the black dashed line in figure 15(b) to smaller mean values of V,, for smaller A until a
plateau is reached at around the Kolmogorov length-scale.

Interestingly, at filter-lengths of O(10')\) the mean entrainment velocity from the full
radial extent data (grey symbols) approaches the entrainment coefficient calculated in §3
(o = 0.035 —0.037), shown by the hatched lines in figure 15(b). The use of a large spatial
filter generates a flow field that approaches the time-averaged field, which forms the basis
of the global entrainment calculation (Philip et al. 2014). The small discrepancy between
the local and global entrainment coefficients is attributed to the dependency that exists
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FIGURE 16. Effect of filtering on the characteristics of the entrainment velocity, v,(A4), along
the TNTI. (a) PDF of v,, P(v,). Gaussian distribution is shown by the solid grey line. (b)
Entrainment velocity conditioned on the radial location of the TNTI, r1. The dashed lines
represent T, ™ 'L P(ry) at different A, similar to the light (grey) line in figure 10 for the unfiltered
case. The dash-dotted line represents the mean radial location of the TNTI.

between the entrainment velocity and the radial height of the TNTI. This is illustrated by
evaluating the ensemble averaged entrainment velocity, T, ' V11, which does not take into
account the dependence between v,, and the radial height of the interface that exists in
the mean entrainment velocity, V;, (see eq. 1.1 and figure 10). The scaling of the ensemble
averaged entrainment velocity, 7, "N 11, is presented in figure 19(b) in appendix C. The
magnitude of 7, TN at a given filter size is greater than V;, shown in figure 15(b). This is
because the largest entrainment velocities (most negative) occur when the TNTT is closer
to the jet centreline. Hence, in the expression [(—v,)rids (1.1), larger (more negative)
values of v, are offset by smaller values of the radial term, r;. There is much better
agreement between T, N 11 for large A (grey symbols) and the entrainment coefficient
(hatched lines) if we simply consider the ensemble averaged entrainment velocity in figure
19(b). This supports the description by Philip et al. (2014) in which entrainment at very
large A is completely dominated by the advective flux, which is the sole contribution to
global entrainment in the RANS (time-averaged) formulation.

Finally, we present in figure 16 the effect of filtering on the PDF of v,, and its relation
to r1. This is similar to figure 10 except with a range of filter sizes. The PDF in figure
16(a) shows a reduction of mostly positive v, (detrainment) due to filtering. In figure
16(b) we present the entrainment velocity conditioned on the TNTT radial location (solid
lines). The dashed lines represent @, '™ "' P(ry), which (incorrectly) assumes that v, and
rp are independent. It is clear from this figure that the conditioned profiles (solid lines)
occupies a larger area with increasing A, corresponding with an increasing entrainment
velocity. Also, with increasing filter size figure 16(b) provides evidence of reduced v,, at
the farthest distances from the TNTI, and the consequent concentration of entrainment
towards the mean TNTI position.

We have shown in this section that the magnitude of the entrainment velocity is scale-
dependent (figure 15b) and exhibits a power-law scaling that is the inverse of the scaling of
the TNTI length, as proposed by Meneveau & Sreenivasan (1990) and Philip et al. (2014).
At the very largest scales (A ~ b, 1/2) the mean entrainment velocity is approximately
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(0.03 — 0.04)U.., whereas at the smaller scales (A ~ 7)) the mean entrainment velocity is
closer to 0.01U,. Consistent with the constant mass-flux rate observed in figure 15(a),
we observe that the entrainment velocity is small at the smallest-scales but is balanced
by the presence of a very large surface area. In the same way, the entrainment velocity
is large at the largest-scales but is balanced by a smaller (smoother) surface area.

5. Summary and conclusions

We evaluated the scale-dependence of the mass-flux rate and entrainment velocity
across the turbulent/non-turbulent interface in an axisymmetric jet. This is achieved
with time-resolved, simultaneous multi-scale-PTV/PLIF measurements taken in the far-
field. This novel experimental arrangement made possible the identification and tracking
of the TNTI, and the measurement of the local entrainment velocity along it. The multi-
scale-PIV measurements were necessary to achieve a dynamic range that measured the
interface length, mass-flux, and entrainment velocity across two decades of scale. The
turbulent jet exhibits Reynolds numbers of Re = 25300 and Rey = 260, which are higher
than most comparable studies of the TNTI and entrainment processes in turbulence.
A large Reynolds number is necessary to achieve a distinct scale-separation from the
viscous-scales up to the inertial-scales.

Consistent with previous experimental and numerical investigations, we use the scalar
concentration field of a Sc > 1 passive scalar to identify the TNTI. The specific scalar
concentration threshold that represents the TNTI is empirically determined with the use
of a conditional averaging approach. We show that there exists a jump in the spanwise
vorticity magnitude across the isocontours of scalar concentration that represent the
TNTT; this illustrates the effectiveness of using a Sc > 1 passive scalar to identify
the boundary of the vorticity field. The interface-tracking technique described in §2.5
is shown to be capable of measuring the local entrainment velocity along the TNTI.
The advantage of this technique is that the local entrainment velocity, at the scale of
the measurement, can be measured without requiring spatial resolution that resolves the
Kolmogorov length-scales of the flow. In other words, the interface-tracking technique is
not resolution-dependent, which is a necessary feature in order to establish the scaling
of the entrainment velocity.

A comparison is drawn between the well-established interpretation of global entrain-
ment from an integral, entrainment hypothesis approach and the local entrainment along
the TNTI. We show that the entrained mass-flux rates (d®/dx) calculated from the local
approach along the TNTT (3.1) exhibits good agreement with the mass-flux rate obtained
from the global calculation (3.2). This comparison also demonstrates that the magnitude
of the entrainment coefficient («) is dependent on the entrainment approach and the se-
lected characteristic jet-width. We also estimate the mass-flux rates using radial velocity
profiles that are conditioned on the TNTI. This hybrid approach yields mass-flux rates
and entrainment coefficients that agree well with the global and local methods.

The multi-scale entrainment hypothesis of Meneveau & Sreenivasan (1990) suggests
that the mass-flux rate across an interface should be constant across all length-scales.
More concretely, this theory states that

d¢ loc d@A d(b glOb

dz dr  dz
where the filter length-scale, A, represents any intermediate length-scale. This expression
is equivalent to (1.2), for which the mass-flux rate is decomposed into the scale-dependent
surface area, S(A), and entrainment velocity, V,,(A). Evidence of a scale-independent

= const., (5.1)
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mass-flux rate had not been observed in any physical scenario primarily because of
the demanding experimental and analysis techniques. These limitations are addressed
in the experimental set-up and the entrainment velocity measurement technique imple-
mented in this study. We first use two independent methods to show that the surface
area, S, exhibits a multi-scale behaviour with a fractal dimension that falls in the range
D3 ~ 2.31 — 2.33, where S ~ A™P = A2=P3_ More specifically, application of a box-
counting technique to the TNTTI yields a power-law exponent of Dy = D3 — 1 = 1.33,

and application of a spatial-filtering technique yields a power-law exponent for the TNTI

length of D = 0.31, where ZTNTI ~ A=P = A'=DP2_ Thus, the multi-scale behaviour

of the TNTT across the inertial range favours a constant power-law fractal behaviour, in
agreement with de Silva et al. (2013), rather than a scale-dependent behaviour (Miller
& Dimotakis 1991).

We invoke a multi-scale analysis to evaluate the scale-dependence of the entrainment
velocity, V,,(A). We report that the entrainment velocity exhibits a power-law scaling
given by V,, ~ A%3L From this scaling we show that the entrainment coefficient, a(A) =
V.. /Ue, is also scale-dependent and ranges from « = 0.01 for A = 7 (small-scales) up to
a = 0.03—-0.04 for A =~ b, /2 (large-scales). Moreover, the entrainment coefficient at the
largest filter size agrees well with the entrainment coefficient determined using the global
(integral) definition of entrainment. The primary outcome of this study is experimental
evidence that confirms that the mass-flux rate across the TNTI is independent of scale:
V. (A)S(A) = const. This is indeed satisfied when we consider the mass-flux rate along
the TNTT (5.1), and also when we consider the combined power-law behaviours of V,,(A)
and S(A) found in our multi-scale analyses. This result suggests that the entrainment
velocity scales at a rate that balances the scaling of the interface length, so as to make
the net entrainment scale-independent. This result lends support to the interpretation
of the roles of viscous nibbling and inviscid engulfment in which nibbling is only active
locally at the small-scales, and engulfment is only active at the large-scales of the flow.
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Appendix A. Details of the entrainment velocity measurement:
optimising 6t and errors due to radial motion.

A.1. Optimisation of the time delay ot

We implement an empirical approach to determine the optimal interface-separation time,
dt, that minimises the errors that affect the planar measurement of the entrainment ve-
locity. These errors are: (i) the random error of the PIV and PLIF measurement precision,
and (ii) the effects of out-of-plane motion. The former error is dominant at small §¢ and
the latter is dominant at larger §t. The sensitivity analysis described herein is similar to
the selection process of the particle image separation time for planar PIV, as described
in Poelma et al. (2006).

—1/2
The rms-entrainment velocity, v,'?pnyy, IS Sensitive to increases in spurious vectors
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FIGURE 17. (a) Evaluation of the rms-entrainment velocity as a function of the interface sepa-
ration time, dt/7, for the range of the coarse-graining filter lengths, A, shown in grey markers.
Filter lengths A = 0.4X (blue circles), A = 3.3\ (green triangles), and A = 12.0\ (red squares)
are highlighted with filled markers. The vertical grey bars indicate interface-separation times of
§t/T = 0.09,1.68,5.61. (b) The ensemble averaged entrainment velocity, —T, '~ 11, as a function
of §t/T.
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FIGURE 18. (a) An instantaneous scalar concentration field at to superimposed with the TNTI
(purple line). (b,c) Same scalar concentration field as (a) but superimposed with the TNTI at
(b) t =to+ 1.687 and (c) t = to + 5.617 (red lines).

that arise from the aforementioned errors. The profile of v,,’ 2;/1\?1«1 as a function of 6t is
presented in figure 17(a) for a range of filter sizes (see §4.1) for the LFOV setup. First
consider the shortest filter length (A = 0.4)), which is represented by the filled blue
circles. In the region dt/7 < 1.68 the rms-entrainment velocity decreases with increasing
&t because the larger spatial separation of the interfaces results in an improved signal-
to-noise ratio. The rms-entrainment velocity reaches a minima at §¢t/7 = 1.68; beyond
this point the rms-entrainment velocity increases because of out-of-plane motion that
misaligns the interfaces used to measure v,. This description is further supported by
considering the profile of the ensemble averaged entrainment velocity, —, "N 11, which is
presented in figure 17(b). The entrainment velocity is a function of interface-separation
time for dt/7 < 0.5 and 0¢/7 > 1.68. In between these regions the ensemble averaged
entrainment velocity plateaus which indicates that the v,-distribution has converged and
is independent of dt.

Larger filter sizes (see green triangles and red squares in figure 17a) mask the errors
that arise from the out-of-plane motion. This is because the smaller convolutions of the
TNTT are filtered, which results in a TNTI that does not significantly change shape with
time. In figure 18 we present scalar concentration fields with the respective TNTI for
filter size A = 0.4\. The TNTI at an arbitrary time step, ¢t = tg, is presented in (a), and
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is denoted with a light purple line. The evolution of the TNTTI at 2 later points in time
are shown in (b) and (c). The evolution of the interface between t = to and t = o+ 1.687
is discernible. That is, we can identify features of the TNTI at ¢t = ¢y (purple line) that
still exist in the TNTI at the later time. For a large separation time, such as in figure
18(c), the effects of out-of-plane motion yield a TNTI (red) that is very different from the
original interface (purple). This illustrates the limitations of using planar measurements
to estimate the local entrainment velocity. For large filter sizes the smoothing effects
of the filter mask the decorrelation of the interface in the measurement plane. For this
reason, we apply the interface-separation time determined by the smallest filter size data
for all filter sizes to measure the local entrainment velocity along the TNTI. As shown in
figure 17, the optimum interface ¢ for the LFOV is 1.687 and for the SFOV (not shown
here) it is 0.657.

A.2. Comments on errors due to the neglected radial motion of the TNTI

Velocity-fluctuations in the out-of-plane direction will transport the scalar field through
the measurement plane. This out-of-plane motion misaligns the measurement points
along the TNTT that are used to calculated v,,, which adds uncertainty to the entrainment
velocity. We estimate the effects of out-of-plane motion by considering the rms-spanwise

—1/2
velocity, w'®> ', at the mean location of the T/N-TT, (r1)/by,1/2 = 1.79. Mean and rms-
profiles of a turbulent, round jet at Re = 1.1 x 10* are available from the experiments of
Panchapakesan & Lumley (1993). We use this data to estimate the rms-spanwise velocity

because this velocity component is not measured in the present study. Recall that our

—1/2 —1/2
w? " and v measurements are in excellent agrement with Panchapakesan & Lumley

(1993), as presented in figure 3. At the mean interface location the data of Panchapake-

—1/2
san & Lumley (1993) shows that w'> ~ /U, ~ 0.07. In combination with the centreline
velocity at the primary measurement location in this study, U.|s0p = 0.3116 m/s, the

/2
rms-spanwise velocity is determined to be w'> ~ = 0.022 m/s. This velocity represents

the typical velocity fluctuations in the out-of-plane direction that misalign the interface.
The typical out-of-plane displacement is estimated by using the interface-separation time
of §t/7 = 1.68 (18 ms) for the LFOV. Hence, we estimate that the TNTI is subjected
to out-of-plane displacements of §z = 0.39 mm = 3.97. In comparison, the laser-sheet
thickness is measured to be 157 (table 1), which is over three times the typical displace-
ments expected of the interface. Moreover, the out-of-plane fluctuations are axisymmetric
which means the effect of interface misalignment is a random error. For these reasons,
the effects of out-of-plane motion are likely to be averaged out by the finite thickness of
the laser-sheet and do not bias the mean results.

Appendix B. Comments on the entrainment coefficient incorporating
energy equation

Craske & van Reeuwijk (2015) applied a kinetic energy and momentum conservation
approach to identify the source terms of the entrainment coefficient. Similar approaches
have been previously implemented by Priestley & Ball (1955) and Kaminski et al. (2005).
Craske & van Reeuwijk (2015) show that the entrainment coefficient for a steady jet is
determined by the balance between the production of turbulence kinetic energy (d,) and
the flux of turbulence kinetic energy (v,),

dg

— B1
274 ( )

g = —
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where §, = P,Q?/M®/? is the dimensionless energy production and v, = E,Q/M? is the
dimensionless energy flux. Here, the volumetric flow rate is defined as () = 2 ford ardr and
the momentum flux is defined as M = 2 fom w?rdr. The energy production and energy

flux terms consist of mean, turbulent, and pressure components (left-to-right on RHS):

Td Td Td

—0u — 0u ou
P, = 4/u’v’a—jrdr + 4/u’28—zrdr + 4/?6—21@1", (B2)
0 0 0
Td Td Td
E,=2 /ﬂ3rdr +4 /ﬂu’%‘dr + 4/(13 — pgq)urdr, (B3)
0 0 0

where pg is the ambient pressure and r4 is a radial distance far from the centreline of the
jet. The mean components dominate the energy production and energy flux terms in the
above expressions. Craske & van Reeuwijk (2015) use DNS to evaluate the entrainment
coefficient ag for a round, turbulent jet (Rey = 100—135); they report that ap = 0.065 —
0.069 (high-Re to low-Re). This value range agrees well with the direct measurement of
the entrainment coefficient that is determined by

0Q _ 1/2
o, = 20M'?, (B4)

and falls within the range ae = 0.05 — 0.08 that was surveyed by Carazzo et al. (2006).

Although we cannot measure oy because we do not have access to the pressure fields,
we may estimate this entrainment coeflicient using the mean and turbulent quantities
only; these are the first two terms on the RHS of equations B 2 and B 3. Using the mean
and turbulent quantities we determine that 0y ~ 0, + 05 = —0.194 and vy = v + 75 =
1.547; these symbols are defined in Craske & van Reeuwijk (2015). The energy flux
term, 74, is larger than that of Craske & van Reeuwijk (2015) (v, = 1.416) because of
the missing pressure term. Accounting for the pressure-contribution to the energy flux
(7p = —0.18) would give a dimensionless energy flux, 7,4, that is in much better agreement
with the DNS. This missing pressure term explains why our estimate for the entrainment
coefficient, ay ~ 0.063, is slightly smaller than that reported by Craske & van Reeuwijk
(2015). Calculating a from equation B4 gives a = 0.073 for the present study, which
falls between the results of Craske & van Reeuwijk 2015 (o = 0.065 — 0.069) and
Panchapakesan & Lumley 1993 (a = 0.083); see Craske & van Reeuwijk (2015) (p. 518).
It is apparent that these entrainment coeflicients are closer to « for the e~!-isocontours
measured in §3 rather than that for the TNTI, for which the entrainment coefficient is
a =~ 0.03.

Appendix C. Additional fractal scaling results

The mean entrainment velocity (V},) scaling in figure 15(b) accounts for the dependence
between the entrainment velocity and the radial location of the TNTI. As shown in (1.1),
the integrated entrainment velocity term is normalised by the product of the TNTT radial

location and the TNTI length, TILSTNTI. In figure 19(a) we demonstrate that this product

exhibits the same scaling (i Ly ~ A=031) as T, ", which is shown figure 13(b).
The radius term is therefore not dependent on the filter width and does not affect the
entrainment velocity scaling presented in figure 15(b).

The scaling of the ensemble averaged entrainment velocity, 7, '~ 1!, is plotted in figure

19(b). The magnitude of the ensemble averaged entrainment velocity is greater than the
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FIGURE 19. (a) The scaling of the mean product of radius and TNTI length, mLSTNTI, with
box-filter size A. The expected scaling of r1Ls TiLs T AT s plotted as a grey dash-dotted

line for comparison. (b) The scaling of the ensemble averaged entrainment velocity, T INTL The
hatched I'e%IOH represents the entrainment coeflicient range from figure 11 and equation 3.3 with
(d®/dx)°

mean entrainment velocity shown in figure 15(b). This is because the largest entrainment
velocities (most negative) occur when the TNTT is closer to the jet centreline (see figure
16). Hence, in the expression for V,, larger values of v,, are offest by smaller values of
the radial term ry. Interestingly, the term 7, "N T measured across the full radial extents
(grey symbols in figure 19b) converges to the global entrainment coefficient measured in
§3 using conditional profiles (o = 0.037, see table 2). Thus, the advective fluxes discussed
by Philip et al. (2014) that are active at the largest scales (large A) do in fact coincide
with the time-averaged entrainment rate (i.e. global entrainment).

Appendix D. Spreading of the TNTI at multi-scales

The mass-flux rate scaling presented in figure 15(a) shows that there is a slight trend
for the largest filter points to tend to larger values. This is attributable to the larger
TNTI spreading rates for the large filter sizes, as shown in figure 20. Here, we plot the
spreading rate byt for the range of filter sizes considered. The spreading rate of the
mean TNTT position for A > 7\ is larger than that exhibited for smaller filter sizes. Thus,
the non-uniform spreading rates may have an affect on the mass flux integral defined in
(3.1). However, this filtering effect does not affect the spreading rates across the inertial
range where we evaluate the power-law scaling. Hence, the increase in bpyry for A > 7A
does not affect the overall outcomes of this paper that the mass-flux rate is independent
of scale and that the entrainment velocity scales at an inverse rate to the TNTT length
scaling.
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