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Abstract Sensory input to the lamprey central pattern generator (CPG) for loco-

motion is known to have a significant role in modulating lamprey swimming. Lam-

prey CPGs are known to have the ability to entrain to a bending stimulus, that is,

in the presence of a rhythmic signal, the CPG will change its frequency to match

the stimulus frequency. Bending experiments in which the lamprey spinal cord has

been removed and mechanically bent back and forth at a single point have been used

to determine the range of frequencies that can entrain the CPG rhythm. First, we

model the lamprey locomotor CPG as a chain of neural oscillators with three classes

of neurons and sinusoidal forcing representing edge cell input. We derive a phase

model using the connections described in the neural model. This results in a simpler

model yet maintains some properties of the neural model. For both the neural model

and the derived phase model, entrainment ranges are computed for forcing at differ-

ent points along the chain while varying both intersegmental coupling strength and

the coupling strength between the forcer and chain. Entrainment ranges for chains

with nonuniform intersegmental coupling asymmetry are larger when forcing is ap-

plied to the middle of the chain than when it is applied to either end, a result that is

qualitatively similar to the experimental results. In the limit of weak coupling in the
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chain, the entrainment results of the neural model approach the entrainment results

for the derived phase model. Both biological experiments and the robustness of non-

monotonic entrainment ranges as a function of the forcing position across different

classes of CPG models with nonuniform asymmetric coupling suggest that a specific

property of the intersegmental coupling of the CPG is key to entrainment.

Keywords Entrainment range · Central pattern generator · Locomotion

1 Introduction

The central pattern generator (CPG) for vertebrate locomotion consists of a circuit of

neurons in the spinal cord that produces the basic oscillatory rhythmic output nec-

essary for locomotion such as walking and swimming [1]. Sensory input is known

to have a significant effect on the rhythmic output of the CPG in order to adjust to

perturbations from the body and environment as well as to adjust the timing of the

electrical waves of activity relative to the muscle activity down the body [2–4]. For

example, edge cells are stretch receptors located on the margin of the spinal cord of

the lamprey that inhibit contralaterally and excite ipsilaterally [3, 5]. Experiments of

Tytell and Cohen [6] specifically address the role of edge cells in modulating CPG

rhythm (also see [7, 8]). In the presence of a rhythmic stimulus, the vertebrate CPG

frequency tends to approach the frequency of that stimulus, a phenomenon known

as entrainment. Consider a CPG oscillating at a frequency ω in the absence of sen-

sory input. Then consider a CPG subjected to a rhythmic stimulus at a frequency ωf,

close to ω. Denote by ω∗
i the average frequency of the ith oscillator in the chain dur-

ing forcing, which may or may not be equal to the forcing frequency ωf. When the

CPG’s response is periodic with its frequency equal to the forcing frequency, that is,

ω∗
i = ωf for all i, the CPG is said to be 1:1 entrained. In this paper we only consider

1:1 entrainment, which we will refer to simply as entrainment. The range of frequen-

cies for which the CPG is entrained to the forcer is termed the entrainment range.

Tytell and Cohen [6] found that the experimental entrainment ranges were approxi-

mately twice as large for bending stimuli applied near the middle of the preparation

as those for stimuli applied at the ends. This experimental result motivated the study

of entrainment in CPG models in order to determine the mechanisms responsible for

entrainment ranges which are non-monotonic as function of the forcing position.

The locomotor CPG is commonly represented by a chain of coupled oscillators.

Each individual oscillator can be represented by models with varying biological de-

tail (see, for example, [9–13]). The simplest model, a phase model with sinusoidal

coupling functions, was pioneered by Cohen, Holmes, and Rand [9] in terms of the

lamprey locomotion CPG and represents each oscillator as a single variable. In this

paper we refer to this model as the sinusoidal phase model. A neural network model

of a segment of the CPG represents classes of neurons in that segment, with the num-

ber of variables proportional to the number of classes. Finally, a Hodgkin–Huxley

type oscillator models neurons in each segment with multiple physiological variables.

Seminal work of Cohen, Holmes, and Rand [9] inspired models of entrainment of

forcing at either end of the chain [10, 13, 14]. Previte et al. [15] considered entrain-

ment ranges for chains of phase oscillators, with sinusoidal coupling, forced at any
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point along the chain. They developed analytical bounds on the entrainment ranges

and characterized loss of entrainment.

Here we further investigate the hypothesis from Previte et al. [15] that entrainment

ranges that vary non-monotonically as a function of the stimulus position provide in-

formation regarding how intersegmental connection strengths vary as a functions of

the length and direction. We replace the sinusoidal phase model of [15] with a neural

model for each CPG segment and compute entrainment ranges. We further derive a

phase model, which incorporates biological details from the neural model into the

coupling functions. The resulting phase model (implicitly) contains more biological

details than the sinusoidal phase model, but it is simpler than the neural model. We

numerically compute entrainment ranges as a function of both stimulus position and

forcing strength for the neural and derived phase models. We compare entrainment

ranges for the two models, which are predicted to coincide in the limit of weak in-

tersegmental coupling and forcing [9, 16, 17]. Deriving the phase model allows us

to determine the extent to which its coupling functions and forcing functions are ap-

proximately sinusoidal. If the derived phase model is approximately sinusoidal, this

would suggest that the previous analysis of [15] may be sufficient to understand the

entrainment of the neural model in the limit of weak coupling. If not, the derived

phase model would serve to motivate future analysis that extends the analysis of [15]

to a wider range of coupling and forcing functions. Finally, after computing entrain-

ment ranges, we classify how entrainment is lost.

Swimming is a closed-loop system that requires sensory feedback. A power-

ful approach to study such a closed-loop system is to conduct experiments on its

components under open-loop conditions [18]. System identification, parametric and

non-parametric modeling, and concepts from control theory can then be used to

understand how the open-loop properties of a system’s component determine its

closed-loop behavior [18, 19]. This approach has been used to study, for example,

blowflies [20] and electric fish [21, 22] and motivates our interest in the open-loop

effect of bending on the lamprey CPG.

The manuscript is organized as follows. Section 2 contains a description of the

neural model of Buchanan [23] and Williams [24], and it extends the model to include

edge cells. Section 3 contains a description of the derivation of the phase model from

the more detailed neural model. Entrainment ranges as a function of the connection

strength and forcing position are presented in Sect. 4. Loss of entrainment is discussed

for both models in Sect. 5. Section 6 contains a comparison of the entrainment results

from the sinusoidal phase model, the neural model, and the experimental data.

2 Neural Model

The neural model of the lamprey CPG is based on the model developed by

Buchanan [23] and Williams [24]. The model consists of a chain of coupled identical

segmental oscillators, with each oscillator corresponding to one anatomical segment

of the lamprey spinal cord. The segmental oscillators are modeled as in [24], except

that we use a smooth approximation of the piecewise-linear threshold function of [24]

(see below). Each segment is described by six variables representing the six classes
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Fig. 1 Cell classes of the neural model described in [23, 24] are excitatory interneurons (E), lateral in-

hibitory interneurons (L), crossed inhibitory interneurons (C), and edge cells (EC). Numbers indicates cell

indices. Bars and circles indicate excitatory and inhibitory connections, respectively. Edge cells are only

active in the segment at which bending occurs

of cells depicted in Fig. 1. Coupling connections exists between all oscillators, but

the strength of the connections depends on their length and direction. Each segment

of the CPG consists of three types of neurons: excitatory (E), lateral inhibitory (L),

and crossed inhibitory (C) interneurons. Each segment exhibits left–right symmetry

with each side containing one E, L, and C cell connected through intrasegmental

connections, as illustrated in Fig. 1. Following [12], the effect of bending on the CPG

is mediated by edge cells in the margin of the spinal cord, with connections onto

CPG cells as shown in Fig. 1 [5]. We model the bending experiments of Tytell and

Cohen [6] by assuming that bending activates the edge cells of only one segment.

The model is connectionist with one variable per cell: vij is the “voltage” of cell j

in segment i, scaled to be unitless and lie between −1 and 1. (For convenience we use

the term “cell” to refer to a class of cells.) When vij < 0 the cell does not fire action

potentials and vij represents the membrane voltage of the cell body. When vij > 0

the cell fires action potentials and vij represents the normalized firing rate. Although

the model is connectionist, its form is similar to conductance-based models such as

the Hodgkin–Huxley model [25] with the time derivative of voltage proportional to

the sum of “currents”, each with its own reversal potential. The reversal potentials are

in the range from −1 to 1, so that voltage remains in this same range. The model is

v̇ij = −GRvij + G
j

T (1 − vij ) +

n
∑

k=1

6
∑

l=1

α
lj

i−kG
lj

0 h(vkl)
(

V l
syn − vij

)

+ δimαf

2
∑

s=1

G
sj

f h
(

vs
ec(θf)

)(

V
sj
syn,ec − vij

)

,

for i = 1, . . . , n; j = 1, . . . ,6, (1a)

θ̇f = ωf, (1b)

where

h(x) = σ log
(

1 + ex/σ
)

(1c)

is a smooth threshold function and

vs
ec(θf) = (−1)s sin(2πθf) (1d)

is the edge cell voltage with s denoting the left or the right side as illustrated in Fig. 1.

(See Table 1 for a list of the model parameters and their values.) In Eqs. (1a)–(1d), n
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Table 1 Neural model parameters used for simulations and to compute the derived phase model

Parameter Description Value Restrictions

n Number of segmental oscillators 10

m Index of forced oscillator Varies 1 ≤ m ≤ n

GR Resting conductance 3.5 s−1

G
j
T

Tonic excitatory conductance 0.875 s−1 E cells

0.350 s−1 L cells

3.500 s−1 C cells

Gkl
0

Maximal synaptic conductance of

intersegmental connection

15 s−1 L to C connection

35 s−1 All other connections

V l
syn Synaptic reversal potential for

intersegmental connection

1 Excitatory connections

−1 Inhibitory connections

σ Smoothing parameter of threshold function 0.05

α
lj
r Intersegmental connection strength See Fig. 5

Ad Amplitude of descending coupling Varies

Aa Amplitude of ascending coupling Varies

λd Length constant of descending coupling Varies

λa Length constant of ascending coupling Varies

αf Forcing strength Varies

ωf Forcing frequency Varies

V
sj
syn,ec Synaptic reversal potential for EC

connection

1 Excitatory connections

−1 Inhibitory connections

G
sj
f

Maximal synaptic conductance of EC

connections

1

represents the number of spinal cord segments in the experimental preparation being

modeled. We choose n = 10 as a compromise between required computation time and

approximating the large number of segments in experimental preparations, where n

can approach 50. On the right side of (1a), the first term represents the resting conduc-

tance that drives the voltage toward 0. The second term represents the tonic excitatory

conductance that drives the voltage toward 1. The third term, the double summation,

represents the influence of other neurons on vij , which occurs via the intrasegmental

(k = i) and intersegmental (k �= i) connections. The term α
lj

i−kG
lj

0 is the maximal

synaptic conduction of the connection from cell l of oscillator k to cell j of oscilla-

tor i. Cell indices are indicated in Fig. 1. Note that the maximal synaptic conductance

does not depend on the absolute positions of the two oscillators in the chain, but only

on the signed distance between them, r = i − k. Note for convenience, we refer to

r as the connection length, where negative values correspond to ascending connec-

tions and positive values correspond to descending connections. For intrasegmental

connections, i = k, α
lj

i−k = 1 and G
lj

0 is the maximal synaptic conductance. For inter-

segmental connections, α
lj
r expresses the maximal synaptic conductance as a fraction

of the maximal synaptic conductance of the intrasegmental connection of the same

type. Figure 5 illustrates the synaptic conductances for connections between E and C

cells, L and C cells, and all other cellular connections. We refer to α
lj
r as connection
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strength and describe how connection strengths are specified when we consider the

phase-model approximation in Sect. 3. The threshold function h given by (1c) de-

scribes how coupling depends on the voltage of the presynaptic cell. This function

represents an activation threshold, where once the voltage of the neuron reaches a

certain threshold it becomes “active.” In contrast to the models of Buchanan [23] and

Williams [24], which use a piecewise-linear h, we chose a smooth h to facilitate our

computational analysis. As σ decreases to 0, the smooth function approaches the non-

smooth version of [23] and [24]. We used σ = 0.05 in our simulations. A connection

between cells drives the postsynaptic cell’s voltage toward the synaptic reversal po-

tential V l
syn, which depends on the type of the presynaptic cell l. If cell l is an E cell,

which is excitatory, then V l
syn = 1; if cell l is an L or C cell, which are inhibitory, then

V l
syn = −1.

The last term of (1a), the single summation, describes the influence of bending

via edge cells on the CPG voltages vij . We use the Kronecker delta function δim to

indicate that bending only occurs at segment m. The summation index s indicates

whether input is from the edge cell on the left (s = 1) or right (s = 2) side. The

parameter αf is the strength of forcing and the parameters G
sj

f are used to indicate

the relative strength of forcing on different cells in segment m. For simplicity, we

assume that G
sj

f = 1 for all the edge cell connections shown in Fig. 1 and G
sj

f = 0

otherwise. The parameter V
sj
syn,ec is the synaptic reversal potential for the connection

from the edge cell on side s to cell j ; V
sj
syn,ec is 1 for the ipsilateral connections, which

are excitatory, and −1 for the contralateral connections, which are inhibitory. For an

edge cell connection, the input to the threshold function h is the voltage vs
ec(θf), which

is defined by (1b) and (1d).

3 Derived Phase Model

To test how coupling asymmetry affects the shape of entrainment ranges as a function

of the forcing position we study another phase model which is derived from the neu-

ral model described in Sect. 2. A phase model is a simplification of the neural model

and represents each anatomical segment of the CPG with a single variable. Previte et

al. [15] studied a phase model with sinusoidal coupling functions. However, instead

of using sine functions to couple the oscillators, we use the neuron-to-neuron connec-

tions in the neural model to compute intersegmental connections between oscillators.

We exploit the theory of weakly coupled oscillators [9, 16, 17] to approximate the

neural model given by (1a)–(1d) by a phase model of the form

θ̇i = ω0 +

n
∑

k=1
k �=i

6
∑

j=1

6
∑

l=1

α
lj

i−kH
lj (θk − θi)

+ δimαf

2
∑

s=1

6
∑

j=1

H
sj

f (θf − θi), for i = 1, . . . , n, (2a)

θ̇f = ωf, (2b)
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Fig. 2 Simulation of a single segment within a chain of oscillators defined by (1a)–(1d) for two cycles

without forcing. Plot shows the cell voltages within the first segment (i = 1). Weak intersegmental cou-

pling, defined by Aa = 0.0004, Ad = 0.0002, λa = λd = 4, was used to connect segments. Thus, the

solution for the oscillator in the chain closely approximates the solution for a single, uncoupled oscillator.

Note the spatiotemporal symmetry between left and right cells. The voltage of the left cells is the same as

the voltage of the right cells except for a phase shift of half a period

under the assumptions that intersegmental connection strengths α
lj
r (r �= 0) and forc-

ing strength αf are small and ωf is close to ω. The function H lj describes the coupling

provided by a single intersegmental connection of unit strength from cell l in one seg-

ment to cell j in another segment. Similarly, H
sj

f describes the coupling provided by

a connection of unit strength from the edge cell on side s of segment m to cell j in

the same segment. Note we no longer consider intrasegmental coupling since each

segment is represented by a single variable.

Recall that intersegmental connections have the same connectivity as the intraseg-

mental connections shown in Fig. 1. For example, given coupling length r , there are

12 nonzero α
lj
r corresponding to 2 connections for each of 6 connection types: E to C,

E to L, L to C, C to E, C to L, and C to C. Due to the right–left symmetry of the neural

model and the left–right spatiotemporal symmetry of the segmental oscillator’s limit

cycle, two connections of the same type have the same connection strength and same

coupling function. Note these symmetries can be seen in Fig. 2, which depicts the

steady state of the neural model for one segment, simulated without forcing. The left

and right cells have the same voltage with a phase shift of half a period. Therefore,

we can write

6
∑

j=1

6
∑

l=1

α
lj
r H lj =

∑

c∈C

αr,cHc, where C = {EL,EC,LC,CE,CL,CC} (3)

where, for example, αr,EL = α12
r = α45

r and HEL = H 12 + H 45 = 2H 12. Let αr be

the mean of αrc for c ∈ C. We define Hr , the coupling function of the length r , as

Hr =
1

αr

6
∑

j=1

6
∑

l=1

α
lj
r H lj =

∑

c∈C

αr,c

αr

Hc. (4)
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Similarly, the 8 edge cell connections of Fig. 1 consist of two connections for each

of the four connection types: EC to Li, EC to Ci, EC to Lc, and EC to Cc, where ‘i’

and ‘c’ indicate ipsilateral and contralateral connections, respectively. Therefore, we

can define the forcing coupling function Hf as

Hf =

2
∑

s=1

6
∑

j=1

H
sj

f = Hf,Li + Hf,Ci + Hf,Lc + Hf,Cc, (5)

where, for example, Hf,Li = H 11
f + H 25

f = 2H 11
f .

Now, using (4) and (5), we can write the phase model (2a), (2b) as

θ̇i = ω0 +

n
∑

k=1
k �=i

αi−kHi−k(θk − θi) + δimαfHf(θf − θi), for i = 1, . . . , n, (6a)

θ̇f = ωf. (6b)

Model (6a), (6b) has the standard form of a chain of coupled phase oscillators forced

at one location. To specify this model, two choices remain. First, for each connection

length r we must specify the connection strength ratios αr,c/αr in (4) that determine

the coupling function Hr . We defer this specification until we have computed the

coupling function Hc for each connection type c (see Fig. 4 below). Second, we must

specify how coupling strength αr depends on r . Experimental evidence does not pro-

vide the exact form of this dependence but does indicate an asymmetry in ascending

and descending coupling strengths [7, 26, 27]. Among the possible modeling choices

in the literature (e.g. [11, 28]), we will follow Varkonyi et al. [29] and assume that

the coupling strength decays exponentially with coupling length:

αr =

⎧

⎪

⎨

⎪

⎩

Ade−|r|/λd for r > 0 (descending connections),

Aae
−|r|/λa for r < 0 (ascending connections),

1 for r = 0 (intrasegmental connections),

(7)

where Ad , λd and Aa , λa are the amplitudes and length constants for descending and

ascending coupling, respectively. Representative parameter values can be found in

the caption of Fig. 8.

3.1 Coupling Functions

To define the functions Hr and Hf in (6a), (6b) we use the methods of phase reduction

and averaging (see [30–32]) as applied to weakly coupled oscillators [29]. Under

the assumption of weak coupling in (1a)–(1d), we can describe the intrasegmental

connections in the neural model as a phase dependent coupling function for each

connection type, Hc .

Applying the techniques used in [29] to (1a)–(1d) the 6 intersegmental coupling

functions Hc in (3) are computed. The first step in this process is to compute the phase

response curves (PRCs) for each class of neurons within a single segment. Figure 3
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Fig. 3 The PRCs are plotted for the left E, L, and C cells. Each PRC describes the resulting phase shift

that occurs when that cell’s voltage is perturbed by 10−6 , at various initial phases. PRCs for right E, L, and

C cells are the same except for a phase shift of 0.5 due to the right–left symmetry within each oscillator

Fig. 4 For each type of neural connection between E, L, and C cells, an Hc function is computed to

represent the effects of neurons on the voltage of the neuron within the oscillator. The six Hc functions are

computed for connections from L to E cells, C to E cells, C to L cells, E to C cells, L to C cells, and C

to C cells. Here we show only half of the neuron-to-neuron connections in Fig. 1 because of the left–right

symmetry within the oscillator

illustrates the PRCs for the neural model (1a)–(1d). These are the 6 neuron-to-neuron

connections in half of a single oscillator. Recall that due to the spatiotemporal sym-

metry (seen in the connections in Fig. 1 and the simulated voltages in Fig. 2) Hc

are the same for connections between neurons on the right side of the oscillator and

those on the left side. The six connections for the left E, L, and C cells are depicted

in Fig. 4.

Recall that the intersegmental coupling functions defined by (4) are a linear combi-

nation of the six neuron-to-neuron connections Hc . In (4), αrc determines how much

each neuron-to-neuron connection of length r contributes to the intersegmental con-

nection for oscillators i and k where r = i − k. The choice of αrc also determines the

phase lag between oscillators. Experimentally, a phase lag of approximately 1% of

the cycle per segment has been observed [1, 33]. This means that as neural activity
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Fig. 5 Relative strengths

αrc/αr of different connection

types as a function of the

connection length r

travels down the CPG, the phase difference between consecutive segments is 0.01.

Choosing the correct set of coefficients to produce the desired phase lag is called

tuning. We use the tuning methods in [26] to determine the appropriate {αrc}. Tun-

ing is achieved when the zeros of the coupling functions match the phase lag of 0.01

per segment. After tuning, for a chain of ten oscillators, we have 18 intersegmental

connection functions Hr for r = −9, . . . ,−1,1, . . . ,9 representing both ascending

and descending connections. Each Hr is then multiplied by αr , the average of the in-

trasegmental connection strengths of length r . The fraction of the connection strength

αrc/αr is depicted in Fig. 5 for the different cell-to-cell connections.

A method similar to the one used to compute intersegmental coupling functions

Hr is used to compute Hf, where cell i is replaced by an edge cell. Hence, θi will

represent the phase of the forcer, which has its own period Tf = 1/ωf. These edge

cell connections are depicted in Fig. 6 for the left edge cell.

As described before by (5), the forcing function Hf in (6a), (6b) is defined as

the sum of all of the edge cell connections. Here we assume that each edge cell

connection contributes equally to the overall forcing connection (each function has

coefficient 1).

Fig. 6 For each type of neural connection from edge cells, an Hf,c function is computed that describes

the strength of that connection as a function of the relative phase between the edge cell and the oscillator

where forcing is applied
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At this point, we have computed all components of the phase model: intersegmen-

tal connections, Hr , and forcing connection, Hf. However, rather than use the phase

model directly, we instead consider the relative phase model by looking at the phase

difference between each oscillator and the phase of the forcer. This is characterized

by the change of variable φi = θf − θi , which transforms (6a), (6b) to

φ̇i = δ −

n
∑

k=1
k �=i

αi−kHi−k(φi − φk) − δimαfHf(φi), for i = 1, . . . , n, (8)

where δ = ωf − ω0. In the phase model, entrainment corresponds to stable periodic

orbits, whereas in the relative phase model, entrainment corresponds to stable fixed

points of (8). When the CPG is entrained to the forcing frequency, the phase differ-

ence between a given oscillator in the chain and the forcing oscillator remains con-

stant. Using the relative phase model allows us to use continuation and fixed point

stability analysis, which we can exploit to find entrainment ranges.

4 Entrainment Ranges

In this section, entrainment ranges are computed as functions of forcing position,

forcing strength and intersegmental coupling strength. For the neural model (1a)–

(1d), a periodic solution entrained to a given forcing frequency would correspond to

a fixed point of the Poincaré map. For the relative phase model, the CPG is entrained

when the relative phases, that is, the differences in phase between an oscillator in

the chain and the forcing oscillator, θf − θi , are constant. This implies that all of the

oscillators in the chain have the same frequency as the forcer, namely ωf. Constant

relative phases correspond to stable fixed points of (8). For both models, entrainment

ranges can be computed by identifying stable fixed points.

Standard parameter continuation methods (see, for example, [34]) are used to track

fixed points in dynamical systems in order to determine the boundaries of entrainment

ranges. In the simplest case (shown in Sect. 4.2), the parameter δ = ωf − ω is varied

and the lower and upper boundaries of the entrainment range are values of δ where

the fixed point loses stability. Stability is assessed by computing the eigenvalues of

the Jacobian evaluated at the fixed point. In order to determine how the entrainment

range varies with forcing strength αf (shown in Sect. 4.1), we performed a series of

one-parameter continuations in order to compute curves in (αf, δ) parameter space

that correspond to loss of stability.

We used a series of one-parameter continuations instead of two-parameter continu-

ations, because a two-parameter continuation can become inaccurate near degenerate

bifurcations [35]. In order to follow these curves in any direction in parameter space,

the one-parameter continuations were performed along ellipses in parameter space

rather than straight lines, as illustrated in Fig. 7. The larger dotted ellipses represent

the path of the continuation steps in the parameter space. These ellipses indicate how

the parameters δ = ωf − ω and αf are updated at each continuation step. We choose

the size of the ellipse so that it is large enough to cover a relatively large area in pa-

rameter space in order to decrease computation time and also small enough to capture
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Fig. 7 Illustration of two-parameter continuation used to find entrainment ranges as a function of the

forcing strength. The dotted circles denote how the values of δ = ωf − ω0 and αf are updated at each con-

tinuation step. The plus signs denote points on the entrainment range that are detected by the continuation

circles. This allows us to detect sharp corners that may be missed with standard continuation where we

only look at vertical slices of parameter space

sharp corners of the entrainment range. The small red circles indicate the center of

continuation ellipses. To choose the next center, we take a step in the same direction

as the previous entrainment point. The points on the entrainment range are indicated

by blue plus signs. To better explain this process, consider entrainment points 2 and

3 in Fig. 7. We start with entrainment point 2, which is a known point on the entrain-

ment rage. To get the next center, indicated by the small red circle between points

2 and 3, we step in the same direction as the vector from point 1 to point 2. We

then move around the large ellipse, plotted in magenta, and find new fixed points

with slightly different values of αf and δ. To determine points on the boundary of the

entrainment range, we compute the stability of the fixed points in each model.

4.1 Entrainment Ranges as a Function of Forcing Strength

Entrainment ranges are computed for both the neural model and the derived phase

model as a function of the forcing strength using our continuation algorithm. Fig-

ure 8 illustrates 1:1 entrainment ranges for a chain of ten oscillators forced at the last

oscillator as a function of the forcing strength αf. The entrainment range, as a function

of the forcing strength, is plotted relative to the unforced, average frequency of the

chain that is, the vertical axis represents the difference between the forcing frequency,

ωf and the natural chain frequency ω. Figure 8(left), illustrates entrainment ranges for

both the neural model (indicated by the blue line) and the derived phase model (in-

dicated by the red line) for weak intersegmental coupling strength corresponding to

Ad = 0.0004, Aa = 0.0002, and λd = λa = 4 in Eq. (7). Figure 8(right) illustrates

entrainment ranges with intersegmental coupling strength 100 times stronger than

in Fig. 8(left) (Ad = 0.04, Aa = 0.02). Together Figs. 8(left) and 8(right) illustrate

the approximate scaling of entrainment ranges with intersegmental coupling strength.

For stronger coupling, the derived phase model captures the general properties of the

neural entrainment range but not the details as seen in Fig. 8(right). In the limit of

weak coupling, as in Fig. 8(left), both the neural model and the derived phase model
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Fig. 8 Entrainment ranges for the neural and derived phase models as a function of the forcing strength.

Left panel illustrates entrainment ranges as a function of the forcing strength for weak intersegmental cou-

pling corresponding to Aa = 0.0004, Ad = 0.0002, and λa = λd = 4. Right panel illustrates entrainment

ranges for 100 times stronger intersegmental coupling with Aa = 0.04 and Ad = 0.02. Note that for weak

coupling the entrainment ranges for the neural and derived phase models match closely while for strong

coupling the entrainment ranges start to differ as the forcing strength increases. The dashed line on both

plots represents Hopf bifurcations that occur when entrainment is lost. Smooth lines denote saddle-node

bifurcations. The arrows in right panel correspond to the forcing strength values αf where loss of entrain-

ment is depicted in Figs. 10 and 11

agree almost exactly, including the type of bifurcation that occurs when entrainment

is lost. The smooth lines correspond to saddle-node bifurcations, and the dashed lines

represent Hopf bifurcations. For strong coupling, the phase model is not as good of a

quantitative approximation of the neural model but does capture the same qualitative

features of the entrainment ranges of the neural model, including bifurcation type.

4.2 Entrainment Ranges as a Function of Forcing Position

Figure 9 illustrates the effect of different types of intersegmental coupling on en-

trainment ranges plotted as a function of the forcing position. Figure 9A shows

the strength of the connections plotted as a function of the connection length for

both ascending and descending coupling and corresponds to Eq. (7) with parameters

Aa = 0.0004, Ad = 0.0002, and λa = λd = 4. Strength of the ascending connections

are uniformly stronger than descending connection strengths, hence we refer to this

intersegmental coupling scheme as uniform coupling asymmetry. Similarly, Fig. 9B

shows connection strengths, again as a function of the connection length, for both

ascending and descending connections where Aa = 0.006, Ad = 0.0004, λa = 0.75,

and λd = 4. Note in this case, for connections of length 1 and 2, ascending strengths

are stronger than descending strengths, but the curves cross transversely (at approxi-

mately coupling length 3), after which descending connections become stronger than

ascending connections. We refer to this coupling scheme as nonuniform coupling

asymmetry.

We consider entrainment ranges as a function of the forcing position to test the

hypothesis that nonuniform coupling asymmetry produces larger entrainment ranges

when forcing the middle of the chain of oscillators than when forcing at either end.

We compute entrainment ranges as a function of the forcing position m for the exam-

ples of uniform and nonuniform asymmetric coupling illustrated in Fig. 9. Figure 9C

and 9D depict entrainment ranges for both the neural (blue line) and the derived phase
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Fig. 9 Entrainment ranges as a function of the forcing position for varying intersegmental connections.

Uniform coupling asymmetry is illustrated in A with Aa = 0.0004, Ad = 0.0002, and λa = λd = 4. All

of the ascending coupling strengths are stronger than descending for all connection lengths. This coupling

scheme is used to produce monotonic entrainment ranges as a function of the forcing position, seen in C.

Nonuniform coupling asymmetry is depicted in B with Aa = 0.006, Ad = 0.0004, λa = 0.75, and λd = 4.

For our choice of parameters, ascending connections become stronger at connections of length 3. Nonuni-

form coupling is used to compute the entrainment range in D, where see non-monotonic entrainment

ranges

(stars) models. Note that at the boundary of the entrainment ranges, entrainment is

lost externally which means the chain of oscillators has a different average frequency

than the forcing oscillator (for more details please see Sect. 5). When the chain has

uniform intersegmental coupling asymmetry (Fig. 9A), entrainment range is a mono-

tonically increasing function of the forcing position, as seen in Fig. 9C for both the

neural and the derived phase model. When the chain has nonuniform intersegmen-

tal coupling asymmetry (Fig. 9B), entrainment range is a non-monotonic function of

the forcing position, since the largest entrainment range occurs at m = 3, as seen in

Fig. 9D. Nonuniform coupling asymmetry produces qualitatively the same entrain-

ment ranges as a function of the forcing position as the experimental data and sup-

ports the hypothesis of Previte et al. [15] that non-monotonic entrainment ranges as a

function of the forcing position are not a generic property of coupled oscillators but

rather depends on intersegmental coupling properties. Further, note that since cou-

pling strength is relatively weak, the phase model acts as a very good approximation

of the neural model.

5 Loss of Entrainment

To compare with the analytic loss of entrainment results described in [15], we char-

acterize how entrainment is lost outside of the entrainment ranges for the neural and

derived phase model. In the sinusoidal phase model, entrainment is lost solely through

saddle-node bifurcations. However, in both the neural and the derived phase models

entrainment is lost either via a saddle-node bifurcation or a Hopf bifurcation (also

known as a Neimark–Sacker bifurcation) of the Poincaré map [30]. Lines of saddle-

node and Hopf bifurcations meet at a codimension-two Bogdanov–Takens bifurcation
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Fig. 10 Example of loss of entrainment for the neural model. Panel A shows phase relative to the forcer

for external loss of entrainment with αf = 0.5 and ωf − ω is +0.0002 above the entrainment range as

indicated by arrow 1 in Fig. 8(right). Panel B shows relative phase for internal loss of entrainment with

αf = 2 and ωf − ω is +0.0002 above the entrainment range indicated by arrow 2 in Fig. 8(right). Panels C

and D show cycle period for external and internal loss of entrainment, respectively

of the Poincaré map [36]. The type of bifurcation varies along the lower branches of

the entrainment ranges in Fig. 8. Unlike the entrainment ranges of the sinusoidal

phase model of Previte et al. [15], the entrainment ranges of the derived phase model

capture the types of bifurcations seen in the entrainment ranges of the neural model.

Following the definitions of loss of entrainment in [15], we investigate internal

versus external loss of entrainment in the CPG models. Internal loss of entrainment

occurs when part of the chain follows ω∗
i = ωf but for the rest of the chain ω∗

i �= ωf.

This split can occur above or below the oscillator where forcing is applied, corre-

sponding to rostral or caudal internal loss of entrainment. External loss of entrain-

ment occurs when ω∗
i are equal for all oscillators in the chain but are not equal to

the forcing frequency ωf. Figures 10 and 11 illustrate loss of entrainment for the neu-

ral model (Fig. 10) and the derived phase model (Fig. 11) for two values of forcing

strength as indicated by the arrows in Fig. 8(right). For small values of the forcing

strength αf, the size of the entrainment range increases approximately linearly with

αf as illustrated in Fig. 8 and entrainment at both the lower and the upper limits of

the entrainment range is lost via saddle-node bifurcations. For forcing strength suffi-

ciently large, the entrainment range is approximately constant as seen in Fig. 8.

Figure 10A corresponds to simulating the model described by (1a)–(1d) with ωf

chosen so that ωf − ω is just above (+0.0002) the entrainment range illustrated in

Fig. 8(right) for αf = 0.5. Figure 10A illustrates that segmental oscillators 9 and 10

are losing one cycle with the forcer. Figure 10C shows a corresponding spike in the

cycle period at each step in the relative phase. Simulating with αf = 0.5 just below the

entrainment range would produce a similar result to Fig. 10A, except the segmental

oscillator will gain one cycle with the forcer. The loss of entrainment illustrated in

Fig. 10A and 10C corresponds to external loss of entrainment because segments nine
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Fig. 11 Example of loss of entrainment for the derived phase model. The coupling parameters are the

same as those shown in Fig. 10. We see that entrainment is lost in the same way for both the neural and the

derived phase model, further supporting that the phase model contains the same entrainment information

and ten (representative of the entire chain) are oscillating together and losing a cycle

with the forcer at each step.

Figure 10B also demonstrates loss of entrainment but in this case αf = 2 and ωf

chosen so that ωf − ω is just above (+0.0002) the entrainment range illustrated in

Fig. 8(right). Forcing is still on the tenth oscillator, but instead of both oscillators

nine and ten losing or gaining a cycle with the forcer at the same time, Fig. 10B

shows that oscillator nine is losing a cycle with the forcer, whereas oscillator ten

is still oscillating with the forcer. Figure 10D shows a spike in the cycle period as

was seen in Fig. 10C at each step in relative phase. This loss of entrainment corre-

sponds to internal loss of entrainment because part of the chain is oscillating at the

same frequency as the forcer and another part is not. Internal loss of entrainment can

be characterized further as rostral or caudal. Rostral loss of entrainment means that

segmental oscillators above the forced oscillator have a different average frequency

than the forcer, but the oscillators below the forced oscillator have the same average

frequency as the forcer. On the other hand, caudal loss of entrainment means that

the loss of entrainment takes place for oscillators below the forced oscillator. Since

we consider the case where forcing is applied to the last oscillator in the chain, we

can only see rostral loss of entrainment where oscillators 1 through 9 have a differ-

ent frequency ω∗
i . The neural model described by (1a)–(1d) exhibits both external

loss of entrainment for the entrainment ranges that grow linearly as a function of αf,

and internal loss of entrainment where the entrainment ranges are a relatively con-

stant function of αf (see Fig. 8). The loss of entrainment near the Hopf bifurcation in

Fig. 8 is more complex and does not clearly fall into either of these two categories.

Both internal and external loss of entrainment are also seen in the derived phase

model. In Fig. 11A, entrainment is lost externally for forcing frequency above the

entrainment range for αf = 0.5. Figure 11B shows internal loss of entrainment for

αf = 2. As in the neural model, Figs. 11A and 11B illustrate how the oscillators gain a

cycle with the forcer. In Fig. 11A, all 10 oscillators have the same frequency ω∗
i �= ωf
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while in Fig. 11B, ω∗
10 = ωf but oscillators 1 through 9 have a different frequency.

Figures 11C and 11D illustrate the jump in cycle period where the relative phases

gain a cycle in relation to the forcing frequency.

In summary, for the upper bound on the entrainment range, entrainment is lost

externally for small values of αf when the entrainment range is growing linearly as

a function of αf, whereas entrainment is lost internally in the range of αf where the

entrainment range is relatively constant as a function of αf. In both these ranges,

entrainment is lost through a saddle-node bifurcation of the return map in the Poincaré

section. Hence, the type of loss of entrainment does not necessarily correspond to the

type of bifurcation. Loss of entrainment just below the entrainment range exhibits

more complicated behavior which, for some αf values, cannot easily be classified as

internal or external. Finally, the derived phase model agrees with the neural model

on how entrainment is lost at different locations along the entrainment range. This

further illustrates that the derived phase model preserves entrainment information as

regards the more biologically detailed neural model.

6 Discussion

The lamprey central pattern generator for locomotion is considered to be a model

system for studying vertebrate locomotion because it is a primitive vertebrate with

relatively few neurons [37, 38]. Another advantage of studying the lamprey central

pattern generator for locomotion is that the spinal cord of the lamprey can be excised

from the animal, placed in a bath of the excitatory amino-acid D-glutamate and still

produce motor nerve activity similar to that of a swimming lamprey. Tytell and Cohen

[6] measured entrainment ranges for bending at different locations along a roughly

50-segment piece of spinal cord and found that entrainment ranges were larger in

middle of the piece than at either end.

The dependence of the effect of bending on location along the spinal cord could

be due to some combination of the properties of intersegmental coupling, as mod-

eled by Previte et al. [15], or differences in the local effect of bending, as suggested

by Hsu et al. [39]. Motivated by the work of Previte et al., we investigated the ef-

fect of intersegmental coupling on entrainment properties of both a neural model and

its phase-model approximation. As expected based on the theory of phase reduction

for weakly coupled oscillators, we saw the entrainment characteristics of the neural

model were closely approximated by the derived phase model in the limit of weak

coupling. This included entrainment ranges as a function of the forcing strength,

entrainment ranges as a function of the position, and also loss of entrainment. Ad-

ditionally, we computed entrainment ranges as a function of the forcing position with

different coupling schemes. For both the neural and the derived phase model we saw

monotonic and non-monotonic entrainment ranges as a function of the forcing posi-

tion for uniform and nonuniform coupling asymmetry, respectively. Entrainment is

also lost in the same way in both models as illustrated by Figs. 10 and 11. Compar-

ing the entrainment results for the neural and derived phase models indicates that the

derived phase model is able to capture all of the essential entrainment properties we

analyzed. Thus, with sufficiently weak coupling, entrainment can be studied in the

simpler derived phase model.
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Previous analytic results only considered internal loss of entrainment in a phase

model [13]. Previte et al. [15] characterized loss of entrainment for the sinusoidal

phase model, as either internal or external as described in Sect. 5. Previte et al. [15]

also showed that internal loss of entrainment is more likely when forcing strength αf

is strong relative to coupling strengths αr . Our simulations in Figs. 10 and 11 sup-

port this conclusion. For relatively weak forcing strength, αf = 0.5, entrainment is

lost externally for both the neural and the derived phase models. Alternatively, for

stronger forcing strength, αf = 2, entrainment is lost internally where oscillator 9 has

a different frequency than oscillator 10. These results support the claim that experi-

mental entrainment needs to be re-examined to determine how entrainment is lost at

the middle and ends of the chain [15]. Experimental procedures make it difficult to

classify exactly how entrainment is lost. Moreover, experimental entrainment ranges

plot the average frequency of the oscillators in the chain, which obscures more subtle

differences [15].

Although both chains of coupled oscillators, the neural and derived phase models

contain different levels of biological detail in comparison to the simpler sinusoidal

phase model. Despite these differences, entrainment results are qualitatively similar

across all three models. Entrainment ranges as a function of the forcing position are

plotted in Fig. 9 for both the neural and the derived phase models. We see similarly

shaped entrainment ranges as a function of the forcing position in our two models

as well as the sinusoidal phase model studied by Previte et al. [15]. This supports

the hypothesis that non-monotonic entrainment ranges are not an intrinsic property

of chains of coupled oscillators but rather a characteristic of a specific type of in-

tersegmental coupling. Specifically, nonuniform coupling asymmetry, in each model,

produces entrainment ranges that do not increase monotonically as forcing position

increases. Additionally, computational and experimental results have indicated cou-

pling asymmetry exists in the lamprey CPG, but the strength and direction of the

connections is still unknown [26, 40]. More recently, experiments have been con-

ducted that examine the distribution and connections of commissural interneurons.

These experiments show differences in the rostrocaudal distribution of commissural

interneurons [41] and differences in the synaptic organization of ipsi- and contralat-

erally projecting interneurons [42]. Ayali et al. experimentally showed differences in

CPG output between blocking short ascending and descending connections, which

further supports the idea of coupling asymmetry in the lamprey CPG [43]. From

these results and our simulations, we hypothesize that intersegmental connections in

the lamprey CPG exhibit nonuniform coupling asymmetry. This is an important in-

sight into the CPG since individual intersegmental connection strengths are extremely

difficult to measure experimentally.

Although the sinusoidal phase model agrees with the neural model for entrain-

ment ranges as a function of the forcing position for both uniform and nonuniform

coupling asymmetry, it does not capture all of the properties of entrainment ranges as

a function of the forcing strength. In the sinusoidal phase model, entrainment ranges

as a function of the forcing strength, αf, are linear with slope depending on forcing

position m and αk/α−k [15]. As seen in Fig. 8, the derived phase model, even for

stronger coupling, exhibits a nonlinear relationship between entrainment and forcing

strength. This is especially evident along the lower bound of the entrainment range
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in Fig. 8(left). In addition to capturing the relationship between forcing strength and

entrainment seen in the neural model, the derived phase model also captures the type

of bifurcations that occur in the neural model. Namely, saddle-node bifurcations and

Hopf bifurcations in the middle of the lower bound. The sinusoidal phase model only

loses entrainment through saddle-node bifurcations [15]. Thus, our work justifies us-

ing a slightly more detailed phase model to approximate the neural model in further

entrainment studies. We plan to further investigate entrainment of the lamprey CPG,

both experimentally and computationally, by adding noisy perturbations to the deter-

ministic bending signals.

In both the neural and the derived phase models, we chose parameter sets based

on previous work [15, 29]. However, the entrainment results of both models approx-

imately scale with the order of magnitude of coupling parameters. This is evident

in Fig. 8. The two panels compare entrainment ranges as a function of the forcing

position for two parameter sets which differ by a scale of 100. For the derived phase

model, plotted in blue, the entrainment range on the right is exactly 100 times the

entrainment range on the left. For the neural model, the entrainment ranges differ

slightly in shape but the same change in magnitude is evident. This scaling also oc-

curs in entrainment ranges as a function of the forcing position for both models. Thus,

our results could be generalized to other models and parameter choices depending on

the locomotion system being modeled.
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