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Abstract: RTK plays important roles in many cellular signaling processes involved in cancer 

growth and development. ALK, TRKA, TRKB, TRKC, and ROS1 are RTKs involved in 

several canonical pathways related to oncogenesis. These proteins can be genetically altered in 

malignancies, leading to receptor activation and constitutive signaling through their respective 

downstream pathways. Neuroblastoma (NB) is the most common extracranial solid tumor in 

childhood, and despite intensive therapy, there is a high mortality rate in cases with a high-risk 

disease. Alterations of ALK and differential expression of TRK proteins are reported in a propor-

tion of NB. Several inhibitors of ALK or TRKA/B/C have been evaluated both preclinically and 

clinically in the treatment of NB. These agents have had variable success and are not routinely 

used in the treatment of NB. Entrectinib (RXDX-101) is a pan-ALK, TRKA, TRKB, TRKC, 

and ROS1 inhibitor with activity against tumors with ALK, NTRK1, NTRK2, NTRK3, and ROS1 

alterations in Phase I clinical trials in adults. Entrectinib’s activity against both ALK and TRK 

proteins suggests a possible role in NB treatment, and it is currently under investigation in both 

pediatric and adult oncology patients.
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Introduction
The human genome contains 58 known RTK genes that activate common intracellular 

signaling cascades and are frequently altered in cancer.1 Different oncologic alterations 

in RTKs include activating mutations, gain of function mutations, fusion rearrange-

ments, and overexpression. ALK, TRKA, TRKB, TRKC, and ROS1 are RTKs that 

may be altered or overexpressed in cancer, including neuroblastoma (NB).2–4

NB is the most common extracranial tumor of childhood that develops from 

progenitors arising from neural crest cells in the adrenal medulla or along the sym-

pathetic chain.5 It accounts for 10% of all pediatric cancers and results in ~15% of 

pediatric cancer mortality.5,6 NB is known for its clinical heterogeneity, ranging 

from infants, where the disease spontaneously regresses or matures, to children with 

a highly aggressive metastatic disease.5 The treatment is risk stratified based on 

clinical and genetic features associated with outcome. Genetic alterations associated 

with outcomes include MYCN amplification, DNA ploidy, gain of chromosome 17q, 

and deletions of chromosome arms 1p or 11q.7–16 The current treatment for high-risk 

disease uses a multimodal approach incorporating chemotherapy, surgery, radiation 

therapy, autologous stem cell transplantation, and immunotherapy.5 Despite intensified 

regimens, ~50% of patients with a high-risk NB relapse or are treatment refractory, 

demonstrating a critical need for novel therapies to improve cure rates and decrease 

toxicities.17,18
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The genetic landscape of NB has been widely studied, 

and several genetic aberrations have been identified. MYCN 

is a transcription factor located at 2p24 and is amplified in 

20% of all patients at diagnosis.19,20 MYCN amplification 

is associated with metastatic disease and a poor prognosis; 

however, therapeutic inhibition of MYCN has been difficult 

due to the ubiquitous presence of this transcription factor 

and the lack of available drug-binding sites.19–21 Targetable 

genetic alterations such as ALK mutations/amplification 

are seen in 14% of NB cases.22 Less common alterations 

are mutations in ATRX, PTPN11, and NRAS genes; each is 

reported in fewer than 10% of NB cases.22–24 In addition to 

genetic alterations, there are genes that exhibit differential 

expression in NB, such as NTRK1/2/3.25 The overall low 

frequency of mutations combined with difficulty in target-

ing the more frequently altered genes has resulted in a pau-

city of molecularly targeted therapeutic options for NB to 

date.21,22,24,26 However, genes that are differentially expressed, 

such as NTRK1/2/3, and those that are genetically altered, 

such as ALK, are potential opportunities for molecularly 

driven therapy in NB.

ALK is an RTK in the insulin receptor superfamily 

and is located on chromosome 2. The ligands for ALK are 

pleiotrophin and midkine; their binding leads to receptor 

dimerization, autophosphorylation, adaptor protein recruit-

ment, and downstream signal transduction through the RAS/

MAPK, PI3K/AKT, and JAK/STAT pathways.27,28 ALK is 

expressed in both the murine and human nervous systems and 

not in other tissues.29–32 Studies in murine models identified 

high levels of ALK in the neonatal brain and low levels of 

ALK in adults, suggesting that this protein may be important 

in embryogenesis.29 Constitutive ALK activation through 

translocation or mutation occurs in multiple malignancies, 

supporting its role in oncogenesis.3 In fact, the ALK gene 

was initially discovered in the setting of anaplastic large 

cell lymphoma (ALCL) where most cases express a t(2;5) 

translocation, resulting in the fusion of ALK with NPM.33 

ALK translocations are present in 50% of inflammatory 

myofibroblastic tumor (IMT) and in 3%–7% of non-small-

cell lung cancer (NSCLC).34–37 ALK-activating mutations and 

amplification are also described in NB tumors and are more 

common in patients with a high-risk disease.38

TRK proteins, TRKA, TRKB, and TRKC, are another 

class of RTKs involved in oncogenesis. The proteins are 

encoded by NTRK1, NTRK2, and NTRK3, respectively. 

The ligand for TRKA is NGF; for TRKB is BDNF, NT3, 

and NT4/5; and for TRKC is NT3. Of note, some ligands 

like NT3 bind multiple TRK receptors.39–43 Ligand binding 

results in receptor homodimerization and activation, which 

lead to signaling through various canonical pathways 

including RAS/MAPK, AKT, PLCγ1, and PKC.44,45 TRK 

proteins are expressed in the human central and peripheral 

nervous system during embryogenesis.46 Studies in animal 

models have identified that the TRK proteins have different 

roles and functions, depending on the timing and location of 

their expression during development. For example, TRKB is 

expressed in early sensory neuron development, while TRKA 

in the later stages.47 Similarly, TRKC is expressed early in 

the development of sympathetic neurons of mouse embryos, 

while TRKA predominates later in development.48

Alterations in TRK proteins, including rearrangements 

and atypical expression, are described in a variety of 

cancers.49–55 Rearrangements of NTRK result in novel fusion 

proteins, which cause constitutive activation of the kinase. 

Such fusions are found in a majority of infantile fibrosarco-

mas but are also described in lung cancer, papillary thyroid 

carcinoma, glioblastoma, and colorectal carcinomas.49–53,55 

Differential expression of TRK has also been reported in 

a variety of tumors including adrenal, pancreatic, ovarian, 

esophageal, bladder, pheochromocytoma, and NB.54 TRK 

expression levels have prognostic significance in some 

tumors; high levels of TRKB are associated with increased 

mortality in Wilms tumor, while TRKC expression is asso-

ciated with a favorable outcome in medulloblastoma.56,57 

Differential expression of TRK proteins in NB is also associ-

ated with disease severity and prognosis.58

ROS1 is a third RTK with an unknown ligand that 

thereby limits knowledge of its function.2 This protein is 

expressed primarily in epithelial cells and is found in a 

variety of tissues including the kidney, cerebellum, stomach, 

and intestine.2,59–61 ROS1 translocations leading to increased 

ROS1 activation have been reported in malignancies and 

were originally described in glioblastoma where an intrach-

romosomal deletion leads to the formation of a ROS1–FIG 

fusion protein.2,60–63 Other cancers where ROS1 translocations 

have been described include NSCLC, ovarian carcinoma, 

and cholangiocarcinoma.62,64–66 Of note, ROS1 translocations/

alterations have not been reported in NB.67

To date, targeted inhibitors of ALK, TRKA/B/C, 

and/or ROS1 have shown effectiveness in the treatment 

of target-mutated malignancies in both preclinical and 

clinical settings.68–77 Entrectinib (RXDX-101, NMS-E628, 

NMS-01191372; Ignyta, San Diego, CA, USA) is a newly 

developed pan-TRK, ALK, and ROS1 inhibitor that has 

demonstrated preclinical efficacy in tumors with NTRK1/2/3, 

ALK, and ROS1 alterations, including NB (Figure 1). 
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Entrectinib was well tolerated in Phase I adult clinical trials 

and demonstrated activity against tumors with NTRK1/2/3, 

ALK, and ROS1 translocations, providing the support for an 

ongoing Phase II study in adults.73,78

ALK expression and alterations 
in NB
ALK is recognized as an oncogenic driver of NB; and 

increased expression of ALK mRNA in NB is correlated with 

poor prognostic factors such as metastatic disease, MYCN 

amplification, and decreased survival.79,80 ALK alterations 

present in NB include copy number gain, amplification, and 

mutations. ALK copy number gain is seen in 15%–25% of 

NB, and amplification is seen in 4% of high-risk NB; both 

are associated with advanced-stage disease and decreased 

survival.81–85

ALK mutations have been identified in both familial 

and sporadic NB. ALK germline mutations are reported 

in 50% of cases of hereditary NB.85,86 These mutations are 

typically missense mutations within the kinase domain of 

ALK and lead to ALK hyperphosphorylation and constitu-

tive activation of the kinase.82,84–86 Three different germline 

mutations have been identified: R1192P, G1128A, and the 

most frequent R1275Q.85,86 ALK mutations also occur in a 

small proportion (6%–10%) of somatic NB (Table 1).81–83,85–88 

In all, 12 somatic ALK mutations have been identified in NB, 

the majority of which are missense mutations within the 

kinase domain.82,83,87–89 The three most common mutations 

are F1174L, R1275Q, and F1245C.81–83,86–88 Cells transduced 

with either the F1174L or R1275Q ALK mutation lead to 

cytokine-independent growth of IL-3-dependent Ba/F3 cells, 

supporting the role of ALK mutations as oncogenic drivers 

in NB.88 Of note, the F1174 mutation demonstrates increased 

oncogenic potential with faster transformation of Ba/F3 cells 

and stronger auto-phosphorylation compared to R1275Q.83 

Similarly, while all ALK mutations in NB are correlated with 

lower survival rates, those associated with F1174 mutations 

lead to even worse outcome than those with the R1275Q 

mutation.81,83,87,90

ALK alterations (amplification or mutations) are more 

common in cases with MYCN amplification. There is a strong 

correlation between the F1174L mutation and MYCN ampli-

fication in HR NB.81,83–85,89 The association between ALK 

alterations and MYCN amplification is felt to be due in part 

to close localization of ALK and MYCN on chromosome 2. 

MYCN regulates ALK expression, and ALK is a transcriptional 

target of MYCN.79 Additionally, ALK stimulates transcription 

of MYCN in NB cell lines, suggesting that the combination 

Figure 1 Mechanism of entrectinib in NB.

Abbreviation: NB, neuroblastoma.
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of MYCN amplification and ALK alterations may lead to 

increased oncogenic activity in NB.91

The presence of ALK alterations in NB and the associa-

tion between both ALK overexpression and ALK alterations 

with decreased survival and more aggressive disease con-

firm that ALK is an important driver of NB and a potential 

therapeutic target.

TRK expression in NB
TRK proteins are differentially expressed in NB and have 

distinct roles in the pathogenesis of NB.58 TRKA expres-

sion is associated with favorable prognostic factors such as 

localized disease (stages 1, 2, MS), younger age, absence of 

MYCN amplification, and improved survival.92–94 Addition-

ally, TRKA expression levels are decreased in patients with 

advanced disease and are inversely associated with MYCN 

amplification.92–94 When NGF is applied to low-risk NB cells 

in vitro, which typically have high levels of TRKA, they 

undergo terminal differentiation, suggesting that TRKA may 

have a role in the regression or maturation of low-risk NB.95 

Similarly, high levels of TRKC in NB are associated with a 

low-risk disease and favorable prognosis and have a negative 

correlation with MYCN amplification.96,97 Low-risk NBs are 

more likely to express the full-length TRKC receptor, and 

high-risk cases more likely to have truncated TRKC or no 

TRKC expression at all.96,97 Furthermore, tumors with TRKC 

also tend to express high levels of TRKA.97

In contrast, TRKB expression is associated with a poor 

prognosis in NB, present in .50% of high-risk cases and 

correlates with MYCN amplification.45 TRKB activation 

leads to enhanced oncogenic potential in NB cells. When 

BDNF, the TRKB ligand, is applied to MYCN-amplified NB 

cells, there is improved cell survival and neurite growth.45 

TRKB is also associated with the angiogenic factors, VEGF 

and bFGF, suggesting that it may promote angiogenesis and 

metastatic ability.25,98,99 Furthermore, TRKB expressing cell 

lines are less sensitive to doxorubicin, etoposide, and cis-

platin, suggesting that TRKB may abrogate response to 

chemotherapy.100 The association between TRKB/BDNF and 

cell survival, angiogenesis, metastasis, and drug resistance 

suggests that TRKB in NB may be a useful therapeutic 

target.76,101

ALK agents in oncologic 
development
Preclinical studies
ALK inhibition has been evaluated as a therapeutic option in 

NB with ALK amplification, mutations, and wild-type ALK. 

Knockdown of ALK expression in NB cells lines resulted in 

growth inhibition but was more effective in cells with ALK 

alterations than in those with wild-type ALK.82,85,86 Although 

abrogation of ALK was less effective in the wild-type cells, 

several ALK inhibitors have been tested in models of NB 

with both wild-type and mutated ALK.

Crizotinib (Xalkori®; Pfizer, Inc., New York City, NY, 

USA) is a first-generation ALK inhibitor that competitively 

inhibits the binding of ATP to the active kinase site of ALK, 

MET, and ROS1.102 Crizotinib was evaluated in both ALK-

altered and wild-type NB cell lines and xenografts.69 There 

was increased growth inhibition in vitro and decreased tumor 

growth in vivo in the cells with ALK alterations compared 

to wild-type ALK in response to crizotinib.69 However, 

there was differential sensitivity to crizotinib based on 

the type of mutation. NBs with ALK R1275Q mutations 

were more sensitive to crizotinib, whereas those with ALK 

F1174L and F1245C exhibited a relative resistance.69,103 The 

mechanism of relative resistance was due to the different 

ATP-binding affinities of the ALK mutations. For example, 

the F1174L ALK mutation demonstrates increased ATP bind-

ing compared to the R1275, thereby decreasing the ability 

Table 1 The frequency of ALK mutations in NB

Author, year Number of 

NB samples

Frequency of ALK 

mutations

Mossé et al, 2008 167 (high-risk 

NB samples)

Total 8.4% (14/167)

Janoueix-Lerosy et al,  

2008

115 Total 6.1% (7/115)

F1174 14.3% (1/7)

R1275 71.4% (5/7)

Other 14.3% (1/7)

Chen et al, 2008 215 Total 6.1% (13/215) 

F1174 50% (7/14)

R1275 35.7% (5/14)

Other 14.3% (2/14)

de Brouwer et al, 2010 254 Total 6.7% (17/254)

F1174 29.4% (5/17)

R1275 58.8% (10/17)

Other 11.8% (2/17)

George et al, 2008 93 Total 7.5% (7/93)

F1174 57.1% (4/7)

R1275 14.3% (1/7)

Other 28.6% (2/7)

Pugh et al, 2013 240 Total 9.2% (22/240)

Bellini et al, 2015 277 Total 9.7% (27/277)

F1174 55.5% (15/27)

R1275 44.4% (12/27)

Bresler et al, 2014 1,596 Total 8% (126/1,596)

F1174 30% (38/126)

R1275 43% (54/126)

Others 27% (34/126)

Abbreviation: NB, neuroblastoma.
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of crizotinib to bind leading to the resistant phenotype.81 

Crizotinib was also evaluated in combination with chemo-

therapy. In NB xenograft models with either ALK mutations 

(R1275Q, F1174L, F1245C) or amplification, crizotinib and 

cyclophosphamide/topotecan (C/T) in combination resulted 

in synergistic cytotoxicity and increased apoptosis com-

pared to either agent alone.104 This suggests that crizotinib 

in conjunction with chemotherapy may be more effective 

in ALK-altered NB including those with crizotinib-resistant 

ALK mutations.

Second- and third-generation ALK inhibitors have also 

been tested in NB. Alectinib (Alecensa®; Chugai Pharmaceu-

tical Co., Tokyo, Japan) is a second-generation ALK/RET 

inhibitor that has improved affinity for the ATP-binding site 

and thereby increased potency against the ALK kinase com-

pared to crizotinib.105,106 Alectinib was evaluated in NB cell 

lines with both wild-type ALK and ALK F1174L mutations.107 

Alectinib treatment resulted in growth inhibition in all cell 

lines, including cells with the F1174L mutations. Addition-

ally, the combination of alectinib and doxorubicin led to 

enhanced cell death compared to alectinib alone in both ALK 

wild-type and mutant cell lines.107 While both crizotinib and 

alectinib demonstrate activity against ALK wild-type and 

mutant cell lines as a single agent and in combination with 

chemotherapy, alectinib has improved efficacy compared to 

crizotinib in the inhibition of the F1174L mutation.

Lorlatinib (PF-6463922; Pfizer, Inc.) is a third-generation 

ALK/ROS1 inhibitor designed to have improved inhibition 

of ALK compared to the previous agents.108 Treatment with 

lorlatinib resulted in decreased growth of ALK-amplified NB 

cell lines and NB cell lines with the R1275Q, F1174L, and 

F1245C ALK mutations.103 In xenograft models, complete 

and sustained tumor regression was seen in all animals with 

ALK mutations in response to lorlatinib therapy, whereas 

animals treated with crizotinib exhibited a more limited and 

transient delay in tumor growth.103 These results suggest that 

lorlatinib is not only effective against ALK amplifications 

and mutations in NB in vitro and in vivo but is also more 

effective than crizotinib.

Preclinical studies suggest that ALK inhibition is effec-

tive in NB with ALK alterations and has some activity in 

NBs with wild-type ALK. Furthermore, there is differential 

sensitivity of ALK mutations in response to ALK inhibitors 

with relative resistance of the F1174L and F1245C mutations 

to crizotinib. The later generation ALK inhibitors are able to 

overcome this resistance, suggesting that these agents may be 

effective in individuals with tumors that contain crizotinib-

resistant mutations.

Clinical trials
In clinical trials, ALK inhibitors have been widely studied 

in the treatment of NSCLC and several have been approved 

for clinical use. Crizotinib was the first of these agents to be 

approved for the treatment of ALK- and ROS1-rearranged 

NSCLC.102 However, the clinical utility of crizotinib has 

been limited by the development of resistance and disease 

progression.109 Patients with ALK-rearranged tumors who 

are treated with crizotinib can acquire ALK mutations, such 

as those of the F1174L, which leads to the development of 

drug resistance.110 Furthermore, crizotinib does not cross 

the blood–brain barrier and brain metastases are a com-

mon location of disease progression in patients treated with 

crizotinib.111

The second- and third-generation ALK inhibitors (alec-

tinib, ceritinib [Zykadia®; Novartis International AG, Basel, 

Switzerland], and lorlatinib) are able to overcome crizotinib 

resistance in clinical trials and have improved central nervous 

system (CNS) penetrance.109 While lorlatinib is under inves-

tigation in Phase III clinical trial for patients with NSCLC, 

both ceritinib and alectinib are approved for the treatment of 

ALK-positive NSCLC.112–114 However, the clinical utility of 

these agents is also limited by the eventual development 

of resistance. The mechanisms of acquired resistance include 

the addition of new mutations within the ALK or ROS1 kinase 

domain, which prevent the drug from binding to the active 

site, amplification of ALK itself, and activation of bypass sig-

naling pathways.59,115–121 While the development of resistance 

remains a limitation of all ALK inhibitors, these agents are 

commonly used in the treatment of ALK-positive NSCLC 

and have been studied in pediatric malignancies.

Crizotinib was evaluated in a pediatric Phase I clinical 

trial that enrolled 79 patients with relapsed/refractory solid 

tumors, CNS tumors, or ALCL.102 The main side effects 

were nausea and vomiting, seen in 65% and 57% of patients, 

respectively, and mild visual disturbances in 37% of patients. 

Nine patients had a complete response (CR) and five had 

a partial response (PR). Responses were more common in 

patients with known ALK aberrations, with eight of nine 

patients with ALK-translocated ALCL demonstrating an 

objective response (CR or PR). In all, 34 NB patients were 

enrolled in this Phase I single-agent trial, 11 with known 

ALK mutations; of them, one patient had a CR and three 

patients demonstrated stable disease (SD). The individual 

with a CR had a germline R1275Q mutation, and the three 

patients with SD had a germline R1275Q mutation, a somatic 

mutation at R1275L, and a somatic mutation at F1174L. The 

other seven patients with ALK mutations had progressive 
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disease, including three patients with F1174L mutations. 

Among the 23 patients with NB who had an unknown ALK 

mutation status, one patient had a CR and five had prolonged 

SD ranging from five to 39 cycles.102 These results suggest 

activity of crizotinib in NB in a subset of individuals with 

ALK mutations or unknown ALK status. Additionally, despite 

prior preclinical and clinical evidence that the F1174 muta-

tion is crizotinib-resistant, there was activity in a patient 

with a F1174L mutation, suggesting that the resistance is 

not absolute.

Although there was some efficacy in the Phase I pedi-

atric study, the preclinical evidence suggests that crizotinib 

may be more effective in combination with chemotherapy. 

A pediatric Phase I trial evaluated crizotinib in combi-

nation with conventional chemotherapy for relapsed or 

refractory solid tumors or ALCL.122 In this trial, crizotinib 

was combined with either C/T or vincristine/doxorubicin. 

Dose-limiting toxicities (DLTs) occurred in both groups 

and included nausea, diarrhea, dehydration, and prolonged 

QT in a total of four patients.123 It was suspected that these 

gastrointestinal (GI) adverse effects may have been related 

to the poor palatability of the oral solution of crizotinib, 

and subsequent patients received a capsule formulation.123 

Neither the efficacy results nor the individual results of those 

receiving the capsule formulation are available. Crizotinib in 

combination with chemotherapy is also being evaluated in the 

current children’s oncology group high-risk NB study, which 

includes a cohort for patients with ALK-mutated or -amplified 

tumors who will receive crizotinib in combination with stan-

dard high-risk multiagent chemotherapy.124

The second- and third-generation ALK inhibitors may 

be more effective than crizotinib and are being studied in 

pediatrics. There is an open Phase I pediatric trial evaluating 

the second-generation ALK inhibitor ceritinib in patients 

with tumors who have ALK alterations.125 An interim report 

noted that 22 patients enrolled including seven patients 

with NB with ALK alterations. The adverse events were 

primarily GI related and included nausea, vomiting, diar-

rhea, transaminitis, abdominal pain, pyrexia, and fatigue.126 

There were two DLTs, which were grade 3 elevation in ALT 

and grade 2 persistent abdominal pain. Reported responses 

included two patients with ALCL and four patients with IMT. 

The results were less favorable in the seven patients with NB, 

where one patient with an F1174L ALK mutation experienced 

a mixed response with decrease in the size of a retroperitoneal 

mass but progression of intracranial disease.126 It is difficult 

to draw conclusions about the efficacy of ceritinib in NB 

given the small number of patients. The third-generation 

ALK inhibitor lorlatinib may be more effective in NB due 

to increased potency against the ALK kinase and improved 

CNS penetrance. There is an ongoing Phase I pediatric trial 

studying lorlatinib in NB, but preliminary results are not 

yet available.127

TRK agents in oncologic 
development
Preclinical studies
There are several inhibitors of TRKA/B/C in development 

for the treatment of TRK-altered malignancies. Inhibition of 

TRKB in NB is particularly intriguing due to the association 

between TRKB expression and high-risk disease. Several 

preclinical studies have evaluated the efficacy of TRK inhibi-

tors in NB models that express TRKB. CEP-751 (KT-6587; 

Cephalon, Inc., Frazer, PA, USA) is an inhibitor of TRKA/

B/C and has activity against PDGFR, EGFR, and PKC.128 

CEP-751 was evaluated in NB cells with varying levels of 

TRKB, both in vitro and in vivo, and was most effective 

in cells with high levels of TRKB.74,75 AZ64 (AstraZeneca 

plc, London, UK) and GNF-4256 (Genomics Institute of the 

Novartis Research Foundation, San Diego, CA, USA) are 

selective and potent inhibitors of TRKA/B/C; and lestaurtinib 

(CEP-701; Teva Pharmaceutical, Peta Tikva, Israel) is a 

potent inhibitor of Flt3 that also has activity against JAK2 

and TRKA/B/C.71,76,129–131 Each of these agents was tested in a 

NB cell line that was transfected with TRKB. In these studies, 

drug treatment resulted in growth inhibition and decreased 

phosphorylation of TRKB, suggesting that the effect of the 

drugs was related to the inhibition of TRKB.71,76,130 When 

these agents were tested in xenograft models, there was 

decreased tumor growth and improved survival, suggesting 

that TRKB inhibition in NB may be beneficial.71,76,130

While multiple TRK inhibitors have demonstrated 

effectiveness as single agents in preclinical NB, they were 

also tested in combination with chemotherapy. AZ64 and 

GNF-4256 were evaluated in combination with irinotecan/

temozolomide (I/T) in xenograft models that express 

TRKB.71,76 In both studies, the TRK inhibitor in combination 

with I/T led to decreased tumor growth and prolonged survival 

rates compared to single-agent TRK inhibition.71,76 Similarly, 

lestaurtinib led to improved antitumor efficacy in xenografts 

when administered in combination with C/T or with I/T.130 

These studies suggest that inhibition of TRKB may be an 

important adjunct to conventional chemotherapy.

Clinical trials
While there are multiple preclinical reports of effective 

TRK inhibitors in NB, there are few agents in clinical trials. 

Neither GNF-4256 nor AZ64 was pursued for further 
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development.67 Lestaurtinib was evaluated in a Phase I 

NB-specific clinical trial and enrolled 47 patients with 

refractory high-risk NB.77 The most notable adverse effects 

included grade 1/2 transaminitis in 63% of patients with 

dose-limiting transaminitis in four patients and reversible 

pancreatitis in three patients with prolonged drug exposure. 

In all, 26 patients were treated at a dose level of at least 70 

mg/m2, two of whom experienced a PR and nine had an SD 

lasting a median of six cycles.77 This study demonstrated a 

clinical benefit for some of the patients treated at a biologi-

cally effective dose. The lack of significant toxicities and the 

preclinical evidence that lestaurtinib is more effective with 

chemotherapy provided evidence for trials evaluating les-

taurtinib in combination with chemotherapy. Unfortunately, 

further development of lestaurtinib has been halted.

Larotrectinib (LOXO-101, ARRY-470; Loxo Oncol-

ogy, Stamford, CT, USA) is a highly selective inhibitor 

of TRKA/B/C, which was studied preclinically in tumors 

with NTRK fusions and remains in clinical development.132 

Larotrectinib was recently shown to be effective in early 

phase trials of patients (including children) with solid 

tumors who had NTRK fusions.72,133 A total of 55 patients 

with NTRK fusions were enrolled in the combined adult 

and pediatric trial. The overall response rate was 75%, and 

seven patients had a CR and 34 had a PR, with 71% of the 

responses persisting beyond 1 year.72 The pediatric specific 

Phase I study enrolled patients with and without NTRK 

fusions. There were 15 evaluable patients with infantile 

fibrosarcoma, papillary thyroid carcinoma, or other soft 

tissue sarcomas, which had documented NTRK fusions. 

Among the NTRK fusion-positive patients, the objective 

response rate (ORR) was 93% (four CR and 10 PR). The 

study enrolled seven patients without documented NTRK 

fusions including one patient with NB, and all developed 

progressive disease.133 Although there were no responses in 

the patients without NTRK fusions, the number of fusion-

negative patients on the trial was small. The most common 

drug-related adverse effects were transaminitis, hematologic 

toxicities, and vomiting.72,133 In the pediatric-specific study, 

the only DLT was one grade 3 elevation in ALT.133 Addition-

ally, as is seen with other TKIs, 10 patients in the combined 

adult/pediatric study and one patient in the pediatric study 

developed acquired resistance through the development 

of new mutations within the NTRK kinase domain.72,133 

Larotrectinib was effective in treating tumors with NTRK 

fusions, which provided evidence for Phase II clinical trials 

studying larotrectinib in these patients.134,135 However, its role 

in tumors without NTRK fusions, such as NB, is unclear due 

to the small number of patients enrolled.

Entrectinib: a TRKA/B/C, ALK, 
and ROS1 inhibitor in oncologic 
development
Preclinical studies
Entrectinib is an ATP-competitive TKI with activity against 

TRKA, TRKB, TRKC, ALK, and ROS1.68 Entrectinib’s 

activity is specific to the TRK, ALK, and ROS1 targets. 

In vitro proliferation profiling of .200 tumor cell lines 

revealed that entrectinib’s antiproliferative effect was 

limited to cell lines dependent on entrectinib-specific RTK 

targets only.68 Entrectinib has 10 to 100 times more potency 

in inhibiting ROS1 and is seven to eight times more potent 

against ALK compared to crizotinib, and it is also more 

potent than lestaurtinib.67,68,136 Entrectinib’s ability to inhibit 

both ALK and TRKA/B/C may provide a therapeutic advan-

tage over previous agents with specificity to either ALK or 

TRKA/B/C.

Entrectinib has also been studied in preclinical models of 

NB. To evaluate its ability to inhibit ALK-driven NB, ALK 

wild-type, -amplified, or -mutated cell lines were treated with 

entrectinib.137 Decreased cell proliferation and induction of 

apoptosis occurred in response to entrectinib as measured by 

Ki-67 and activation of caspase-3, respectively. The treated 

cell lines demonstrated decreases in ERK1/2 and STAT3 

phosphorylation, supporting that entrectinib’s antiprolifera-

tive effects are mediated through downstream inhibition of the 

ALK signaling pathway. ALK-amplified cells were the most 

sensitive to entrectinib. Cells with ALK mutations, especially 

F1174L, were less sensitive to entrectinib due to the induc-

tion of autophagy, as measured by microtubule-associated 

protein 1 LC3. This relative resistance was abrogated when 

entrectinib was studied in combination with chloroquine, 

an inhibitor of autophagy. NB cells with F1174L mutations 

treated with entrectinib and chloroquine had greater growth 

inhibition compared to either agent alone, suggesting that 

this combination may lead to improved efficacy of the drug 

in ALK-mutated tumors.137

NB cell lines with the ALK F1174L mutation, and thereby 

resistant to entrectinib, were transduced to express TRKB.67 

When entrectinib in increasing doses was applied to these 

transduced cells, there was decreased TRKB phosphoryla-

tion and cell viability suggesting that the effect was related 

to TRKB inhibition. Similarly, in xenograft models with the 

same ALK F1174 TRKB-transfected cell line, entrectinib 

therapy led to decreased tumor growth and improved survival 

compared to animals that were not treated. In the same in vitro 

model, combination treatment with chemotherapy resulted 

in increased growth inhibition compared to entrectinib or 
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I/T alone. Furthermore, entrectinib in combination with I/T 

resulted in decreased tumor growth and improved xenograft 

survival compared to either regimen alone.67 These studies 

suggest that TRKB inhibition by entrectinib may provide a 

therapeutic benefit in NB, particularly when used in combi-

nation with chemotherapy.

Clinical trials
Entrectinib has been evaluated in two adult Phase I clinical 

trials, STARTRK-1 and ALKA-372-001, for patients with 

refractory or metastatic solid tumors and molecular altera-

tions or rearrangements involving NTRK1, NTRK2, NTRK3, 

ROS1, or ALK. A total of 119 adult patients with advanced 

solid tumors were enrolled in these studies: 54 patients 

in ALKA-372-001 and 65 patients in STARTRK-1. The 

majority of patients had NSCLC (60%), and 15% had cancers 

of the GI tract. The drug was well tolerated, and the most 

common side effects were fatigue, dysgeusia, paresthesias, 

nausea, and myalgias. The majority of adverse events were 

grade 1 or 2, and all were reversible with dose modification. 

At the dose of 800 mg daily, there were three patients with 

DLTs: grade 3 cognitive disturbances, grade 3 fatigue, and 

grade 4 eosinophilic myocarditis. All the grade 3 and higher 

AEs resolved when the drug was held. The maximum toler-

ated dose was determined to be 600 mg daily and was the 

recommended Phase II dose (RP2D).73

A sub-analysis was performed on the patients with 

NTRK1/2/3, ROS1, or ALK fusions who were inhibitor naïve 

and received the RP2D. Of the 119 patients treated in the 

Phase I trials, 25 patients met these criteria and were evaluable 

for disease response. The ORR, those with PR or CR, was 

79%. Responses were observed in patients with NSCLC, 

colorectal cancer, mammary analog secretory carcinoma, 

melanoma, and renal cell carcinoma.73 When responses were 

analyzed by the type of fusion, the response rate in each 

group remained high. Three patients had NTRK1/2/3 rear-

rangements. This cohort’s ORR was 100%. The 14 patients 

with ROS1 rearrangements had an ORR of 86% and included 

two patients with a CR. Patients with ALK-rearranged 

tumors had an ORR of 57% (n=7). The longest duration of 

response was 32 months in a patient with ROS1-rearranged 

lung cancer who remained on therapy at the time of study 

completion. Entrectinib also demonstrated antitumor activ-

ity within the CNS with five of eight (63%) patients with 

CNS disease having an objective response. This included 

one patient with a NTRK1 rearrangement who had a CR 

within the brain and an ongoing response at 15 months.73 

These results demonstrate that entrectinib is well tolerated 

and may be beneficial in inhibitor-naïve patients with ALK, 

TRKA/B/C, and ROS1 fusions and patients with CNS 

involvement. However, there are two reports of acquired 

resistance to entrectinib.138,139 The first was a patient with 

mammary analog secretory carcinoma who had a NTRK3 

fusion and developed a secondary NTRK3 mutation at G623R 

after treatment with entrectinib.138 The second was a patient 

with colorectal cancer who had a NTRK1 rearrangement and 

developed 2 NTRK1 point mutations at G595R and G667C 

following progression on entrectinib.139

While the responses were favorable in individuals with 

NTRK1/2/3, ROS1, and ALK translocations who had not previ-

ously received therapies targeting those molecular alterations, 

there were no responses in 25 patients with ROS1 or ALK 

translocations who had been previously treated with ROS1 or 

ALK inhibitors.73 This suggests that entrectinib was unable to 

overcome acquired resistance to other inhibitors and that this 

agent may be most effective when used upfront. Additionally, 

there was only one response in the other 59 patients who did 

not have a fusion. Notably, this response was in a patient with 

NB with the ALK F1245V mutation. This individual had a 

PR that lasted 8.3 months and was continued on the drug for 

3.5 years due to a clinical benefit. Although only one patient 

without a fusion protein who had a response, it suggests that 

entrectinib may have some clinical efficacy against certain 

ALK mutations in NB.73

As a result of the favorable responses in the Phase I studies, 

entrectinib was granted US Food and Drug Administration 

(FDA) orphan drug designation for the treatment of TRKA/

B/C, ALK, or ROS1 positive colorectal cancer, NSCLC, 

and NB.140 The Phase I adult trial also provided evidence 

for expanding further clinical studies evaluating entrectinib. 

STARTRK-2 is a global, multicenter, Phase II basket study 

for patients with NTRK1/2/3-, ROS1-, and ALK- rearranged 

cancers and is currently enrolling patients.78 There is also 

an open pediatric Phase I (RXDX-101-03) trial for children 

with refractory solid tumors and CNS tumors.141 The pediatric 

study includes both patients with and without NTRK1/2/3, 

ROS1, and ALK fusions or alterations. In an interim report 

from this study, there were 16 patients enrolled and 15 were 

evaluable, including 10 patients with NB, two with IMT, 

one with salivary gland adenocarcinoma, one with synovial 

sarcoma, and one with infantile fibrosarcoma.142 There were 

three DLTs reported. One was a grade 2 increase in creatinine 

for .7 days in one of the six patients at the 550 mg/m2 dose 

level. Two of the three patients at the 750 mg/m2 dose level 

had DLTs, one had grade 2 dysgeusia/fatigue .7 days and the 

other had grade 3 pulmonary edema. As a result, the RP2D 
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was defined as 550 mg/m2. There were three fusion-positive 

patients (two IMT and one infantile fibrosarcoma) enrolled to 

date, and all demonstrated an objective response and continue 

on protocol therapy. The genetic alterations in the two IMT 

patients were ALK (DCTN1–ALK) or ROS1 (TFG–ROS1) 

translocations, and the patient with infantile fibrosarcoma had 

a TRKC (ETV6–NTRK3) translocation. The responses of the 

other patients were not reported, although there is one patient 

with NB who continues on protocol therapy.142 Although the 

outcome of the other nine NB patients has not been reported, 

the NB patient with an ongoing response suggests that there 

may be some efficacy of entrectinib in NB.

Conclusion
Both ALK and TRK play important roles in the pathogen-

esis of NB and are associated with aggressive disease and 

decreased survival. Inhibition of either ALK or TRK has been 

evaluated as a potential treatment for NB, and several agents 

demonstrated preclinical efficacy. However, relatively few 

NB patients have been treated with these agents in clinical 

trials and there has been limited efficacy. Furthermore, the 

ALK inhibitors tested in NB (crizotinib, ceritinib, alectinib, 

lorlatinib) do not inhibit TRKA/B/C, and similarly, the 

TRK inhibitors (CEP-751, AZ64, GNF-4256, lestaurtinib, 

larotrectinib) do not inhibit ALK (Table 2). Entrectinib is 

the first TKI that is highly selective for both ALK and TRK 

A/B/C and has increased potency compared to other ALK 

and TRK inhibitors and has demonstrated some preclinical 

efficacy in NB models.

This ability to potently inhibit dual pathways that may 

be activated in NB suggests entrectinib may have improved 

efficacy compared to other targeted inhibitors previously 

evaluated in NB. Treatment with entrectinib in ALK wild-

type and ALK-amplified NB cells in vitro resulted in growth 

inhibition although ALK-mutated cells were generally less 

sensitive and the F1174L-mutated cells were resistant. The 

ability of entrectinib to inhibit TRKB in NB was also evalu-

ated. Interestingly, entrectinib was effective in a NB model 

with the F1174L ALK mutation that also expresses TRKB. 

This suggests that entrectinib’s ability to inhibit TRKB 

may be sufficient to overcome resistance due to the F1174L 

ALK mutation. However, this requires further validation in 

preclinical studies. TRKB and TRKC expression are also 

important in the pathogenesis of NB and are seen in indi-

viduals with a low-risk disease, but entrectinib has not been 

studied in this setting.

Early preclinical data suggest that entrectinib may be 

most effective in combination with other therapies that may 

incorporate well into the current paradigm of multimodal 

therapy for high-risk NB. Further clinical trials evaluating 

entrectinib in combination with either chloroquine or with 

more standard cytotoxic chemotherapy are needed to confirm 

Table 2 ALK and TRK inhibitors under investigation for NB

Drug name Company Targets Status

Crizotinib (Xalkori®) Pfizer, Inc. ALK (first generation), MET, ROS1 Approved

• ALK- and ROS1-rearranged 

NSCLC

Ceritinib (Zykadia®) Novartis international AG ALK (second generation), iGF-1R143 Approved

• ALK-positive NSCLC

Alectinib (Alecensa®) Chugai Pharmaceutical Co. ALK (second generation), ReT Approved

• ALK-positive NSCLC

Lorlatinib

• PF-6463922

Pfizer, Inc. ALK (third generation), ROS1 Clinical

• Phase iii

CeP-751

• KT-6587

Cephalon, inc. TRKA/B/C, PDGFR, eGFR, PKC Preclinical

• No longer under investigation

AZ64 AstraZeneca, inc. TRKA/B/C Preclinical

• No longer under investigation

GNF-4256 Genomics institute of the 

Novartis Research Foundation

TRKA/B/C Preclinical

• No longer under investigation

Lestaurtinib

• CeP-701

Teva Pharmaceutical 

industries Ltd

TRKA/B/C, JAK2, Flt3 Clinical

• No longer under investigation

Larotrectinib

• LOXO-101, ARRY-470

Loxo Oncology, inc. TRKA/B/C Clinical

• Phase ii

Entrectinib

• RXDX-101, NMS-E628, NMS-01191372

ignyta, inc. TRKA/B/C, ALK, ROS1 Clinical

• Phase ii

Note: Drugs approved or those that remain under investigation are highlighted in bold.

Abbreviation: NB, neuroblastoma.
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the utility of this regimen. If combination therapy proves 

effective, this could be used to improve outcomes for the 

50% of patients who currently do not respond or relapse. 

Moreover, if the combination of chloroquine and entrectinib 

is effective, this could be particularly appealing, as it might be 

able to decrease or limit the use of cytotoxic chemotherapy, 

which current therapy relies on heavily.

While there is intriguing preclinical evidence for the use 

of entrectinib in the treatment of NB, particularly in patients 

with TRK, ALK and ROS1 alterations, the clinical efficacy in 

NB remains under investigation. As ALK expression/muta-

tions and TRKB expression are associated with a high-risk 

disease and poor outcomes in NB, this agent is particularly 

exciting to consider as a potential treatment option. In the 

published Phase I clinical trials, there were relatively few 

patients with NB, and there is only one report of an individual 

with NB who had a PR to entrectinib. The ongoing pediatric 

phase I trial will provide necessary additional information 

regarding the efficacy as a single agent in this population. 

Additional clinical studies are needed, both as a single agent 

and in combination, to determine whether this is a beneficial 

and tolerable therapy for NB and which subset of patients is 

most likely to benefit.
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