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Entropic and Near-Field 
Improvements of Thermoradiative 
Cells
Wei-Chun Hsu, Jonathan K. Tong, Bolin Liao, Yi Huang, Svetlana V. Boriskina & Gang Chen

A p-n junction maintained at above ambient temperature can work as a heat engine, converting some 

of the supplied heat into electricity and rejecting entropy by interband emission. Such thermoradiative 

cells have potential to harvest low-grade heat into electricity. By analyzing the entropy content of 

different spectral components of thermal radiation, we identify an approach to increase the efficiency 
of thermoradiative cells via spectrally selecting long-wavelength photons for radiative exchange. 

Furthermore, we predict that the near-field photon extraction by coupling photons generated from 
interband electronic transition to phonon polariton modes on the surface of a heat sink can increase 

the conversion efficiency as well as the power generation density, providing more opportunities to 
efficiently utilize terrestrial emission for clean energy. An ideal InSb thermoradiative cell can achieve a 
maximum efficiency and power density up to 20.4% and 327 Wm−2, respectively, between a hot source 

at 500 K and a cold sink at 300 K. However, sub-bandgap and non-radiative losses will significantly 
degrade the cell performance.

Low-grade heat is omnipresent in industrial processes, vehicular engines, and power electronics1,2. Many technol-
ogies such as solid-state thermoelectric energy conversion3–5, organic Rankine cycles1,6, and thermally regenera-
tive electrochemical cycle7,8 are pursued to harvest energy from low temperature heat sources. Semiconductor p-n 
junctions, on the other hand, have been used to harvest photons from high temperature heat sources to generate 
electricity, such as photovoltaic (PV) and thermophotovoltaic devices9–15. In these devices, photons from exter-
nal heat source enter the devices to generate electron-hole pairs and carry in entropy. Entropy of the incoming 
photons and entropy generated in the energy conversion process will be carried away by photons emitted during 
radiative recombination and via heat rejected to the environment.

Recently, the potential of using a p-n junction directly as a heat engine, coupling heat into the p-n junction 
by conductive or convective heat transfer from a heat source and rejecting the entropy via thermal radiation, has 
been explored for harvesting low temperature heat sources. �eoretical limit of such a thermoradiative (TR) cell 
was analyzed using the Shockley-Queisser framework established for photovoltaic devices16. �is potential was 
demonstrated experimentally by Santhanam and Fan17, although the achieved e�ciency was low.

To improve the e�ciency of such devices, understanding the working principle of a thermoradiative cell is 
required. We �rst start by reviewing the operation of a conventional PV cell. When a PV cell is illuminated by a 
hot source, such as the sun, the p-n junction of the cell is driven out of equilibrium due to the radiative generation 
of excess electrons and holes. As shown in Fig. 1a, these excess electrons and holes �ow towards the contacts 
on the n-type and p-type semiconductors, respectively. Under the open-circuit condition, the excess electrons 
raise the electron quasi-Fermi level in the n-type region and the excess holes lower the hole quasi-Fermi level 
in the p-type region. �is leads to a quasi-Fermi level splitting, equivalently a positive open circuit voltage con-
�guration in the p-n junction. When connected to a load, a negative current, which is opposite to an externally 
forward-biased diode, �ows to the external load and leads to power generation. Hence, a PV cell works in the 
fourth quadrant in power generation mode while a forward-biased diode works in the �rst quadrant.

In contrast, a thermoradiative cell is heated up to a higher-than-environment temperature by a heat source. 
�ermally excited electrons in the n-type region and holes in the p-type region di�use towards the space charge 
region and recombine radiatively. If the radiative recombination rate is faster than the radiative generation rate, 
more photons will be emitted from the cell than it receives from the ambient, resulting in a negative open-circuit 
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voltage condition where a quasi-Fermi level di�erence is established in the p-n junction (Fig. 1b). When a load 
is connected externally, electrons �ow into the n-type region and holes �ow into the p-type region. In this power 
generation mode, the TR cell works in the second quadrant, while an externally reversely-biased diode works in 
the third quadrant (Fig.1c).

�ermoradiative cell, as a heat engine, also needs to reject entropy carried in from the heat source as well as 
entropy generated in the device due to irreversible processes. To reject entropy to the environment, a thermoradi-
ative cell relies on the out-going photons from thermal emission. �e idea of using photons to reject heat of a heat 
engine is recently explored by Byrnes et al.18. aiming at using outer space as the heat sink, and a thermoradiative 
cell can be a candidate for this approach.

Since thermoradiative cells rely on photons to carry out entropy, an understanding of photon entropy �ux is 
important. In this paper, we start with an entropy analysis of photon �ux. Guided by the analysis, we evaluate the 
performance of the TR cell with a spectrally-selective surface to demonstrate the device e�ciency enhancement 
when the cell emissive spectrum is chosen to be narrow and centered at low frequencies. However, the increased 
device e�ciency is accompanied by the reduction of its power density. �is is a common dilemma for any energy 
converter, from the ideal Carnot engine19 to photovoltaics9, thermoelectrics20, or thermophotovoltaics9–11. To 
overcome this dilemma, we propose engineering radiative energy transfer between the thermally emissive engine 
and the heat sink via coupling the generated electron-hole pairs to phonon polariton in the near-�eld21,22. �e 
near-�eld coupling enables both narrow-band emission and a high enhancement of radiative energy transfer. �e 
enhancement factor can be orders of magnitude higher than that of the far-�eld thermal emission21–23.

Results
Entropy Analysis of Photon Radiation. A heat engine using radiation to reject entropy such as a ther-
moradiative cell16–18 has its e�ciency bounded by the Carnot limit 1 −  Tc/Th due to the entropy generation caused 
by the imbalance of entropy �ux between the heat conduction input, thermal emission, and light absorption from 
the environment. �e origin of this imbalance is in the di�erent amounts of entropy �ux per unit energy in the 
processes of heat conduction (S/E =  T−1) and thermal radiation (S/E =  4/3T−1, for the blackbody emitter)24–26. 
�e study of the entropy of photons have a long history24–27 and is well summarized in the book of Green9. To 
reveal the fundamental di�erences in the entropy content between radiation and heat conduction, the frequency 
dependence of entropy �ux per unit energy is plotted in Fig. 2b by using the following expressions for the spectral 
energy and entropy �uxes of radiation, respectively25,26,28:
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Figure 1. (a) �e band diagrams and (b) current-voltage curves of photovoltaic (PV) cells and thermoradiative 
(TR) cells. For a PV cell, excess electrons and holes generated radiatively by the sunlight will �ow toward the 
contacts on the n-type and p-type semiconductors, respectively, resulting in a negative current in the load for 
power generation. On the contrary, in a TR cell, the thermally excited electrons and holes originating from non-
radiative processes �ow oppositely so that a positive current will �ow to load and generate electricity.
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 is the photon distribution func-

tion, ħ is the Planck constant, kB is the Boltzmann constant, n is the ambient refractive index, ω is the frequency 
of photons, θ and φ are the polar angle and azimuthal angle in the spherical coordinates respectively, and 
µ =  Efe −  E� is the chemical potential of emitted photons. It should be noted that the chemical potential can be 
established when electrons and holes reach quasi-equilibrium among themselves to form quasi-Fermi levels for 
the electrons (Efe) and holes (E�)25,27. �e entropy �ux per unit energy is normalized to the heat conduction limit 
(S/E =  T−1), which is plotted as the black dotted line. �e total (integrated over the whole frequency spectrum and 
angular range) normalized entropy content of the blackbody radiation equals 4/3, and is shown as the black 
dash-dot line.

Figure 2b provides a clue to increasing the converter e�ciency via judicious choice of the channels to deliver 
the energy to the engine and to dump the excessive entropy to the environment. Heat conduction or high fre-
quency radiation carry the lowest entropy content per unit energy, and thus are the most favorable forms of 
energy for the engine input. As work (W) carries zero entropy, the excessive entropy must be rejected to the heat 
sink. As illustrated in Fig. 2b, the best form of energy to maximize the entropy removal from the engine is 
low-frequency emission, which is characterized by the high entropy �ux per unit energy. To verify this observa-
tion, we calculated the upper limit or the second law e�ciency (η2nd) for an engine, as shown in Fig. 2a, using heat 
conduction as the energy input channel (with the entropy content =

−S E T/H H H
1) and the thermal emission with 

a frequency-selective surface as entropy-dumping channel (with the entropy content (Se −  Sc)/(Ee −  Ec)) under the 
best scenario where no entropy is generated in the engine (Sgen =  0).
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It is known that entropy can be generated during emission and absorption processes9. �is entropy generation, 
however, is not intrinsic and depends on the speci�c process. For example, the entropy generation can be reduced 
when the emitted photons acquire a chemical potential and vanishes when an ideal in�nite junction solar cell 
works at open circuit condition9. As shown in Fig. 2b, the selective surface only allows emission within a narrow 
spectral window with a bandwidth of ∆ ħω  and completely blocks emission of photons outside this window (i.e., 
ε(ħω) =  1 within the window and ε(ħω) =  0 elsewhere, as schematically illustrated in Fig. 2b). �e engine e�-
ciency is plotted with varying lower bounds (ħωc) of the band pass window. Given ∆ ħω  =  0.01 eV and Sgen =  0, 

Figure 2. �e thermally emissive engine. (a) �e thermally emissive engine shows that the engine harvests 
energy (EH) and entropy (SH) via heat conduction from the hot side at temperature of TH to generate power 
(W), and the entropy is rejected through thermal emission (Ee and Se) from the engine at temperature Te. �e 
cold environment is at temperature of Tc. (b) �e ratio of the spectral entropy �ux to the energy �ux reveals the 
entropy content per unit energy at various emissive temperatures and di�erent photon energies. A band-pass 
selective surface with a width of the transparency window of ∆ ħω  is implanted to select the emissive photons. 
(c) Implanting a band-pass selective surface with a width of the transparency window of ∆ ħω  =  0.01 eV, the 
e�ciency increases when the low-frequency photons are selected for emission under the best scenario where 
no entropy is generated in the engine (Sgen =  0). ħωc is the le� bound of the band pass window. �e input energy 
supplied in the form of heat conduction has entropy content of SH =  EH/TH.
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Fig. 2c clearly shows that the second law e�ciency can be enhanced when photon emission is selected to radiate 
out at low frequency.

Principle of the thermoradiative cell. As shown Fig. 1, a thermoradiative cell is thermally driven out 
of equilibrium, generating a reverse-bias condition due to emitting more photons than received from the envi-
ronment so that the electrons and holes are collected by contacts on the p-type and n-type semiconductors, 
respectively. When an external load is connected to the TR cell, the thermally excited electrons and holes �ow 
from n-type and p-type regions, respectively, and contribute to the current (I). �e power (W =  − µI) can then be 
generated by the TR cell at a given temperature and calculated from the equation of current (I) continuity using 
the following expression16:

µ µ= −I q N Te N Tc( ) [ ( , ) ( , 0)] (4)
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where chemical potential of photons (µ =  Efe −  E� <  0)27. �e TR cell e�ciency (η ) can then be calculated as 
η  =  W/Eh, where ∫ ω ω=

∞
E E d( )h E g

 and E(ω) is integrated using Eq. (1).

We used Eqs (1–5) to calculate the characteristics of a TR cell with a band gap (Eg) of 0.1 eV, the cell temper-
ature TH =  500 K, and the ambient temperature TC =  300 K. �e e�ciency and the power density (black dotted 
line in Fig. 3a) are shown for various chemical potentials of the TR cell, under the assumption that the emission 
only occurs as a result of the interband radiative recombination process. �e TR cell emission spectra at di�erent 
temperatures and voltages for this situation are plotted in Fig. 3b. �e resulting device e�ciency (Fig. 3a) has been 
previously de�ned by Strandberg16 as the TR cell limit. By comparing the curves in Fig. 3a, we can observe that 
the maximum e�ciency point (MEP) does not correspond to the same value of the chemical potential as the max-
imum power density point (MPP) due to the reason that the energy input of heat conduction also adjusts under 

Figure 3. �e performance of a thermoradiative cell with a band gap of 0.1 eV operating between a heat 
source at 500 K and a cold environment at 300 K. (a) E�ciencies and power densities of the TR cell are 
calculated as a function of various negative voltage and for three selected widths of the emission spectral 
window: ∆ ħω  =  ∞ , ∆ ħω  =  0.1 eV, and ∆ ħω  =  0.01 eV. (b) Schematics of the narrowband spectral windows of 
the TR cell are shown overlapping with the emission spectra, and the emissive spectra are also calculated for 
varying cell temperatures and voltages. (c) Heat conduction input and (d) entropy generation are also calculated 
under the same operating conditions.
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di�erent voltages as shown in Fig. 3c. In particular, the maximum e�ciency is achieved when the power density 
is decreasing. Furthermore, the maximum TR cell e�ciency is far below the Carnot e�ciency limit 1 −  Tc/Th.

As we predicted based on the entropy analysis illustrated in Fig. 2a, the TR cell e�ciency can be enhanced 
in the situation when its emission is highly spectrally selected to be narrowband and dominated by low fre-
quency photons. Figure 3a also shows the calculated results when the emission window of a TR cell are limited to  
∆ ħω  =  0.1 eV and ∆ ħω  =  0.01 eV above the band gap. We used these spectral windows to calculate characteristics 
of the TR cell with the spectrally-selective emission. Our data show that when low frequency photons dominate 
the emission spectrum, the maximum e�ciency is increased and close to the 1 −  Tc/Th Carnot limit (red dashed 
line and blue solid line in Fig. 3a). However, the maximum power density generated by the cell with the narrow-
band frequency-selective emittance decreases as the spectral window width is reduced (red dashed line and blue 
solid lines in Fig. 3a), resulting in the lower entropy generation as shown in Fig. 3d.

Based on the comparison between the e�ciency and power density curves in Fig. 3a, we can better quan-
tify the TR cell performance by replotting these two values together, as shown in Fig. 4. �e power-e�ciency 
curves begin at origin under zero chemical potential, corresponding to short circuit condition. When a load is 
connected, a negative voltage is biased on the load. As the magnitude of the voltage increases, the power density 
�rst increases and approaches the maximum power density point. Upon passing this point, the power starts to 
decrease but the e�ciency keeps increasing until it reaches the maximum e�ciency value. Finally, the curve folds 
and returns back to the origin due to a decreasing current. For the widths of the emission spectral window of  
∆ ħω  =  ∞ , ∆ ħω  =  0.1 eV, and ∆ ħω  =  0.01 eV, the power-e�ciency curves are shown in Fig. 4 as black dashed 
line, red narrow solid line, and blue solid line, respectively. �e maximum e�ciency can be clearly observed to be 
increasing with the shrinking spectral width of the emission window, but the power density is reduced.

�e drop of power density stems from the reduced amount of emitted photons through a narrowband radia-
tive channel. �is imposes a limitation on the performance of the TR cell, when its thermal emission operates in 
the far �eld. However, it has already been demonstrated both theoretically10,29 and experimentally21,22 that the 
radiative power �ux can be increased within a narrow spectral range by orders of magnitude if the emitter and the 
heat sink are electromagnetically coupled at a small gap distance through the near-�eld. To roughly estimate the 
e�ect of such enhancement, we introduced an enhancement factor (β ) to emulate the near-�eld radiation within 
a narrow spectral window of ∆ ħω  (i.e.,  βε ω ω ω µ ω ε ω= ∆ ω =

π
E D f T( ) ( ) ( , , ) ; ( ) 0

c

4
 outside the emission 

window). �e expressions for the �rst and second law in Fig. 2a can then be modi�ed as:
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�e power-e�ciency curves for a TR cell with enhancement factors β  =  15 and β  =  30, restricted by the emis-
sion spectral window width ∆ ħω  =  0.01 eV and operating at temperature Te =  500 K, are shown as blue dotted 
line and blue dash-dot lines in Fig. 4. Comparison of the curve for the same cell without near-�eld enhancement 
(β  =  1, solid blue line in Fig. 4) reveals opportunities to operate TR cells at high e�ciency and high power density 
simultaneously.

Near-field thin-film thermoradiative cell. To further test our hypothesis, we built a detailed numerical 
model of a near-�eld enhanced TR cell. �e near-�eld enhanced TR system consists of a thin-�lm TR cell and 
a semi-in�nite radiation extractor (heat sink), which exchange radiative energy through a narrow vacuum gap. 
�e choice of a thin-�lm TR cell stems from minimizing the electronic loss through the non-radiative processes, 

Figure 4. �e power-e�ciency curve of a thermoradiative cell with the band gap of 0.1 eV operating 
between a heat source at 500 K and a cold environment at 300 K. Power-e�ciency curves reveal the trends of 
operating e�ciencies and power densities. Blue dotted line and blue dash-dot line illustrate hypothetical power-
e�ciency loop if the emission to cold sink can be enhanced by a factor β . Such enhancements are possible for 
near-�eld TR cells.
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which will be discussed later, and the optical constants including InSb and CaCO3 and thickness-dependent 
results are shown in the supplementary material31–34. In order to utilize the enhanced and narrow-band near-�eld 
radiative energy transfer between the TR cell and the heat sink, the gap distance (g) should be on the order 
of or smaller than the dominant emission wavelength10,21,22,30. �e submicron gap distance can enable e�cient 
coupling of photons generated by the radiative recombination process in the TR cell with the phonon polariton 
on the surface of the radiation extractor (i.e., heat sink). Typically, phonon polariton modes have resonant fre-
quencies below 0.2 eV, e.g., 0.186 eV (~6.7 µ m) for CaCO3 and 0.138 eV (~9 µ m) for SiO2

21,30. On the other hand, 
InSb with a band gap of 0.17 eV at room temperature32 is a semiconductor material commonly used to make 
narrow-gap PV cells and infrared detectors33,34. �e phonon polariton mode of CaCO3 has resonant frequency 
slightly higher than the band gap of InSb. It allows the phonon polariton coupling to electrons through the inter-
band transition to direct extract the luminescent emission, making CaCO3 material a good candidate for the 
narrow-band near-�eld radiative extractor. Other materials are also possible to be used as near-�eld radiative 
extractors, including materials supporting surface plasmons polaritons35.

To compare the performance of TR cells under various scenarios of radiative energy extraction, we calculate 
the power-e�ciency curves for several systems, including: (i) the InSb thin �lm cell (Fig. 5a), (ii) the InSb thin 
�lm with a spectrally-selective surface (Fig. 5b), and (iii) the InSb thin �lm with the adjacent CaCO3 acting as 
the near-�eld radiative extractor (Fig. 5c). First, we calculate an ultimate limit of the device e�ciency and power 
density assuming that the radiative process through the interband transitions is the only mechanism of radiative 
energy extraction (ideal case). Such an assumption corresponds to the celebrated Shockley-Queisser e�ciency 
limit for photovoltaic cells36. In Fig. 5d, the limiting power-e�ciency curves are compared for the three systems. 
�e energy carried away from the cell by photons with frequencies below the band gap energy (sub-bandgap loss) 
and the non-radiative generation of free carriers via Auger, Shockley-Read-Hall, and surface defect processes 
(non-radiative loss) are the two major loss mechanisms in a realistic system, and their impacts on the device per-
formance will be discussed later.

First, to calculate the emission spectrum of a 50-nm-thick InSb thin �lm (Fig. 5a), which is close to the optimal 
thickness for each of the three con�gurations (see the thickness dependent results in the supplementary material), 
we used the transfer matrix method37 to rigorously solve Maxwell equations to �nd the surface emittance, ε(ω). 

Figure 5. �e performance of the 50-nm-thick InSb TR cells operating between a hot source at 500 K and a 
cold environment at 300 K, calculated for various scenarios of the radiative energy extraction. �e emission 
spectra for the three scenarios, including (a) a far-field emission from a thin-film InSb cell, (b) a far-field 
narrowband (∆ ħω  =  0.01 eV) emission from a thin-film InSb cell with a selective surface (surf.), and  
(c) a near-field phonon-polariton-enhanced energy transfer from a thin-film InSb to a bulk CaCO3 across 
10 nm and 100 nm-wide vacuum gapS (g). (d) Power-efficiency curves are calculated for the three energy 
extraction scenarios, with the black dash-dot line, the red solid line, and the blue dotted and dashed lines 
representing the systems with the emission spectra shown in (a,b and c), respectively.
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�e TR cell is assumed to have a perfect metal mirror as a backside re�ector. �e emittance was then averaged 
over the total angular range from 0 to 90°, and over the two orthogonal (transverse electric and magnetic) polar-
izations of emitted photons using Eqs (1) and (2). Finally, using Eqs (4) and (5), the power and e�ciency were 
calculated and plotted together as a black solid curve in Fig. 5d. �e emission spectrum of the InSb thin �lm with 
a spectrally-selective surface is plotted in Fig. 5b. It can be seen by comparing Fig. 5a,b that not only the spectrum 
bandwidth but also the peak emission power �ux signi�cantly decreases for the TR cell with the selective sur-
face. As a result, the device current density and power drop, but the e�ciency increases as expected, shi�ing the 
power-e�ciency curve to the region of low power density and high e�ciency (red solid line in Fig. 5d).

The spectrum of the near-field radiative energy transfer from the InSb thin film to a bulk CaCO3 is 
narrow-band and over two orders of magnitude enhanced in intensity over its far-�eld counterpart. Importantly, 
most of the photons contributing to the radiative heat �ux have energy greater than the InSb bandgap energy. As 
such, they can signi�cantly enhance N(Te, µ) in Eq. (4), yielding high current and high power density of the TR 
cell. To calculate the near-�eld energy transfer from a thin �lm to a bulk medium via a narrow gap, a rigorous 
analytical electromagnetic formulation based on Rytov theory is used38. �e thermally emitting object is modeled 
as a volume of �uctuating dipole sources, whose amplitudes are determined via the �uctuation dissipation theo-
rem10,30,38–41. �e detailed formulas can be found in the supplementary material and refs. 10 and 35. To generate 
the plots in Fig. 5c, the radiative energy transfer from a 50-nm-thick InSb thin �lm to a bulk CaCO3 was calcu-
lated for a gap distance (g) of 10 nm. A narrow-band and enhanced radiative energy transfer can be observed, 
peaking at the phonon-polariton resonance wavelength of 6.7 µ m as shown in Fig. 5c. As a result, the TR cell 
power-e�ciency curve extends to the regions of both high power and high e�ciency, which o�ers opportunities 
to e�ciently harvest low-grade heat into electricity.

Although the near-�eld emission of the TR cell, using the coupling of the phonon polariton mode in the 
heat sink, can provide the narrow-band and intensity-enhanced features, it may also introduce additional losses 
into the system, such as sub-bandgap emission losses. �e sub-bandgap emission can also strongly couple to 
phonon-polariton modes in the heat sink, leading to its heating and thus to degrading the e�ciency of the TR sys-
tem. For the case of the near-�eld radiative energy transfer between the InSb cell and CaCO3 extractor, low-energy 
phonon polariton modes with wavelengths of 28 µ m in CaCO3 can contribute to the sub-bandgap losses. �ese 
losses are manifested as additional low-frequency peaks in the near-�eld heat �ux spectrum in Fig. 6a.

�e data in Fig. 6a show that there is a trade-o� between increasing the above-bandgap emission and reducing 
the sub-bandgap losses. �e best coupling con�guration can be found by optimizing the thickness of the TR cell 
and the width of the vacuum gap between the cell and the extractor. We included the sub-bandgap loss mecha-
nism into our near-�eld heat transfer model and calculated the system performance as a function of the vacuum 
gap distance (g) between the TR cell and heat extractor (Fig. 6b,c). We observe that the maximum e�ciencies are 
reduced from the ideal cases when the sub-bandgap losses are taken into account (compare blue plots to brown 
plots in Fig. 6b). However, the corresponding power densities increase as shown in Fig. 6c due to the mismatch of 
the maximum e�ciency point and the maximum power point.

Discussion
Effect of Non-Radiative Losses. Furthermore, realistic models of TR cells should include non-radiative 
losses. �e non-radiative processes (Auger, Shockley-Read-Hall, and surface defects processes) contribute to the 
net free carrier generation in the TR cell and provide an additional loss mechanism in a realistic system. To 
account for the losses due to the Auger and Shockley-Read-Hall (SRH) processes, their rates need to be included 
in current continuity equation42–43:

∇ = − + − + −I q G R q G R q G R[ ] [ ] [ ] (9)rad rad Auger Auger SRH SRH

where q is the elementary charge, the Grad, GAuger, and GSRH are the free carrier generation rates for radiative, Auger, 
and Shockley-Read-Hall processes respectively, and the Rrad, RAuger, and RSRH are the free carrier recombination 
rates for radiative, Auger, and Shockley-Read-Hall processes respectively. Typically, the Shockley-Read-Hall pro-
cess is neglected in InSb due to its slow rate compared to the radiative and Auger processes44–46. To account for 
the surface defect recombination process, the current continuity equation needs to be solved together with the 
Poisson and dri�-di�usion equations to calculate the net free carrier generation rate (see supplementary mate-
rial). A�er incorporating both sub-bandgap and non-radiative losses in InSb into our model, we observe that 
both e�ciencies and power densities drop by orders of magnitude relative to their counterparts for the system 
with only radiative and sub-bandgap losses (compare yellow plots to brown plots in Fig. 6b,c). However, both 
e�ciency and power density increase with the narrowing gap distance (Fig. 6b,c).

To provide guidelines for performance improvement of realistic TR cells, we need to identify the process that 
dominates the net generation of free carriers and contributes to the major energy loss. In Fig. 7a, the net rate of 
the inter-band radiative process and the net generation rates of the Auger and surface defect processes are calcu-
lated for varying gap distances. All rates are increased for smaller gap distances, but the radiative recombination 
rate increases faster than non-radiative generation rate, resulting in the increase of power density and e�ciency. 
Obviously, the Auger process is characterized by a much faster rate than the surface defect process, and thus it 
dominates the energy loss through the free carrier generation. For the InSb, the ratio (m) of the radiative rate to 
the non-radiative rate (including both Auger and surface defect rates), m =  |radiative rate|/|Auger rate +  surface 
defect rate|, is calculated around 2~2.5 at each gap distance. If the suppression of Auger process can be achieved 
in either InSb or another material to improve this ratio to m >  4, the major loss through non-radiative generation 
can be signi�cantly reduced. As a result, the device e�ciency can be increased by more than three orders of mag-
nitude (Fig. 7b). �e ongoing research e�orts to suppress the Auger process using quantum wells47, doping pro�le 
control48, superlattices49, or heterostructures50, can yield performance improvement of TR cells.
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Figure 6. �e e�ect of the sub-bandgap emission and non-radiative recombination losses on the near-�eld 
TR cell performance. �e device is comprised of a 50-nm-thick InSb cell at TH and a bulk CaCO3 extractor 
at TC =  300 K. (a) Net near-�eld energy �ux between InSb and CaCO3. InSb bandgap narrows at elevated 
temperatures, and equals 0.09 eV at 500 K32. �e device (b) e�ciency and (c) power density are calculated at 
varying gap distances, assuming cell operation at maximum e�ciency point. �e blue plots for the ideal cases 
are shown for comparison. �e brown plots include the sub-bandgap loss. �e yellow plots consider both sub-
bandgap and non-radiative losses (due to the Auger and surface defect processes).

Figure 7. Non-radiative losses in a near-�eld TR cell comprised of a 50-nm-thick InSb �lm at TH = 500 K 
and a bulk CaCO3 extractor at TC = 300 K. (a) Net rates of the free carrier generation and recombination due 
to radiative, Auger, and surface defect processes are calculated as a function of the gap distance. The ratio 
(m) of the radiative rate to non-radiative rate in InSb is calculated to be m ≈  2~2.5 in this con�guration for all 
gap distances. (b) Device e�ciency can be enhanced by �ve orders of magnitude provided that this ratio can be 
increased to m >  4.
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Conclusion
To summarize, we predict that the e�ciency of thermoradiative (TR) cells can be dramatically improved if they 
are engineered to selectively emit only low-frequency photons. �is prediction is based on a theoretical analysis 
of the entropy content of high- and low-frequency radiation. Spectral selectivity of far-�eld emission can be 
achieved by introducing a selective surface, which boosts the e�ciency of a TR cell but abate the power density 
due to the reduced emission and a lower radiative recombination rate. �is work show that near-�eld radiative 
energy transfer between the TR cell and the heat sink, which is enhanced by resonant coupling between elec-
tron interband transition on the hot side and phonon polariton modes on the cold side, can simultaneously 
yield both high e�ciency and high power density, o�ering opportunities to e�ciently harvest low-grade heat. 
However, the sub-bandgap radiation losses and the non-radiative losses, especially due to the Auger process, may 
degrade the performance of TR cells signi�cantly. For example, in a realistic system composed of a 50-nm-thick 
InSb TR cell at 500 K and a CaCO3 heat sink at 300 K coupled via a 10nm vacuum gap, the performance of this 
TR system can be improved from 2.4 ×  10−5% and 10−5 Wm−2 (far-�eld) to 0.5% and 45.16 Wm−2 (near-�eld at 
10 nm gap distance). Under this con�guration, the ratio of the radiative rate to the non-radiative rate is calcu-
lated around 2, which causes to signi�cant non-radiative losses. Provided the sub-bandgap radiation loss can 
be eliminated, the performance can further achieve 20.4% and 327 Wm−2 from 2.5% and 161 Wm−2, when the 
nonradiative-to-radiative ratio is improved from 2 to 15.3.
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