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Abstract. We consider non-linear evolution equations arising from mean-field limits
of particle systems on discrete spaces. We investigate a notion of curvature bounds
for these dynamics based on the convexity of the free energy along interpolations
in a discrete transportation distance related to the gradient flow structure of the
dynamics. This notion extends the one for linear Markov chain dynamics studied
in Erbar and Maas (2012). We show that positive curvature bounds entail several
functional inequalities controlling the convergence to equilibrium of the dynamics.
We establish explicit curvature bounds for several examples of mean-field limits of
various classical models from statistical mechanics.
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1. Introduction

This work is about longtime behavior for mean-field systems on discrete spaces.
Mean-field equations describe the large-scale limit of interacting particle systems
where the total force exerted on any given particle is the average of the forces exerted
by all other particles on the tagged particle. They are used to describe collective
behavior in many areas of sciences. Examples include the modeling of granular flows
in physics (Benedetto et al., 1997) and collective behavior and self-organization for
groups of animals (Degond et al., 2014; Cattiaux et al., 2018). We refer to Sznitman
(1991) for an introduction to the mathematical theory.

One of the important questions in the mathematical analysis of these equations
is their longtime behavior. In Carrillo et al. (2003), Carrillo, McCann and Villani
obtained quantitative bounds on the rate of convergence to equilibrium for McKean-
Vlasov equations in a continuous setting of the form

∂tρ = ∇ · [ρ∇(S′(ρ) + V +W ∗ ρ)]

under strong convexity assumptions on the potentials S, V and W . The core idea
underlying their method was the fact that the PDE has a gradient flow structure,
i.e. it can be recast as a gradient descent equation ∂tρ = −∇F (ρ) of the free energy
functional F (ρ) =

∫
S(ρ) +

∫
V dρ+

∫
W ∗ ρ dρ in the space of probability measure

with respect to the Kantorovitch-Wasserstein distance W2, which has a formal
Riemannian description via Otto calculus (Otto, 2001; Otto and Villani, 2000). The
use of such structures in the study of longtime behavior comes from the fact that
as soon as the driving functional satisfies some uniform convexity property (with
respect to the particular metric structure), it must decay exponentially fast towards
its minimal value along solutions of the evolution equation. Moreover, we can use
convexity to derive strong functional inequalities relating the distance, the entropy
functional and the entropy dissipation functional (Otto and Villani, 2000).

1.1. Setup and main results. Our main motivation here is to adapt the approach
of Carrillo et al. (2003) to mean-field equations in a discrete setting. We consider
discrete mean-field dynamics of the form

µ̇(t) = µ(t)Q(µ(t)) , (1.1)

where µ is a flow of probability measures on a finite set X and (Q(µ)xy)x,y∈X is a
parametrized collection of Markov kernels. These dynamics naturally arise as scaling
limits of interacting particles systems on graphs where the interaction only depends
on the normalized empirical measure of the system (which indeed corresponds to
mean-field interactions). They generalize linear Markov chains on discrete spaces,
which correspond to the case where Q is a constant Markov kernel, independent of
µ.

While the Wasserstein gradient flow approach works well on continuous spaces,
it fails in the discrete setting, since the Wasserstein L2-transport distance does not
admit any non-trivial absolutely continuous curve. In our previous work Erbar et al.
(2016), we derived a gradient flow structure for (1.1) by replacing the role of the
Wasserstein distance with a distance W constructed via a suitable modification
of the Benamou-Brenier formula for optimal transport, extending similar earlier
results for linear reversible Markov chains obtained in Maas (2011); Mielke (2013);
Chow et al. (2012). Under the condition that the rates Q are Gibbs with a potential
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K : P(X ) × X → R (see Assumption 2.1), i.e. Q(µ) is reversible with respect to a
local Gibbs measure of the form πx(µ) = Z(µ)−1 exp

(
−Hx(µ)

)
, with Hx given in

terms of the potential K, we showed that this dynamic is the gradient flow of the
free energy functional

F(µ) =
∑

x∈X

µx logµx + U(µ), with U(µ) =
∑

z∈X

µzKz(µ), (1.2)

with respect to the distance W on the simplex of probability measures on X , see
Proposition 2.2. This built up on previous works Budhiraja et al. (2015a,b) that
showed that F is indeed a Lyapunov functional for the flow. An archetypical
example, which we shall discuss in some details later on, is the classical Curie-Weiss
model, which corresponds to a mean-field dynamic on a two-point space. Already
this easy model exhibits interesting behavior, such as a phase transition at an
explicit critical value of a temperature parameter.

In the present work, we exploit this gradient flow structure to analyze the
long-term behavior of (1.1) inspired by the approach in Carrillo et al. (2003) by
investigating convexity properties of the free energy along discrete optimal transport
paths for a non-linear Markov triple (X , Q, π) as above. Following the works of Lott,
Villani, and Sturm (Lott and Villani, 2009; Sturm, 2006) for metric measure spaces
and Erbar and Maas (2012); Mielke (2013) for linear Markov chains, we make the
following

Definition 1.1 (Entropic Ricci curvature lower bound). We say that (X , Q, π)
has Ricci curvature bounded below by κ ∈ R (for short Ric(X , Q) ≥ κ) if for any
W-geodesic (µt)t∈[0,1]:

F(µt) ≤ (1 − t)F(µ0) + tF(µ1) −
κ

2
t(1 − t)W(µ0, µ1)2 .

We show, see Theorem 3.7, that Ricci curvature lower bounds can be characterized
in terms of a discrete Bochner-type inequality by deriving the Hessian of F in the
Riemannian structure W , as well as in terms of the Evolution Variational Inequality
EVIκ for the solutions to (1.1):

1

2

d+

dt
W(µt, ν)2 +

κ

2
W(µt, ν)2 ≤ F(ν) − F(µt) .

Further, we show that a positive lower bound on the Ricci curvature entails a
number of functional inequalities that control the convergence to equilibrium of
the mean-field systems. These involve a discrete Fisher information functional
I : P(X ) → [0,∞] given by

I(µ) =
1

2

∑

x,y

Θ(µxQxy(µ), µyQyx(µ)) , Θ(a, b) = (a− b)(log a− log b) ,

which arises from the dissipation of F along solutions to (1.1) as d
dtF(µt) = −I(µt).

One of our main results is the following theorem which can be seen as a discrete
analog of Carrillo et al. (2003, Thm. 2.1).

Theorem 1.2. Assume that Ric(X , Q, π) ≥ λ for some λ > 0. Then the following
hold:

(i) there exists a unique stationary point π∗ for the evolution (1.1), it is the
unique minimizer of F . Let F∗(·) := F(·) − F(π∗);
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(ii) the modified logarithmic Sobolev inequality with constant λ > 0 holds,
i.e. for all µ ∈ P(X ),

F∗(µ) ≤
1

2λ
I(µ) ; MLSI(λ)

(iii) for any solution (µt)t≥0 to (1.1) we have exponential decay of the free energy:

F∗(µt) ≤ e−2λtF∗(µ0) ;

(iv) the entropy-transport inequality with constant λ > 0 holds, i.e. for all
µ ∈ P(X ),

W(µ, π∗) ≤

√

2

λ
F∗(µ) . ET(λ)

1.2. Examples. We establish explicit curvature bounds for several examples of
(relatively simple) mean-field dynamics, such as the Curie-Weiss model, zero-range
mean-field dynamics, and misanthrope processes. We compute a formula for the
second derivative of entropy along geodesics and generalize techniques developed
in Fathi and Maas (2016); Erbar et al. (2017) to the present non-linear situation,
to bound this second derivative. The non-linearity of the dynamic gives rise to
several extra terms when computing the Hessian of the free energy functional, which
complicates the analysis.

In the case of the Curie–Weiss model, we show that a positive lower curvature
bound holds down to the critical temperature, see Section 5.1.

Another particular family of dynamic we shall be interested is when the flux of
particles from some site x to a site y is a function of the particle density at site y,
that is f(cy). In the situation where f is constant, this would correspond to the
scaling limit of independent particles on the complete graph. As in Fathi and Maas
(2016); Erbar et al. (2017), our approach is in some sense perturbative in nature,
and we shall consider rates of the form f(r) = T + g(r), and show that if g is not
too large in some sense, relative to T , then we can derive a rate of convergence
to equilibrium. This is inspired by recent work of Villemonais (2020), who proved
that the N particle system has a positive Ollivier-Ricci (or coarse Ricci) curvature
(another notion of curvature, corresponding to a contraction rate for the Markovian
dynamic) independently of the system size, and hence converges to equilibrium in
L2 distance, via a uniform estimate on the Poincaré constant of the dynamic. Our
approach has the advantage of yielding rates of convergence in relative entropy via
Theorem 1.2, which is a strictly stronger notion of convergence.

1.3. Connection to the literature. The approach of Carrillo et al. (2003) was later
extended to other potentials Carrillo et al. (2006); Bolley et al. (2013). Other
approaches developed later include using uniform convergence estimates for a
stochastic particle approximation Cattiaux et al. (2008) and coupling arguments
Eberle (2016); Eberle et al. (2019). Without convexity, deriving rates of convergence
can be quite delicate, since there may be multiple equilibria Tugaut (2013), unlike
what happens for linear diffusions.

Our approach developed here builds on earlier work Maas (2011); Mielke (2013);
Chow et al. (2012) constructing gradient flow structures for linear Markov chain
dynamics and Erbar and Maas (2012) studying Ricci curvature and its impact on
functional inequalities in this context. It is also related to, but different from the
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one developed in Kraaij (2016), which uses convexity of the entropy along a different
type of paths, the so-called entropic interpolations, rather than geodesic paths, to
establish functional inequalities involving relative entropy. In the continuous setting,
entropic interpolations are regularizations of geodesics in Wasserstein space, but
in the discrete case it seems that the entropic interpolations of Kraaij (2016) are
related to a gradient flow structure different from the one of Erbar et al. (2016) we
use here.

Another approach to convergence to equilibrium for discrete quadratic systems
was developed in Caputo and Sinclair (2018), using decompositions of entropy on
product spaces similar to, but more general than, the classical Shearer inequality
to establish a modified logarithmic Sobolev inequality. The methods in that work
are more combinatorial in nature, while the point of view developed here is more
analytic.

Organization. The plan of the paper is as follows. Section 2 introduces the mathe-
matical framework we shall work in. Section 3 introduces the notion of curvature
bounds in our setting, and contains the computation of the Hessian for general
dynamics. Section 4 investigates the consequences of Ricci curvature bounds in
terms of functional inequalities and convergence to equilibrium for the non-linear
dynamics. Finally, Section 5 investigates curvature bounds for several examples of
mean-field dynamics inspired by classical models of statistical physics.

2. Setup

2.1. Gradient-flow formulation. The main definitions and results from Erbar et al.
(2016) on which this work builds are collected in this section. We consider a finite
space X , and denote by P(X ) (resp. P∗(X )) the space of probability measures on
X (resp. strictly positive probability measures). The gradient flow structure of (1.1)
is based on the existence of a suitable potential, which is ensured by the following
constraint, which we shall assume to hold throughout the article. We recall that a
rate matrix Q of a Markov chain in the continuous-time setting satisfies

∀x 6= y : Qxy ≥ 0 and Qxx = −
∑

y 6=x

Qxy .

Assumption 2.1. Let K : P(X ) × X → R be such that for each x ∈ X ,Kx : P(X ) →
R is a twice continuously differentiable. Let {Q(µ) ∈ R

X ×X }µ∈P(X ) be a family
of rate matrices that is Gibbs with respect to the potential function K, i.e. for each
µ ∈ P(X ), Q(µ) is the rate matrix of an irreducible, reversible ergodic Markov chain
with respect to the probability measure

πx(µ) =
1

Z(µ)
exp
(
−Hx(µ)

)
, (2.1)

with

Hx(µ) =
∂

∂µx
U(µ) and U(µ) =

∑

x∈X

µxKx(µ) . (2.2)

In particular Q(µ) satisfies the detailed balance condition with respect to π(µ), that
is for all x, y ∈ X

πx(µ)Qxy(µ) = πy(µ)Qyx(µ) (2.3)



450 M. Erbar, M. Fathi and A. Schlichting

holds. Moreover, we assume that for each x, y ∈ X the map µ 7→ Qxy(µ) is Lipschitz
continuous over P(X ).

We refer to the triple (X , Q, π) as above for short as a non-linear Markov triple.
The specific form of (2.1) with (2.2) emerges from the detailed balance condition

of an underlying N -particle system, from which the dynamics we are interested arise
in the limit N → ∞ (see Erbar et al., 2016). Associated to a non-linear Markov
triple (X , Q, π) is the non-linear master equation

µ̇(t) = µ(t)Q(µ(t)) , (2.4)

which is the deterministic evolution equation describing the mean-field limit of
the underlying particle system. Based on the above assumption a gradient flow
formulation of (2.4) is established in Erbar et al. (2016, Proposition 2.13) as we
shall briefly recall.

Consider the Onsager operator K[µ] : T ∗
µP(X ) → TµP(X ) given by

K[µ]ψ(x) := −
1

2

∑

y

Λ
(
µxQxy(µ), µyQyx(µ)

)(
ψ(y) − ψ(x)

)
,

where Λ(a, b) =
∫ 1

0
a1−sbs ds = a−b

log a−log b is the logarithmic mean. Here the space
TµP(X ) is the space of signed measures with total mass zero, which should be
interpreted as the tangent space at µ, and T ∗

µP(X ) is the space of functions on X ,
which shall be interpreted as the cotangent space for the metric we shall define as
the domain of the Onsager operator K. Then the master equation can be written in
gradient flow form using the functional F from (1.2):

dµt
dt

= −K[µt]DF(µt) (2.5)

where DF should be understood as the differential of F , given by DF(µ)(x) =
∂µx

F (µ). In other words, (2.4) is the gradient flow of F with respect to the
Riemannian structure on P(X ) induced by the metric tensor K[µ]−1. Since this
Riemannian metric degenerates at the boundary of P(X ) we note the following
characterization in metric terms. We consider the distance function on P(X ) that
is formally induced by the Riemannian metric K[µ]−1, i.e. for µ0, µ1 ∈ P(X ) we set

W(µ0, µ1) := inf
(µ,ψ)∈CE

(∫ 1

0

A(µt, ψt)dt

)1/2

where CE is the set of curves (µt, ψt)t∈[0,1] with t → µt continuous, ψ measurable
and integrable in time, and satisfying the continuity equation

µ̇t = K[µt]ψt (2.6)

in distribution sense, and the action functional A is given by

A(µ, ψ) = 〈ψ,K[µ]ψ〉 =
1

2

∑

x,y

(ψ(y) − ψ(x))2 Λ(µxQxy(µ), µyQyx(µ)). (2.7)

Proposition 2.2 (Gradient flow structure of the mean-field system). Let (X , Q, π)
be a non-linear Markov triple satisfying Assumption 2.1. Then any solution to (2.4)
is a gradient flow of F with respect to the distance W.
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The distance W and the above gradient flow structure are extensions of the discrete
transport distance constructed in Maas (2011) and the gradient flow structure of
linear Markov chains to the non-linear case. See Erbar et al. (2016, Section 2.3) for
more background on the construction of the distance W.

An immediate consequence of the gradient flow formulation (2.5) is the free
energy dissipation relation established in Erbar et al. (2016, Remark 2.14):

F(µt) +

∫ t

0

I(µs) ds = F(µ0) for any t > 0 . (2.8)

Here, the discrete Fisher information or dissipation I : P(X ) → [0,∞] is defined by

I(µ) =







1
2

∑

(x,y)∈Eµ

Θ(µxQxy(µ), µyQyx(µ)) , for µ ∈ P∗(X )

+∞ , else
, (2.9)

with Θ : R+ × R+ → R+ defined by Θ(a, b) = (a− b)(log a− log b) and Eµ the set
of pairs (x, y) such that Qxy(µ) > 0.

In this framework, the Fisher information can be reinterpreted as the squared
modulus of the gradient of the entropy with respect to the discrete transport metric
W, i.e. we have

I(µ) = 〈DF(µ),K[µ]DF(µ)〉 .

2.2. Notation. We use the following notation throughout the paper.
Given a function ψ ∈ R

X we denote by ∇ψ ∈ R
X ×X its discrete gradient, given

by

∇ψxy = ψy − ψx .

For a function Ψ ∈ R
X ×X we denote by ∇ · Ψ its discrete divergence, given by

(∇ · Ψ)x =
1

2

∑

y∈X

Ψxy − Ψyx .

For ψ, φ ∈ R
X and Ψ,Φ ∈ R

X ×X we denote the Euclidean inner products by

〈ψ, φ〉 =
∑

x∈X

ψxφx , 〈Ψ,Φ〉 =
1

2

∑

x,y∈X

ΨxyΦxy .

Then we have the integration by parts formula

〈ψ,∇ · Φ〉 = −〈∇ψ,Φ〉 .

Given two functions Φ,Ψ in R
X ×X , we denote by Φ · Ψ the component-wise product.

Using the shorthand notation Λ(µ)xy := Λ
(
µxQ(µ)xy, µyQ(µ)yx

)
we can thus write

the continuity equation (2.6) and the action functional (2.7) compactly as

µ̇t + ∇ ·
(
Λ(µt) · ∇ψt

)
= 0 , A(µ, ψ) = 〈∇ψ,Λ(µ) · ∇ψ〉 .

We switch freely between notations for the components of functions ψ ∈ R
X ,

Ψ ∈ R
X ×X as ψx,Ψxy or ψ(x),Ψ(x, y) depending on what is more readable in the

presence of other indices, e.g. a time parameter t.
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2.3. Equilibria and qualitative longtime behavior. From the gradient flow formulation,
it is straightforward to obtain the following characterization of stationary states,
which is completely analog to the McKean-Vlasov equation on R

n (Carrillo et al.,
2020, Proposition 2.4 and Corollary 2.5).

Proposition 2.3 (Characterization of stationary points). Let (X , Q, π) be a non-
linear Markov triple satisfying Assumption 2.1. Then, the following statements are
equivalent:

(1) π∗ is a stationary solution to (1.1), that is π∗Q(π∗) = 0.
(2) π∗ is a fixed point of the map µ 7→ π(µ) (2.1), that is π∗ = π(π∗).
(3) π∗ is a critical point of F (1.2) on P(X ).
(4) π∗ is a global minimizer of I (2.9), that is I(µ∗) = 0.

The set of all stationary points π∗ is denoted by Π∗.
Moreover, it holds that Π∗ ⊂ P∗(X ), i.e. each stationary point has strictly

positive density.

Proof : (1)⇔(2): Let π∗Q(π∗) = 0. The rate matrix Q∗ = Q(π∗) is by assumption
the rate matrix of an irreducible reversible Markov chain with unique reversible
measure π(π∗). In particular, it is also the unique stationary solution to π(π∗)Q∗ = 0
and hence π∗ = π(π∗). If π∗ = π(π∗), we calculate using the local detailed balance
condition (2.3) and find

∑

x∈X

π∗
xQxy(π

∗) =
∑

x∈X

πx(π∗)Qxy(π
∗) =

∑

x∈X

πy(π
∗)Qyx(π∗) = 0 ,

since Q is a rate matrix.
(2)⇔(3): Take µ ∈ P∗(X ) and any ν ∈ P(X ). Let µs = (1 − s)µ + sν the

standard linear interpolation. Then, it holds

d

ds
F(µs)

∣
∣
∣
∣
s=0

=
∑

x∈X

(

logµx − 1 + ∂µx
U(µ)

)

(νx − µx) =
∑

x∈X

log
µx

πx(µ)
(νx − µx) ,

where we used the relations (2.1) and (2.2). Now, if µ = π∗ = π(π∗) the right hand
side is zero and hence π∗ a critical point if F . On the other hand, if the right hand
side is zero for all ν ∈ P(X ), it follows that µx = Cπx(µ) for a constant C. Since
µ, π(µ) ∈ P∗(X ), we have that C = 1 and hence critical points are fixed points.

(2)⇔(4): Let π∗ = π∗(π). Since I(µ) ≥ 0 for all µ ∈ P(X ), we immediately find
from the local detailed balance condition (2.3) that I(π∗) = 0. Likewise, any global
minimizer π∗ satisfies by the definition of I that π∗

xQxy(π
∗) = π∗

yQyx(π∗), that is
the local detailed balance condition (2.3). Since again by assumption Q(π∗) has the
unique reversible measure π(π∗), we conclude that π∗ = π∗(π).

Finally, the positivity follows from the definition of π(µ) in (2.1) and the assump-
tions on K implying that H is finite. Hence, π(µ) ∈ P∗(X ) for all µ ∈ P(X ) implies
in particular that π(π∗) = π∗ ∈ P∗(X ). �

Another useful information provided by the gradient flow information is the free
energy dissipation relation (2.8), which immediately shows that F is a Lyapunov
function for the evolution (1.1). By standard theory, we can conclude the following
qualitative longtime behavior.

Proposition 2.4 (Convergence to stationary points). Let Q satisfy Assumption 2.1,
then distP(X )(c(t), Π

∗) → 0 as t → ∞.



Curvature for discrete mean-field dynamics 453

Proof : The proof follows standard arguments from the theory of dynamical systems
(see Teschl, 2012, Section 6).

By Assumption 2.1, Q is Lipschitz on P(X ), which implies by standard well-
posedness for ODEs, that the solutions (µt)t≥0 to (1.1) are globally defined and
generate a semigroup on P(X ). The ω-limit is given by

ω(µ) =
{
ν ∈ P(X ) : µtj → ν for some sequence tj → ∞

}
.

Since P(X ) is compact, each orbit O+(µ0) =
⋃

t≥0 µt for any µ0 ∈ P(X ) is also
compact in P(X ) and the ω-limit is non-empty and quasi-invariant, that is for
ν ∈ ω(µ0) it holds O+(ν) ⊆ ω(µ0). Moreover, again thanks to the compactness of
P(X ) follows for any µ0 ∈ P(X ) that distP(X )(µt, ω(µ0)) → 0 as t → ∞ (see also
Teschl, 2012, Lemma 6.7).

Since the free energy functional F is continuous on P(X ) and monotone along
the flow, it follows that ω(µ0) consists of complete orbits along which F has the
constant value F∞ = limt→∞ F(νt) with ν0 ∈ ω(µ0). By the free energy dissipation
relation (2.8), it follows that for any ν0 ∈ ω(µ0) and any t > 0 we have

F∞ +

∫ t

0

I(νs) ds = F∞

and hence the non-negativity of I and continuity of trajectories imply I(νs) = 0
for all s ∈ [0, t]. Hence, ω(µ0) consists of all states ν such that I(ν) = 0, which by
Proposition 2.3 entails ν ∈ Π∗ and moreover also that ν is a stationary solution
νQ(ν) = 0. �

Our purpose in this work can be summarized as giving sufficient conditions for
which the above statement on convergence to equilibrium can be made quantitative
(but which shall automatically enforce that Π∗ contains a single element).

3. Curvature for non-linear Markov chains

In this section, we introduce a notion Ricci curvature lower bounds for non-linear
Markov chains based on geodesic convexity of the entropy. This generalizes the
notion of curvature for linear Markov chains developed in Erbar and Maas (2012)
inspired by the approach of Lott, Sturm and Villani (Lott and Villani, 2009; Sturm,
2006) to a synthetic notion of lower bounds on Ricci curvature for geodesic metric
measure spaces.

Let (X , Q, π) be a non-linear Markov chain according to Assumption 2.1 and let
F be the associated free energy functional (1.2) and W the associated transport
distance.

Definition 3.1 (Entropic Ricci curvature lower bound). We say that (X , Q, π)
has Ricci curvature bounded below by κ ∈ R (for short Ric(X , Q) ≥ κ) if for any
W-geodesic (µt)t∈[0,1]:

F(µt) ≤ (1 − t)F(µ0) + tF(µ1) −
κ

2
t(1 − t)W(µ0, µ1)2 .

We show that a lower bound on the Ricci curvature can be characterized equiva-
lently by a lower bound on the Hessian of the free energy functional F with respect to
the Riemannian structure on P∗(X ) induced by W , or via an Evolution Variational
Inequality for the non-linear Markov dynamics.
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To this end, we first derive the geodesic equation for the distance W as well as
an expression for the first variation of the free energy.

Lemma 3.2 (Geodesic equation). Let (µt)t∈[0,1] be a constant speed geodesic con-
tained in P∗(X ). Then the unique potential (ψt)t∈[0,1] such that (µ, ψ) ∈ CE solves

ψ̇t(z) +
1

2
∂µ(z)〈∇ψt,Λ(µt) · ∇ψt〉 = 0 ,

or explicitly

ψ̇t(z) +
1

4
∂µ(z)

∑

x,y

(ψt(x) −ψt(y))2Λ
(
µt(x)Q(µt;x, y), µt(y)Q(µt; y, x)

)
= 0 , (3.1)

where ∂µ(z) is the derivative with respect to µ(z).

Remark 3.3. In the case of a linear Markov chain, where Q is independent of µ, the
expression (3.1) simplifies to

ψ̇t(z) +
1

2

∑

y

(ψt(z) − ψt(y))2∂1Λ
(
µt(z)Q(z, y), µt(y)Q(y, z)

)
Q(z, y) = 0 ,

recovering the geodesic equation derived in Erbar and Maas (2012, Prop. 3.4). The
comparison follows by noting that ∂1Λ is 0-homogeneous and thus

∂1Λ
(
µt(z)Q(z, y), µt(y)Q(y, z)

)
= ∂1Λ

(
ρt(z), ρt(y)

)

with ρt(x) = µt(x)/π(x) due to detailed balance.

Proof : Since P∗(X ) is a smooth Riemannian manifold, uniqueness and smoothness
of geodesics imply that the curve µt is smooth, and that there exists a unique (up
to constants) potential ψt such that (µ, ψ) ∈ CE, which achieves the infimum for
the action

A(µ, ψ) =

∫ 1

0

A(µt, ψt) dt , A(µ, ψ) = 〈∇ψ,Λ(µ) · ∇ψ〉 .

Moreover, this minimizing ψ is also a smooth curve. We derive (3.1) as the corre-
sponding Euler–Langrange equation. So let µst ∈ P∗(X ) for s ∈ [−ε, ε] be a smooth
perturbation of µ such that µs0 = µ0 and µs1 = µ1 for all s. Let ψst be the unique
potentials such that (µs, ψs) ∈ CE. Note that ψst is smooth in s and t. Then we
have

d

ds

∣
∣
∣
∣
s=0

A(µs, ψs) = 0 . (3.2)

We compute

d

ds
A(µs, ψs) =

∫ 1

0

2〈∇ψst ,Λ(µst ) · ∂s∇ψ
s
t 〉 + 〈∇ψst , ∂sΛ(µst ) · ∇ψst 〉 dt.

From the continuity equation we infer that for any φ ∈ R
X

〈φ, ∂t∂sµ
s
t 〉 = 〈φ, ∂s∂tµ

s
t 〉 = 〈∇φ,Λ(µst ) · ∂s∇ψ

s
t 〉 + 〈∇φ, ∂sΛ(µst ) · ∇ψst 〉 .

Plugging this into (3.2) for s = 0 and integrating by parts in t yields:

0 =

∫ 1

0

2 〈∂tψt, ∂s|s=0µ
s
t 〉 + 〈∇ψt, ∂s|s=0Λ(µst ) · ∇ψt〉 dt .
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The claim then follows by noting that

〈∇ψt, ∂s|s=0Λ(µst ) · ∇ψt〉

=
∑

z

∂s|s=0µ
s
t (z)

1

2
∂µ(z)

∑

x,y

(ψt(x) − ψt(y))2Λ
(
µt(x)Q(µt;x, y), µt(y)Q(µt; y, x)

)
,

and using that the perturbation ∂sµ
s
t was arbitrary. �

In order to give convenient expressions for the first and second variation of the
free energy F along a geodesic, we introduce the following notation.

We set

Lµψ(x) :=
∑

y

Q(µ;x, y)ψy , L̂µσ(y) :=
∑

x

σxQ(µ;x, y) , (3.3)

and note that 〈Lµψ, σ〉 = 〈L̂µσ, ψ〉, so L̂µ is the adjoint of Lµ. The master equation
(1.1) then reads µ̇t = L̂µt

µt. Note further that we can write

〈ψ,Lµφ〉 = −〈∇ψ,
(
Q(µ)π(µ)

)
· ∇φ〉 ,

where we set
(
Q(µ)π(µ)

)

xy
= Q(µ)xyπ(µ)x, which is symmetric in x, y.

Lemma 3.4 (First variation of the free energy). Let (µ, ψ) ∈ CE be a solution to
the continuity equation. Then it holds

d

dt
F(µt) = −〈µt, Lµt

ψ〉 . (3.4)

Note that when the curve is a solution to the gradient flow equation, one can
check that the right-hand side is indeed the discrete Fisher information, as given by
(2.9).

Proof : Starting from the expression

F(µ) =
∑

x

µ(x) logµ(x) + U(µ) ,

recalling that ∂µx
U(µ) = Hx(µ) = − log πx(µ)− logZ(µ), and setting ρt = µt/π(µt),

we obtain from the continuity equation

d

dt
F(µt) =

∑

x

(

1 − logZ(µt) + logµt(x) − log πx(µ)
)

∂tµt(x) = 〈log ρt, µ̇t〉

= 〈∇ log ρt , Λ(µt) · ∇ψt〉 = −〈µt , Lµt
ψt〉 .

Here, we have also used in the last step that

Λ(µt)(x, y) =
∇ρt(x, y)

∇ log ρt(x, y)
Q(µt;x, y)π(µt)(x) ,

and integrated by parts. �

To give an expression of the second variation of F , we further introduce the
following notation.

Let ∂µz
Q(µ;x, y) denote the partial derivative of Q(·;x, y) with respect to µz.

Then we write

DQ(µ, σ;x, y) :=
∑

z∈X

∂µz
Q(µ;x, y)σz . (3.5)
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Furthermore, let us write

M(µ)∇ψ(x, y) :=
∑

z,w

M(µ; z, w, x, y)∇ψ(z, w) ,where

M(µ; z, w, x, y) := µxΛ(µ)(z, w)
[
∂µz

Q(µ;x, y) − ∂µw
Q(µ;x, y)

]
. (3.6)

Then, we set

∂iΛ(µ)(x, y) = ∂iΛ
(
µxQ(µ;x, y), µyQ(µ; y, x)

)
, i = 1, 2 ,

L̂Λ(µ)(x, y) = ∂1Λ(µ)(x, y)L̂µµ(x)Q(µ;x, y) + ∂2Λ(µ)(x, y)L̂µµ(y)Q(µ; y, x) ,

RΛ(µ)(x, y) = ∂1Λ(µ)(x, y)µ(x)DQ(µ, L̂µµ;x, y)

+ ∂2Λ(µ)(x, y)µ(y)DQ(µ, L̂µµ; y, x) .

Finally, we can define the following quantity:

B(µ, ψ) :=
1

2
〈∇ψ, L̂Λ(µ) · ∇ψ〉 − 〈∇ψ,Λ(µ) · ∇Lµψ〉 (3.7)

+
1

2
〈∇ψ,RΛ(µ) · ∇ψ〉 + 〈∇ψ,M(µ)∇ψ〉 ,

Remark 3.5. Note that in the case of a linear Markov chain, the last two terms in
the definition of B vanish, and we recover the formula of Erbar and Maas (2012) for
the second derivative of the entropy along geodesics.

Lemma 3.6 (Second variation of the free energy). Let (µt)t be a W-geodesic
contained in P∗(X ) and let (ψt) be the unique potential such that (µ, ψ) ∈ CE. Then
it holds

d2

dt2
F(µt) = Hess F(µt)[∇ψt] = B(µt, ψt) .

Proof : From (3.4) we get

d2

dt2
F(µ(t)) = −

d

dt
〈L̂µt

µt, ψt〉

= −〈L̂µt
µt, ψ̇t〉 − 〈µ̇t, Lµt

ψt〉 − 〈µt,
(
∂tLµt

)
ψt〉

=: I1 + I2 + I3 .

To calculate I1, first note that

∂µ(z)Λ(µ)(x, y) = ∂1Λ(µ)Q(µ;x, y)δxz + ∂2Λ(µ)Q(µ; y, x)δyz

+ ∂1Λ(µ)µ(x)∂µz
Q(µ;x, y) + ∂2Λ(µ)µ(y)∂µz

Q(µ; y, x) ,

where δxz denotes the Kronecker delta. Hence, we infer from the geodesic equa-
tion (3.1) and (3.5) that

I1 =
1

2
〈∇ψt, L̂Λ(µt) · ∇ψt〉 +

1

2
〈∇ψt, RΛ(µt) · ∇ψt〉 .

The continuity equation µ̇t = −∇ ·
(
Λ(µt) · ∇ψt

)
readily yields that

I2 = −〈∇ψt,Λ(µt) · ∇Lµt
ψt〉 .

To calculate I3, first note that for any φ we have

∂tLµt
φ(x) =

∑

y 6=x

∂tQ(µt, x, y)∇φ(x, y) = DQ
(
µt, µ̇t

)
φ(x)

= −DQ
(

µt,∇ ·
(
Λ(µt) · ∇ψt

))

φ(x)
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where we used the fact that Q(µt, x, x) = −
∑

y 6=xQ(µt, x, y). Moreover, for any µ
and ψ we have

−
〈

µ,DQ
(

µ,∇ ·
(
Λ(µ) · ∇ψ

))

ψ
〉

=
∑

x,y,z

µx∂µz
Q(µ;x, y)

[
∇ · (Λ(µ)∇ψ)

]
(z)∇ψ(x, y)

=
1

2

∑

x,y,z,w

µx∂µz
Q(µ;x, y)Λ(µ)(z, w)

[
∇ψ(w, z) − ∇ψ(z, w)

]
∇ψ(x, y)

= −
1

2

∑

x,y,z,w

∇ψ(x, y)∇ψ(z, w)µxΛ(µ)(z, w)
[
∂µz

Q(µ;x, y) − ∂µw
Q(µ;x, y)

]

= − 〈∇ψ,M(µ)∇ψ〉 . (3.8)

Thus, we get I3 = 〈∇ψt,M(µt)∇ψt〉. As I1 + I2 + I3 = B(µt, ψt), this yields the
claim. �

We can now state the following equivalent characterizations of lower Ricci bounds:

Theorem 3.7. Let κ ∈ R. For a non-linear Markov triple (X , Q, π) the following
assertions are equivalent:

(1) Ric(X , Q, π) ≥ κ ;
(2) For all µ ∈ P∗(X ) and ψ ∈ R

X we have

B(µ, ψ) ≥ κA(µ, ψ) .

(3) The following Evolution Variational Inequality EVIκ holds: for all µ, ν ∈
P(X ) and all t ≥ 0:

1

2

d+

dt
W(µt, ν)2 +

κ

2
W(µt, ν)2 ≤ F(ν) − F(µt) , EVIκ

where µt denotes the solution to the non-linear Fokker–Planck equation
starting from µ, i.e. µ̇t = L̂µt

µt = µtQ(µt) and µ0 = µ;

By Lemma 3.6, (2) corresponds to a lower bound κ on the Hessian of F in the
Riemannian structure on P∗(X ) induced by W. Note that the equivalence of (1)
and (2) is a non-trivial assertion, since the Riemannian metric degenerates at the
boundary of P(X ).

Proof : The proof is based on an argument of Daneri and Savaré (2008) suitably
adapted to the discrete setting. We can follow verbatim the proof of Erbar and
Maas (2012, Thm. 4.5) where the analog of Thm. 3.7 is proven for linear Markov
chains. The core of the argument is a variation of the action along the evolution
equation (Erbar and Maas, 2012, Lem. 4.6). To accommodate the additional terms
arising from the non-linear structure in the present situation, we have to replace
that lemma with Lemma 3.8 below. �

Lemma 3.8. Let {µs}s∈[0,1] be a smooth curve in P∗(X ). For each t ≥ 0, let µst
denote the solution of the non-linear Fokker–Planck equation at time s t starting from
µs and let {ψst }s∈[0,1] be a smooth curve in R

X satisfying the continuity equation

∂sµ
s
t + ∇ · (Λ(µst ) · ∇ψst ) = 0 , s ∈ [0, 1] .



458 M. Erbar, M. Fathi and A. Schlichting

Then the identity

1

2
∂tA(µst , ψ

s
t ) + ∂sF(µst ) = −sB(µst , ψ

s
t )

holds for every s ∈ [0, 1] and t ≥ 0.

Proof : First of all, setting ρst =
µs

t

π(µs
t
) we compute as in Lemma 3.4 that

∂sF(µst ) = 〈log ρst , ∂sµ
s
t 〉 = −〈L̂µs

t
µst , ψ

s
t 〉 .

Furthermore,

1

2
∂tA(µst , ψ

s
t ) = 〈∂t∇ψ

s
t , Λ(µst )∇ψ

s
t 〉 +

1

2
〈∇ψst , ∂tΛ(µst ) · ∇ψst 〉

=: Ī1 + Ī2 .

In order to further manipulate Ī1 we first note that

∂tµ
s
t = s · L̂µs

t
µst

where the factor s comes from the scaling of time in the definition of µst . Further,
we observe that for any φ ∈ R

X

〈∇φ,Λ(µst ) · ∂t∇ψ
s
t 〉 + 〈∇φ, ∂tΛ(µst ) · ∇ψst 〉

= 〈µst , Lµs
t
φ〉 + s〈∂sµ

s
t , Lµs

t
φ〉 + s〈µst , ∂sLµs

t
φ〉 . (3.9)

To show (3.9), note that the left-hand side equals ∂t∂s〈µst , φ〉, while the right-hand
side equals ∂s∂t〈µst , φ〉. Integrating by parts repeatedly and using (3.9) we obtain

Ī1 = −〈∇ψst , ∂tΛ(µst ) · ∇ψst 〉 + 〈µst , Lµs
t
ψst 〉 + s〈∂sµ

s
t , Lµs

t
ψst 〉 + s〈µst , (∂sLµs

t
)ψst 〉

= −2Ī2 − ∂sF(µst ) + s〈∇ψst , Λ(µst ) · ∇Lµs
t
ψst 〉 + s〈µst , (∂sLµs

t
)ψst 〉

Thus, we arrive at

1

2
∂tA(µst , ψ

s
t ) + ∂sF(µst )

= −
1

2
〈∇ψst , ∂tΛ(µst ) · ∇ψst 〉 + s〈∇ψst , Λ(µst ) · ∇Lµs

t
ψst 〉 + s〈µst , (∂sLµs

t
)ψst 〉 .

To conclude, it suffices to note that

∂tΛ(µst ) = s · L̂Λ(µst ) + s ·RΛ(µst ) ,

further remark that for any φ we have

∂sLµs
t
φ = DQ(µst , ∂sµ

s
t )φ = −DQ

(

µst ,∇ ·
(
Λ(µst ) · ∇ψst

))

φ ,

and then use again (3.8). �

To end this section, we use Theorem 3.7 to give an expression of the optimal
lower Ricci bound on the two-point space.

Lemma 3.9 (Two-point space). Let
(
{0, 1}, Q, π

)
be a non-linear Markov triple on

the base space X = {0, 1} and let p(µ) := Q(µ; 0, 1) and q(µ) := Q(µ; 1, 0) as well
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as p′(µ) = [∂µ0
− ∂µ1

]p(µ) and q′(µ) = [∂µ1
− ∂µ0

]q(µ). Then, the optimal constant
κ such that Ric({0, 1}, Q, π) ≥ κ is given by

κopt = inf
µ∈P(X )

(

p(µ) + q(µ)

2
+
µ(0)p′(µ) + µ(1)q′(µ)

2

+
Λ(µ)(0, 1)

2

(
1

µ(0)µ(1)
+
p′(µ)

p(µ)
+
q′(µ)

q(µ)

)) (3.10)

Remark 3.10. Note that in the case of a linear Markov chain, where p and q are
independent of µ, and in particular p′ ≡ 0 ≡ q′, we recover the formula in Maas
(2011, Remark 2.11).

Proof : First, we compute from (3.7) for any µ ∈ P∗({0, 1}) and non-constant ψ:

B(µ, ψ)

(ψ(0) − ψ(1))2
=

1

2

(

∂1Λ(µ)(0, 1)p(µ)L̂µµ(0) + ∂2Λ(µ)(0, 1)q(µ)L̂µµ(1)
)

+ Λ(µ)(0, 1)
(
p(µ) + q(µ)

)

+
1

2
∂1Λ(µ)(0, 1)µ(0)

(

∂µ0
p(µ)L̂µµ(0) + ∂µ1

p(µ)L̂µµ(1)
)

+
1

2
∂2Λ(µ)(0, 1)µ(1)

(

∂µ0
q(µ)L̂µµ(0) + ∂µ1

q(µ)L̂µµ(1)
)

+ Λ(µ)(0, 1)
[
µ(0)

(
∂µ0

p(µ) − ∂µ1
p(µ)

)
− µ(1)

(
∂µ0

q(µ) − ∂µ1
q(µ)

)]
.

Now, note that L̂µµ(0) = −L̂µµ(1) = µ(1)q(µ) − µ(0)p(µ), yielding

B(µ, ψ)

(ψ(0) − ψ(1))2

= Λ(µ)(0, 1)
[
(p(µ) + q(µ) + µ(0)p′(µ) + µ(1)q′(µ)

]

+
1

2

[
∂1Λ(µ)(0, 1)p(µ) − ∂2Λ(µ)(0, 1)q(µ)

]
(µ(1)q(µ) − µ(0)p(µ))

+
1

2

[
∂1Λ(µ)(0, 1)µ(0)p′(µ) − ∂2Λ(µ)(0, 1)µ(1)q′(µ)

]
(µ(1)q(µ) − µ(0)p(µ))

Furthermore, A(µ, ψ) = Λ(µ)(0, 1)(ψ(1) − ψ(0))2. Thus by Theorem 3.7 we get
the optimal curvature bound κopt by dividing the above identity by Λ(µ)(0, 1) and
minimize in µ. Now, we use the identities

Λ1(a, b)(a− b) = Λ(a, b) −
Λ(a, b)2

a
and Λ2(a, b)(a− b) = −Λ(a, b) +

Λ(a, b)2

b

to get rid of the partial derivatives and obtain after some further simplifications the
result (3.10). �

4. Consequences of Ricci bounds

In this section, we derive consequences of Ricci curvature lower bounds for non-
linear Markov chains in terms of functional inequalities and the trend to equilibrium
for the dynamics. Throughout this section, let (X , Q, π) be a non-linear Markov
triple satisfying Assumption 2.1.

We first note the following expansion bound for the transport distance between
solutions to the non-linear Markov dynamics.
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Proposition 4.1. Assume that Ric(X , Q) ≥ κ for some κ ∈ R. Then for any two
solutions (µit)t≥0 to the non-linear evolution equation µ̇it = µitQ(µit), i = 1, 2 we have

W(µ1
t , µ

2
t ) ≤ e−κtW(µ1

0, µ
2
0) .

In particular, when κ > 0, solutions with different initial data get closer at an
exponential speed.

Proof : This is a consequence of the EVIκ. It follows from Daneri and Savaré (2008,
Prop. 3.1) applied to the functional F on the metric space (P(X ),W). �

Next, we prove some consequences of Ricci bounds in terms of different functional
inequalities. These results can be seen as non-linear discrete analogs of classical
results of Bakry and Émery (1985) and of Otto and Villani (2000). They extend
results that have been obtained in Erbar and Maas (2012) for linear Markov chains,
and are reminiscent of results of Carrillo, McCann and Villani (Carrillo et al., 2003)
obtained for McKean–Vlasov equations in a continuous setting.

Let F be the free energy functional associated with (X , Q, π) given by

F(µ) =
∑

x∈X

µx logµx + U(µ), with U(µ) =
∑

z∈X

µzKz(µ),

and recall that F attains its minimum on P(X ). We set

F∗(µ) := F(µ) − min
ν∈P(X )

F(ν) .

so that min F∗ = 0. Recall that I is the discrete Fisher information, given by

I(µ) =
1

2

∑

x,y∈X

Θ(µxQxy(µ), µyQyx(µ)) , Θ(a, b) = (a− b)(log a− log b) ,

provided µ ∈ P∗(X ) and I(µ) = +∞ else. Recall that I gives the dissipation of F
along a solution (µt) to the non-linear Fokker–Planck equation µ̇t = µtQ(µt). More
precisely, we have

d

dt
F(µt) = −I(µt) .

Note further that with ρ = µ/π(µ) we have the expression I(µ) = A(µ,− log ρ).
The next result relates F , I and the transport distance W under a Ricci bound.

Theorem 4.2. Assume that Ric(X , Q, π) ≥ κ for some κ ∈ R. Then the FWI
inequality holds with constant κ ∈ R, i.e. for all µ, ν ∈ P(X ),

F(µ) ≤ F(ν) + W(µ, ν)
√

I(µ) −
κ

2
W(µ, ν)2 . FWI(κ)

Proof : Fix µ, ν ∈ P(X ) and assume without restriction that µ ∈ P∗(X ) since
otherwise there is nothing to prove. Denote by µt the solution to µ̇t = µtQ(µt) with
µ0 = µ and set ρt = µt/π(µt). Theorem 3.7 yields that EVIκ holds, so in particular
for t = 0:

F(µ) ≤ F(ν) −
1

2

d+

dt

∣
∣
∣
t=0

W(µt, ν)2 −
κ

2
W(µ, ν)2 .
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From the triangle inequality and the fact that t 7→ µt is continuous with respect to
W we obtain

−
1

2

d+

dt

∣
∣
∣
t=0

W(µt, ν)2 = lim inf
sց0

1

2s

(

W(µ, ν)2 − W(µs, ν)2
)

≤ lim sup
sց0

1

s
W(µs, µ) · W(µ, ν) .

Now, note that since (µt,− log ρt) ∈ CE we can estimate

W(µs, µ) ≤

∫ s

0

√

A(µr, log ρr) dr =

∫ s

0

√

I(µr) dr .

Since t 7→ I(µt) is a continuous function, we obtain

lim sup
sց0

1

s
W(µs, µ) ≤

√

I(µ) , (4.1)

which yields the claim. �

Theorem 4.3. Assume that Ric(X , Q, π) ≥ λ for some λ > 0. Then the following
hold:

(i) there exists a unique stationary point π∗, it is the unique minimizer of F ;
(ii) the modified logarithmic Sobolev inequality with constant λ > 0 holds,

i.e. for all µ ∈ P(X ),

F∗(µ) ≤
1

2λ
I(µ) ; MLSI(λ)

(iii) for any solution (µt)t≥0 to µ̇t = µtQ(µt) we have exponential decay of the
free energy:

F∗(µt) ≤ e−2λtF∗(µ0) ; (4.2)

(iv) the transport-entropy inequality with constant λ > 0 holds, i.e. for all
µ ∈ P(X ),

W(µ, π∗) ≤

√

2

λ
F∗(µ) . ET(λ)

Proof : (i) From Proposition 2.3 we know that the set Π∗ of stationary points is
non-empty and that it coincides with the set of local minimizers of F . Assume
by contradiction that F has two distinct local minima at points µ0 and µ1, with
F (µ0) ≤ F (µ1) and let (µs)s∈[0,1] be a constant speed geodesic connecting µ0 and
µ1. Then we infer from Ric(X , Q, π) ≥ λ that

F(µs) ≤ (1 − s)F(µ0) + sF(µ1) −
λ

2
s(1 − s)W(µ0, µ1)2 .

Since µ1 is a local minimum, there is an ǫ > 0 such that F(µ1−ǫ) ≥ F(µ1). This
leads to

F(µ1) ≤ F(µ1−ǫ) ≤ ǫF(µ0) + (1 − ǫ)F(µ1) −
λ

2
ǫ(1 − ǫ) < F(µ1) ,

a contradiction. Hence, Π∗ = {π∗} is a singleton and π∗ is the unique global
minimizer of F .



462 M. Erbar, M. Fathi and A. Schlichting

(ii) By Theorem 4.2, we have that FWI(κ) holds. Applying FWI(κ) with
µ ∈ P(X ) and ν = π∗, noting that F∗(π∗) = 0, and using Young’s inequality

xy ≤ cx2 +
1

4c
y2 ∀x, y ∈ R, c > 0,

with x = W(µ, π∗), y =
√

I(µ) and c = λ/2 yields the claim.

(iii) From MLSI(λ) we infer that for a solution (µt)t we have

d

dt
F∗(µt) = −I(µt) ≤ −2λF∗(µt) ,

and we obtain (4.2) as a consequence of Gronwall’s lemma.

(iv) It suffices to establish ET(λ) for any µ ∈ P∗(X ). The inequality for general
µ can then be obtained by approximation, taking into account the continuity of
W with respect to the Euclidean metric on P(X ). So fix µ ∈ P∗(X ), and let µt
be the solution to the non-linear Fokker–Planck equation starting from µ. From
Proposition 2.4 we have that µt → π∗ as t → ∞ and that

F∗(µt) → 0 and W(µ, µt) → W(µ, π∗) . (4.3)

The last property follows from the continuity of W with respect to the Euclidean
distance. We now define the function G : R+ → R+ by

G(t) := W(µ, µt) +

√

2

λ
F∗(µt) .

Obviously we have G(0) =
√

2
λF∗(µ) and by (4.3) we have that G(t) → W(µ, π∗)

as t → ∞. Hence it is sufficient to show that G is non-increasing. To this end we
show that its upper right derivative is non-positive. If µt 6= π∗ we deduce from (4.1)
that

d+

dt
G(t) ≤

√

I(µt) −
I(µt)

√

2λF∗(µt)
≤ 0 ,

where we used MLSI(λ) in the last inequality. If µt = π∗, then the relation also
holds true, since this implies that µr = π∗ for all r ≥ t. �

5. Some examples of curvature bounds

We shall now compute lower bounds on the curvature for several examples of
mean-field dynamics, inspired by classical models of statistical physics.

5.1. Curie-Weiss model. Let us consider the following example also mentioned in
Budhiraja et al. (2015b, Example 4.2), which is the infinite particle limit of the
classical Curie-Weiss model, one of the simplest examples of Markovian dynamic
exhibiting a phase transition. Let us take X = {0, 1} and define K for β > 0 by

Kx(ν) = Vx + β
∑

y∈X

Wxy νy, (x, ν) ∈ X × P(X ),

with V ≡ 0, W (0, 0) = 0 = W (1, 1), and W (0, 1) = 1 = W (1, 0). Hence, we have

U(ν) = 2βν0ν1 .
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The free energy F(µ) for the Curie-Weiss model is given by
∑

x∈X

(
logµ(x) +K(µ;x)

)
µ(x) =

∑

x∈X

(logµ(x) + β
∑

y∈X

W (x, y)µ(y)µ(x)

= µ(0) logµ(0) + µ(1) logµ(1) + 2βµ(0)µ(1).

Since µ(0) + µ(1) = 1, we have that the free energy is essentially given by the
function fβ : [0, 1] → R

fβ(u) = u log u+ (1 − u) log(1 − u) + 2βu(1 − u) and f ′′
β (u) =

1

u(1 − u)
− 4β,

Hence, fβ is convex on [0, 1] for β ∈ [0, 1] and non-convex for β > 1.
The local detailed balance state π(µ) (2.1) is given by

πx(µ) =
1

Z(µ)
exp(−Hx(µ)) =

1

Z(µ)
exp



−2β
∑

y∈X

W (x, y)µ(y)



 .

Therefore, it holds

π0(µ) =
exp(−2βµ(1))

exp(−2βµ(0)) + exp(−2βµ(1))
,

π1(µ) =
exp(−2βµ(0))

exp(−2βµ(0)) + exp(−2βµ(1))
.

We use Glauber rates and set

p(µ) = Q(µ; 0, 1) =

√

π1(µ)

π0(µ)
= exp

(
−β(µ(0) − µ(1))

)
,

q(µ) = Q(µ; 1, 0) =

√

π0(µ)

π1(µ)
= exp

(
β(µ(0) − µ(1))

)
=

1

p(µ)
.

With this choice, we can estimate the Ricci curvature of the limit with the help of
Lemma 3.9.

Proposition 5.1 (λ-Convexity of Curie-Weiss model with Glauber rates). It holds
for β ∈ [0, 1]

κGlauber = 2(1 − β). (5.1)

As a consequence of this curvature bound, one can derive the modified logarithmic
Sobolev inequality for the non-linear dynamic. This inequality could also be derived
from a logarithmic Sobolev inequality for the particle Gibbs sampler of Marton
(2019) and passing to the limit in the number of particles. In Kraaij (2016), the
mLSI was also derived via convexity of the entropy, but along a different family of
interpolations of probability measures. At a technical level, the proof of Kraaij (2016)
requires differentiating the entropy three times rather than two, which involves more
technical estimates (this is not much of an issue for a two-point space system like
Curie-Weiss, but gets much more complicated for more involved systems, like the
ones we shall see later in this section).

Proof : We set µ(0) = u and µ(1) = 1 − u, for which the rates become p(µ) =
exp(−β(2u− 1)) = 1/q(u). First, we note that with the notation of Lemma 3.9, we
have p′(µ) = −2βp(µ) and q′(µ) = −2βq(µ).
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The expression in the infimum of (3.10) to optimize becomes

κ(u) =
p+ q

2
− β(up+ (1 − u)q) +

Λ(up, (1 − u)q)

2

(
1

u(1 − u)
− 4β

)

.

It be convenient to do the variable substitution x = 2u − 1. For obtaining the
expression in a compact manner, we introduce two auxiliary functions

g1(x) := cosh(βx) − x sinh(βx) and g2(x) := sinh(βx) − x cosh(βx).

We then obtain, using the identities up+ (1 − u)q = g1(x), up− (1 − u)q = −g2(x)
and arctanh(x) = 1

2 log 1+x
1−x and after some rewriting,

κ(x) = cosh(βx) − βg1(x) +
g2(x)

βx− arctanh(x)

(
1

1 − x2
− β

)

. (5.2)

A simple evaluation yields κ(0) = 2(1 − β), where we note g2(x)
βx−arctanh(x) → 1 as

x → 0.
For the lower bound, we proceed in several steps, we first observe that

cosh(βx) − βg1(x) = (1 − β) cosh(βx) + βx sinh(βx) ≥ 1 − β .

Now, the claim follows once we have shown

g2(x)

βx− arctanh(x)
≥ 1 − x2 . (5.3)

Indeed, the last term in (5.2), combined with the above estimate, is bounded
from below by 1 − (1 − x2)β ≥ 1 − β, which proves (5.1). To prove (5.3), we do
another substitution and set x = tanh(y). Therefore, the function g2 becomes after
transformations by hyperbolic trigonometric identities

g2(tanh y) =
sinh(β tanh(y) − y)

cosh y
.

and we can estimate the left hand side of (5.3) by

g2(x)

βx− arctanh(x)
=

1

cosh(y)

sinh(β tanh(y) − y)

β tanh(y) − y
≥

1

cosh(y)
,

where we used the bound sinh(z)/z ≥ 1 for all z ∈ R. This can be further
estimated by observing that cosh(y) ≥ 1 for all y ∈ R and by using the identity
1 − tanh2 y = 1/ cosh2 y, to obtain

1

cosh(y)
≥

1

cosh2(y)
= 1 − tanh2(y) = 1 − x2 ,

by the substitution x = tanh(y), which proves (5.3). �

5.2. General zero-range/misanthrope processes. In this section, we consider mean-
field limits of particle systems with rate matrix of the form

Q(µ;x, y) = p(x, y) c(µx, µy)

These systems generalize usual linear Markov chains encoded in p(x, y) by an
additional dependency of the jump rate on the population density of the departure
and arrival site of the jump. This model, first introduced in Cocozza-Thivent (1985),
incorporates many examples, such as for instance the zero range process, for which
c(µx, µy) = b(µx), but also interacting agent/voter models (Villemonais, 2020), for
which c(µx, µy) = a(µy).
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In this section, our method is perturbative, for which reason we restrict to the
complete graph, that is p(x, y) = 1 for all x 6= y. In this case, the mean-field limit
from the N -particle system was derived in Grosskinsky and Jatuviriyapornchai
(2019), and the limit equation was investigated in Schlichting (2019). Since positive
curvature is know in the case of independent particles on the complete graph
(Erbar and Maas, 2012), we expect that for c(µx, µy) = T + c̃(µx, µy) with bounded
c̃ : P(X ) × P(X ) → [0,∞), we should also obtain positive entropic curvature for
the non-linear models when T is sufficiently large.

To have a gradient flow formulation, the chain has to satisfy the local detailed
balance condition (2.3)

πx(µ) c(µx, µy) = πy(µ) c(µy, µx) . (5.4)

For the further analysis, we focus on the separable case, where for some a, b : [0, 1] →
R+ holds

c(µx, µy) = b(µx) a(µy) .

It is easy to verify that (5.4) is satisfied for

πx(µ) =
1

Z(µ)

a(µx)

b(µx)
and Z(µ) =

∑

x∈X

a(µx)

b(µx)
.

This is of the form (2.2) for a potential U given e.g. by

U(µ) =
∑

x∈X

u(µx) with u(r) =

∫ 1

r

log

(
a(s)

b(s)

)

ds ,

i.e. for K given by Kx(µ) = u(µx)/µx.

Example 5.2. There are two subclasses of models of particular interest:

Qxy(µ) = a(µy) and Qxy(µ) = b(µx) .

Both models satisfy the local detailed balance condition (2.3) for

πax(µ) =
a(µx)

Za(µ)
with Za(µ) =

∑

x

a(µx)

and

πbx(µ) =
1

Zb(µ)b(µx)
with Zb(µ) =

∑

x

1

b(µx)

For the first, the interacting agent model from Villemonais (2020) is recovered
by setting a(µy) = T/d + f(µy), where d = |X | is the (constant) degree of the
complete graph. For these models, Villemonais (2020) proves a spectral gap via
another notion of discrete curvature, but which is not strong enough to derive the
mLSI. In the second case, this dynamic corresponds to (a scaling limit of) a zero
range-process. This type of particle system is commonly used in statistical physics
as a toy model for understanding various large-scale features of interacting systems
(scaling limits, longtime behavior, phase transitions). We refer to Liggett (2005)
for an overview. Long-time behavior of the N -particle system in various situations
was studied for example in Caputo and Posta (2007); Caputo et al. (2009); Fathi
and Maas (2016); Merle and Salez (2019). Recently, Hermon and Salez (2019)
significantly improved on the state of the art using a combination of the Lu-Yau
martingale method and a monotone coupling argument, establishing a modified
logarithmic Sobolev inequality independent of the number of particles for mean-field
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zero-range processes in a non-perturbative setting, even in some inhomogeneous
situations where the curvature approach cannot work.

In this separable case, we can prove the following statement.

Theorem 5.3 (Curvature for separable kernels). Assume the rates are separable,
given by

Q(µ;x, y) = b(µx)a(µy) .

Suppose that
0 < a ≤ a(·) ≤ ā and 0 < b ≤ b(·) ≤ b̄ .

Moreover, assume that

λ :=
2 aLip b+ aLip a

2 a b
≤ 1 . (5.5)

Then Ric ≥ κ in the sense of Theorem 3.7 with κ given by

κ := d

[

a b− (1 + λ)
ā b̄

2
−
ā

2

(

2 +
b̄

b

)

Lip b−
b

2

(

1 +
ā

a

)

Lip a

]

(5.6)

Especially, in the regime max{Lip a,Lip b}
min{a,b} =: η ≪ 1 it holds

κ ≥ d a b
(
1 +O(η)

)
. (5.7)

Proof : First, we evaluate some of the quantities occurring in the derivation of the
curvature estimate. Let us start with (3.3), for which we have

Lµψ(x) =
∑

y

(ψy − ψx)b(µx)a(µy) (5.8)

and
L̂µσ(y) =

∑

x

(
σxb(µx)a(µy) − σyb(µy)a(µx)

)
.

The next quantity (3.5) becomes

DQ(µ, σ;x, y) =
∑

z

∂µz
b(µx)a(µy)σz = b′(µx)a(µy)σx + b(µx)a′(µy)σy . (5.9)

The last quantity is (3.6)

M(µ; z, w, x, y) =
1

2
µxΛ(µ)(z, w)

(

δz,xb
′(µx)a(µy) + δz,yb(µx)a′(µy)

− δw,xb
′(µx)a(µy) − δw,yb(µx)a′(µy)

)

from which after symmetrization, we obtain the identity

M(µ)∇ψ(x, y) = µx
∑

z

(

∇ψ(x, z)Λ(µ)(x, z)b′(µx)a(µy)

+ ∇ψ(y, z)Λ(y, z)b(µx)a′(µy)
) (5.10)

We use the following identity for the logarithmic mean

s∂1Λ(s, t) + t∂2Λ(s, t) = Λ(s, t) . (5.11)

To compensate off-diagonal terms, we need the following estimate for the logarithmic
mean (Fathi and Maas, 2016, Lemma A.2)

r(∂1Λ(s, t) + ∂2Λ(s, t)) + Λ(s, t) ≥ Λ(r, s) + Λ(r, t) . (5.12)
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The above basic identities shall be used to estimate the four terms in (3.7), which
we denote by I, II, III and IV in this order of occurrence.

First term I: Let us start estimating the first term in (3.7) and use the iden-
tity (5.11)

I =
1

4

∑

x,y

|∇ψ(x, y)|2
(

∂1Λ(µ)(x, y)
∑

z

(
µzb(µz)a(µx) − µxb(µx)a(µz)

)
b(µx)a(µy)

+ ∂2Λ(µ)(x, y)
∑

z

(
µzb(µz)a(µy) − µyb(µy)a(µz)

)
b(µy)a(µx)

)

=
1

4

∑

x,y,z

|∇ψ(x, y)|2µzb(µz)a(µx)a(µy)
(

∂1Λ(µ)(x, y)b(µx) + ∂2Λ(µ)(x, y)b(µy)
)

−
1

4

∑

x,y

|∇ψ(x, y)|2A(µ)
(

∂1Λ(µ)(x, y)µxb(µx)2a(µy)

+ ∂2Λ(µ)(x, y)µyb(µy)
2a(µx)

)

≥ I1 −
supµ,x{b(µx)A(µ)}

2
A(µ, ψ) ≥ I1 −

d ā b̄

2
A(µ, ψ) (5.13)

where we introduced A(µ) =
∑

z a(µz). Although I1 is non-negative, we keep it to
compensate for terms from II and IV. To do so, we compactify notation further by
introducing the tilted measure

µ̄b,ax = µx
b(µx)

a(µx)
.

With this definition and with the one-homogeneity of Λ, we can rewrite

Λ(µ)(x, y) = Λ
(
µxb(µx)a(µy), µyb(µy)a(µx)

)
= Λ

(
µ̄b,ax , µ̄b,ay

)
a(µx)a(µy)

and likewise for the zero-homogeneous derivatives (i = 1, 2)

∂iΛ(µ)(x, y) = ∂iΛ
(
µxb(µx)a(µy), µyb(µy)a(µx)

)
= ∂iΛ

(
µ̄b,ax , µ̄b,ay

)
.

With this notation we want to employ the estimate (5.12) in the form

µ̄b,az
(
∂1Λ

(
µ̄b,ax , µ̄b,ay

)
+ ∂2Λ

(
µ̄b,ax , µ̄b,ay

))

≥ Λ
(
µ̄b,az , µ̄b,ax

)
+ Λ

(
µ̄b,az , µ̄b,ay

)
− Λ

(
µ̄b,ax , µ̄b,ay

)

=
Λ(µ)(z, x)

a(µx)a(µz)
+

Λ(µ)(z, y)

a(µy)a(µz)
−

Λ(µ)(x, y)

a(µx)a(µy)
.

Now, we can bound I1 from below by

I1 ≥ b
1

4

∑

x,y,z

|∇ψ(x, y)|2a(µx)a(µy)a(µz)µ̄
b,a
z

(
∂1Λ

(
µ̄b,ax , µ̄b,ay

)
+ ∂2Λ

(
µ̄b,ax , µ̄b,ay

))

≥ a b
1

4

∑

x,y,z

|∇ψ(x, y)|2
(
Λ(µ)(z, x) + Λ(µ)(z, y)

)
−
d ā b

2
A(µ, ψ)

≥ a b I2 −
d ā b

2
A(µ, ψ) . (5.14)
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Second term II: Let us continue with the second term in (3.7) for which we
use (5.8), symmetrize the sum and obtain

II = −〈∇ψ,Λ(µ)∇Lµψ〉

=
∑

x,y,z

∇ψ(x, y)∇ψ(x, z)Λ(µ)(x, y)b(µx)a(µz)

=
1

2

∑

x,y,z

a(µz)Λ(µ)(x, y)∇ψ(x, y)
(

∇ψ(x, z)
︸ ︷︷ ︸

=∇ψ(x,y)+∇ψ(y,z)

b(µx) − ∇ψ(y, z)b(µy)
)

=
1

2

∑

x,y

|∇ψ(x, y)|2Λ(µ)(x, y)b(µx)
∑

z

a(µz)

+
1

2

∑

x,y,z

∇ψ(x, y)∇ψ(x, z)Λ(µ)(x, y)a(µz)
(
b(µx) − b(µy)

)

≥

(

d b a−
d ā Lip b

2

)

A(µ, ψ)

−
ā Lip b

8

∑

x,y,z

|∇ψ(x, y)|2
(
Λ(µ)(x, z) + Λ(µ)(y, z)

)

≥

(

d b a−
d ā Lip b

2

)

A(µ, ψ) −
ā Lip b

2
I2 . (5.15)

where we used the Young inequality uv ≤ u2/2 + v2/2.

Third term III: For estimating the third term in (3.7), denoted by III, we use (5.9),
do a crude estimate to again apply (5.11)

III =
1

4

∑

x,y

|∇ψ(x, y)|
2
(

∂1Λ(µ)(x, y)µx(b′(µx)a(µy)Lµµ(x) + b(µx)a′(µy)Lµµ(y))

+ ∂2Λ(µ)(x, y)µy(b
′(µy)a(µx)Lµµ(y) + b(µy)a

′(µx)Lµµ(x))
)

≥ inf
µ,x,y

{
b′(µx)Lµµ(x)

2b(µx)
+
a′(µy)Lµµ(y)

2a(µy)

}

A(µ, ψ) .

To bound the infimum, we observe that

|Lµµ(x)| ≤ d b̄ ā .

Hence, in total we obtain

III ≥ −
d b̄ ā

2

(
Lip b

b
+

Lip a

a

)

A(µ, ψ) . (5.16)

Fourth term IV: For estimating the fourth term in (3.7), denoted by IV, we
use (5.10) and compensate it partly by I2 from (5.14)

IV =
1

2

∑

x,y,z

∇ψ(x, y)∇ψ(x, z)Λ(µ)(x, z)(µxb
′(µx)a(µy) − µyb(µy)a

′(µx))

≥ −
ā Lip b+ b̄Lip a

2

[

dA(µ, ψ) +
1

4

∑

x,y,z

|∇ψ(x, y)|
2(

Λ(x, z) + Λ(y, z)
)

]

.(5.17)
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Conclusion: We combine all the estimates of the individual terms in (3.7) from
the rewriting B = I + II + III + IV. There is one small catch. After having applied
the first bound (5.13) to I, we split for λ ∈ (0, 1) the non-negative part I1 into
(1 − λ) I1 and λ I1, where only to the second term λ I1 the bound (5.14) is applied.
The other three estimates (5.15), (5.16) and (5.17) are applied in a straightforward
manner to II, III and IV, respectively, to arrive at the lower bound

B(µ, ψ) ≥ (1 − λ) I1 +

(

λ a b−
2 aLip b+ bLip a

2

)

I2

+ d

[

a b− (1 + λ)
ā b̄

2
−
ā

2

(

2 +
b̄

b

)

Lip b−
b

2

(

1 +
ā

a

)

Lip a

]

A(µ, ψ) .

If λ is chosen according to (5.5) and by I1 ≥ 0, we arrive at the bound B(µ, ψ) ≥
κA(µ, ψ) with κ given in (5.6). The final statement (5.7) follows by simple calculus
from the bound ā ≤ a+ Lip a, similar for b̄ ≤ b+ Lip b and observing that λ = O(η)
in this case. �
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