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We reconsider the entropic-force model in which both kinds of Hubble terms, _H and H2, appear in the
effective dark energy (DE) density affecting the evolution of the main cosmological functions, namely, the
scale factor, deceleration parameter, matter density, and growth of linear matter perturbations. However, we
find that the entropic-force model is not viable at the background and perturbation levels due to the fact that
the entropic formulation does not add a constant term in the Friedmann equations. On the other hand, if on
mere phenomenological grounds we replace the _H dependence of the effective DE density with a linear
term H without including a constant additive term, we find that the transition from deceleration to
acceleration becomes possible, but the recent structure formation data strongly disfavor this cosmological
scenario. Finally, we briefly compare the entropic-force models with some related DE models (based on
dynamical vacuum energy) which overcome these difficulties and are compatible with the present
observations.
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I. INTRODUCTION

The discovery of the cosmic acceleration (see [1–8] and
references therein) has opened a new window in trying to
understand the Universe. Despite the mounting observa-
tional evidence on the existence of the accelerated expan-
sion of the Universe, its nature and fundamental origin is
still an open question, challenging the very foundations of
theoretical physics. While the simplest possibility is a rigid
cosmological constant (CC) term Λ for the entire history of
the Universe, with the advent of quantum theory and
quantum field theory (QFT), theΛ term has been associated
with the vacuum energy density, ρΛ ¼ Λ=ð8πGÞ, and this
association is at the root of the acute cosmological constant
problem [9], perhaps one of the most pressing conundrums
of fundamental physics ever—see, e.g., [10] for a recent
review.
The difficulties inherent to the CC problem suggest that

we adopt a more dynamical perspective. This has led to
various forms of dynamical dark energy (DE) as a possible
substitute for the rigid CC term. Along these lines one may
consider a general mechanism that is responsible for
cosmic acceleration which is based either on a modified
theory of gravity or on the existence of some sort of DE
which is related to the existence of new fields in nature.
Perhaps the most popular idea in the past was to find a

scalar field capable of dynamically adjusting the vacuum
energy to zero (or, in fact, to the tiny number ρΛ0 ∼
10−47 GeV4 that has been measured in recent times), with
the hope of solving the old CC problem [9]. The first
attempts in this direction are quite old [11–13]. It is only in

more recent times that this approach took the current
popular form of quintessence [14,15] and was mainly
applied to explain the possible dynamical character of
the DE, with an eye at solving the “cosmic coincidence”
problem. The DE ideas since then have branched off into
multiple different formulations; see, e.g., [16–33] and
references therein. In particular, we have also the dynami-
cal models of the vacuum energy based on the renormal-
ization group approach [34–38]. As we will see, these
models bare a close (but distinctive) relation with the
entropic-force models.
Amongst the variety of DE models, the so-called

entropic-force dark energy has recently gained a lot of
attention in cosmology. The notion of entropic force was
suggested by Verlinde [39], who proposed that the gravi-
tational field equations can be derived from the second law
of thermodynamics in a way that would render the gravity
force quite literally as a kind of “entropic force,” i.e., a force
related to the change of entropy. Its implementation in
cosmology [40,41] is based on the assumption that
the horizon can play the role of a holographic screen1

(see also [45]).
Such a screen would induce a force F ¼ T∇S on a

nearby test particle, where T is the temperature of the

1Let us mention that in Jacobson’s [42] and Padmanabhan’s
approaches to entropic gravity [43], the formulation is much more
general and is not affected at all by our analysis here, which is
restricted to the specific entropic-force version [39] and its
cosmological implementation in [40,41]. See also Ref. [44] for
the difficulties of interpreting entropic forces in Newtonian
gravity.

PHYSICAL REVIEW D 90, 023008 (2014)

1550-7998=2014=90(2)=023008(11) 023008-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.023008
http://dx.doi.org/10.1103/PhysRevD.90.023008
http://dx.doi.org/10.1103/PhysRevD.90.023008
http://dx.doi.org/10.1103/PhysRevD.90.023008


screen and ∇S is the change of entropy associated with the
information contained in it (which involves a large number
of d.o.f.). The change of entropy when the radius of the
Hubble horizon, RH ¼ 1=H, increases by dr is simply
dSH ¼ 2πðRHkBM2

PÞdr, where MP is the Planck mass and
kB is Boltmann’s constant. From the pressure exerted by the
entropic force on the cosmological expansion, P ¼ F=
A ¼ −ðT=AÞdSH=dr, and estimating the horizon temper-
ature by the de Sitter temperature, T ¼ ðℏ=kBÞðH=2πÞ, one
finally obtains P ¼ −M2

PH
2=4π. The minus sign in the

pressure is of course the characteristic feature of the
accelerated expansion in this entropic version. This frame-
work, therefore, suggests that the entropic force leads to an
effective DE density ρDE which is dynamical and evolves as
the square of the Hubble rate: ρDE ∝ H2.
In this formulation, the DE does not exist as an exotic

energy component of the Universe, but as an effective force
acting outwards to the cosmic horizon, thereby accelerating
the evolution of the Universe. This particular scenario is the
so-called “entropic-force cosmology,” and it was first
proposed in Refs. [40,41] and later on discussed by various
authors—see, e.g., [44,46–50].
One crucial question is what classes of entropic-force

models are allowed in cosmological studies. Specifically,
we are interested in testing the validity of the entropic-force
DE both at the background and cosmic perturbation levels.
In order to do so, we need to define the Hubble parameter
and the growth of matter perturbations in the linear regime
as a function of redshift and then to check whether the
above functions could lead to reliable cosmological results.
The layout of the article is the following. In Sec. II, we

present the main ingredients of the dynamical problem
under study. In Secs. III and IV, we provide the analytical
solutions for the Hubble and growth factor, respectively.
Finally, we draw our conclusions in Sec. V.

II. ENTROPIC-FORCE MODELS AND
EFFECTIVE DARK ENERGY

The nature of the entropic-force models [39] is essen-
tially connected with a surface effect from the horizon.
From the latter one may utilize the gravitational action for
space-times with boundaries [51]. This is achieved by
adding the boundary action term SB to the standard
Einstein-Hilbert action, SEH, namely,

SEH þ SB ¼ 1

16πG

Z
M

d4x
ffiffiffiffiffi
jgj

p
Rþ 1

8πG

Z
∂M

d3y
ffiffiffiffiffiffi
jhj

p
K:

ð1Þ
Here R is the Ricci scalar, h is the determinant of the
metric hab on the boundary ∂M, induced by the bulk
metric gμν of M, and ya are the coordinates on ∂M.
Furthermore, K is the trace of the second fundamental form
(or extrinsic curvature); if nμ is the normal on the boundary,
it can be written as K ¼ ∇μnμ. The overall action is

S ¼ SEH þ SB þ Sm, where Sm represents the ordinary
matter contribution. From the technical point of view,
the precise definition of the boundary term SB should
actually include an overall sign, which is plus or minus
depending on whether the hypersurface ∂M is spacelike
(nμnμ ¼ þ1) or timelike (nμnμ ¼ −1), respectively. We
exclude null surfaces for this consideration.
The precise coefficient in front of the boundary integral

SB is chosen in such a way that the surface terms generated
from the metric variation of SEH are exactly canceled by the
metric variation of SB, provided the variation δgμν is
performed in such a way that it vanishes on ∂M, i.e.,
provided the induced metric hab on the boundary is
held fixed. It follows that, in the presence of SB, the
standard form of Einstein’s equations is preserved even if
the space-time has boundaries.
As the surface terms emerging from the variation of SEH

are canceled by δSB, one may assume that if the total action
would not contain SB, the contribution of the aforemen-
tioned surface terms to the field equations would be of the
order of the effect induced by SB, estimated as R times the
prefactor 1=ð8πGÞ in SB. In the Friedmann-Lemaître-
Robertson-Walker metric with flat space slices, this reads
ð12H2 þ 6 _HÞ=ð8πGÞ, with H ¼ _a=a and _H ¼ dH=dt.
This is presumably the kind of consideration made by
Easson et al. [40]. They also argued that since this is
probably just a rough estimate of the effect, one should
generalize the corresponding acceleration equation for the
scale factor in the form

ä
a
¼ −

4πG
3

ð1þ 3ωmÞρm þ C _H
_H þ CHH2; ð2Þ

where ωm ¼ pm=ρm is the equation of state (EoS) for the
matter fluid (with ωm ¼ 0 and 1=3 for nonrelativistic and
relativistic matter, respectively). The second cosmological
equation is the generalized Friedmann’s equation:

H2 ≡
�
_a
a

�
¼ 8πG

3
½ρmðtÞ þ ρDEðtÞ�; ð3Þ

where we always assume flat space metric. In the above
expression, we have defined

ρDEðtÞ ¼
3

8πG
½C _H

_HðtÞ þ CHH2ðtÞ�: ð4Þ

It plays the role of effective DE for the generalized
cosmological model. Despite the two equations above that
imply ωDE ¼ PDE=ρDE ≡ −1, the entropic-force model is
not a time varying vacuum model since it does not have a
ΛCDM limit; that is to say, we cannot obtain a constant ρDE
behavior at any time in its Hubble expansion history.
Let us emphasize at this point an issue previously

mentioned in passing, but one that is important when we
consider the status of the basic Eqs. (2) and (4). These
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equations are not necessarily derived from first principles,
such as a fundamental action. As a matter of fact, in the
most general entropic-holographic formulations [42,43],
one considers that the gravitational field equations are not
necessarily inferred from a fundamental action at the
present macroscopic level of description. The field equa-
tions can nevertheless provide, in principle, a fully sat-
isfactory account of all the basic phenomena known to date.
In such general “emergent gravity formulation,” the ulti-
mate origin of gravity is claimed to lie in some fundamental
degrees of freedom quite different from the metric varia-
bles, namely, degrees of freedom which are completely
unknown to us at present. In this sense, the field equations
under discussion are also thought of as just effective field
equations without having a known fundamental action
behind. However, we should also remark that these par-
ticular equations pertain to a restricted formulation of the
general entropic approach called entropic-force gravity, and
it is our aim to discuss the phenomenological status of this
restricted version of the entropic approach concerning the
cosmological implications first suggested in Ref. [40]. In
this sense, our conclusions concerning the phenomeno-
logical viability of these models cannot be extended
beyond the domain of this formulation.
Implicit herein is the fact that matter is not conserved in

the entropic-force models. Indeed, Eqs. (2) and (3) can be
used to show that matter and the effective DE (4) exchange
energy through the generalized conservation law:

_ρDE þ _ρm þ 3ð1þ ωmÞHρm ¼ 0: ð5Þ

This equation is, therefore, not an independent one, but
it is useful to show explicitly that there is a continuous
exchange of energy between matter and the generalized DE
given by Eq. (4). Such an equation is actually enforced by
the Bianchi identity, which implies ∇μ ~Tμν ¼ 0 for the total
energy-momentum tensor ~Tμν, obtained from the ordinary
matter contribution, Tμν, plus the variable DE density (4).
This is in contradistinction to what was assumed in [40].
Let us note that in [41] the treatment of the covariant matter
conservation law was different from the previous one by the
same authors in [40], and the modified law was presented in
the form

_ρm þ 3ð1 − CHÞð1þ ωmÞHρm ¼ 0: ð6Þ

However, this equation is only approximate. It can be easily
derived, e.g., from our Eqs. (3) and (4) after neglecting the
C _H contribution. Below we will present the exact solution
for ρm consistent with the full conservation Eq. (5), and
then (6) will ensue only as a particular case.
It is not difficult to show that Eqs. (2)–(4) can be

combined to produce the following differential equation
for the Hubble rate:

_H þ 3

2
ð1þ ωmÞ

1 − CH

1 − α
H2 ¼ 0; ð7Þ

where we have defined α ¼ 3
2
ð1þ ωmÞC _H. Using the

transformation from the cosmic time t to the scale factor
a through d=dt ¼ aHðaÞd=da in Eq. (7) and defining
EðaÞ ¼ HðaÞ=H0, we can easily present the solution of
Eq. (7) as follows:

EðzÞ ¼ ð1þ zÞ3ξω=2; ð8Þ

where z ¼ aðzÞ−1 − 1 is the redshift, and we have defined
the important parameters

ξω ¼ ξð1þ ωmÞ

ξ ¼ 1 − CH

1 − α
: ð9Þ

If we consider CH ¼ 3C _H=2 and ωm ¼ 0, then ξω ¼ ξ ¼ 1
and the above solution boils down to the Einstein–de
Sitter model.
The matter density in the entropic-force model is

evaluated from

ρmðzÞ ¼ −
1

8πGð1þ ωmÞ
dH2ðaÞ
d ln a

¼ 1þ z
3ð1þ ωmÞ

ρc0
dE2ðzÞ
dz

: ð10Þ

Computing this expression and subsequently using it for
solving Eq. (5), we can obtain the DE density as well. The
final results are

ρmðzÞ ¼ ρc0
1 − CH

1 − α
ð1þ zÞ3ξω ≡ ρm0ð1þ zÞ3ξω ð11Þ

ρDEðzÞ ¼ ρc0
CH − α

1 − α
ð1þ zÞ3ξω ≡ ρDE;0ð1þ zÞ3ξω : ð12Þ

In these expressions we identify in the matter era
(ωm ¼ 0, ξω ¼ ξ)

Ωm0 ¼
ρm0

ρc0
¼ 1 − CH

1 − α
¼ ξ; ð13Þ

ΩDE;0 ¼
ρDE;0
ρc0

¼ CH − α

1 − α
¼ 1 − ξ; ð14Þ

which clearly satisfy Ωm0 þΩDE;0 ¼ 1, as expected.
Furthermore, if one neglects C _H (hence, α≃ 0) we have
3ξω ≃ 3ð1 − CHÞð1þ ωmÞ, and then we recover—as a
particular case—the solution of the approximate Eq. (6)
pointed out by the authors of Ref. [41]. Finally, using
Eq. (8) the deceleration parameter q ¼ −ä=aH2 can be
equivalently computed from
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q ¼ −1 −
d lnH
d ln a

¼ −1þ 1þ z
EðzÞ

dEðzÞ
dz

¼ −1þ 3ξω
2

:

ð15Þ

It is evident that this cosmological model has no inflection
point in its cosmic history, i.e., a point where deceleration
can change into acceleration. This is because Eq. (15) is
redshift independent and, hence, the deceleration parameter
maintains sign throughout the cosmic history. As a result
the Universe always accelerates or always decelerates
depending on the value of ξω. In the matter dominated
era, namely, ωm ¼ 0 and ξω ¼ ξ, the accelerated expansion
of the Universe (q < 0) is obtained for ξ < 2

3
. But in such a

case we would also be admitting that the Universe has been
accelerating forever, which is of course difficult to accept.
Clearly, this feature is the main drawback of this model.
Finally, we would like to mention once more that in this

section we have discussed the background evolution via
Eqs. (2) and (3) of the DE models considered by the author
of the entropic-force models [40]. Although one could
define the DE in different ways, our aim was to show that
the nominal approach employed by the original authors, the
entropic-force model in which both kinds of Hubble terms,
_H and H2, appear in the effective DE, is in trouble. In this
context, the DE pressure is assumed to satisfy the vacuum
equation of state, namely, PDE ¼ −ρDE. This is important
since in the original model of [40], the above equation of
state was not mentioned. In our case, we make this
assumption, which is the minimum one we can do. In
fact, one can show that if another equation of state would be
used the kinds of problems that the entropic model has
would remain. For example, if the EoS parameter for the
DE would take some arbitrary constant value ωDE different
from minus one, this would just change the coefficient of
H2 in Eq. (7), but the solution (8) would take the same form
(with a slightly different expression for ξω) and, hence, the
deceleration parameter in Eq. (15) would still be indepen-
dent of the redshift. As a result, the absence of the inflexion
point between deceleration and acceleration would persist.

III. LINEAR MATTER PERTURBATIONS

Although finding the background cosmological solution
is of course important for our study, no less important is to
investigate the structure formation properties, as they play
an essential role in the cosmic history. If the entropic-force
model discussed in the previous section would be, e.g., the
late-time effective behavior of a more complete and
fundamental model, we could still ask ourselves quite
reasonably if the late-time behavior of that model is
compatible with the structure formation data (which is
collected precisely in that relevant period).
In this section we provide a detailed answer to such

question. To this end we discuss the perturbations in the
presence of an entropic-force DE. It will suffice to consider

perturbations only for matter, but we have to incorporate
the dynamical character of the effective DE in the matter
perturbation equations. In other words, the entropic-force
DE is considered variable, but homogeneous in first
approximation.
The general study of the linear perturbation equations for

a multicomponent fluid has been addressed, e.g., in [52],
and we will use the formulation in that paper here—see
Eqs. (17), (25), and (27) of that reference (see also
[37,53,54]). Let us apply those perturbation equations
for a system composed of the effective (entropic-force)
DE fluid and the matter fluid ρm ¼ ρmðtÞ, assuming that
there are matter perturbations δρm but no perturbation in
ρDE. Let us provisionally note here that the inclusion of
perturbations of the DE component in these kinds of
scenarios, with and without matter conservation, is also
possible [38,55,56], but it is not necessary for the present
study. We shall further comment below on the viability of
this approach.
In this section (and for the entire discussion on pertur-

bations), we just set ωm ¼ 0, corresponding to nonrelativ-
istic matter in the epoch of structure formation. The
relevant system of first order differential equations reads

_̂hþ 2Hĥ ¼ 8πGδρm

δ_ρm þ ρm

�
θm −

ĥ
2

�
þ 3Hδρm ¼ 0

ρm _θm þ ð_ρm þ 5HρmÞθm ¼ 0; ð16Þ

where ĥ is minus the time derivative of the trace of
the metric perturbation δgμν, and θm the divergence of
the perturbed matter velocity [52]. The last equation of the
system (16) can be readily rewritten as

_θm þ ð2H þQÞθm ¼ 0; ð17Þ

where we have used Eq. (5) for ωm ¼ 0 and defined

Q≡ _ρm þ 3Hρm
ρm

¼ −
_ρDE
ρm

: ð18Þ

Introducing the density contrast D≡ δρm=ρm, it is not
difficult to show that the first two equations of the system
(16) combined with (17) provide the following second
order differential equation for D:

D̈þ ð2H þQÞ _D − ð4πGρm − 2HQ − _QÞD ¼ Qθm: ð19Þ

This equation constitutes a generalization of the basic
equation for the matter perturbations in the presence of a
dynamical DE density. In the particular case when this term
is strictly constant, we have Q ¼ 0 and the above equation
shrinks to the standard one [57]
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D̈þ 2H _D − 4πGρmD ¼ 0; ð20Þ

which is valid both for CDM and ΛCDM cosmologies with
the corresponding Hubble function. However, when the DE
is time evolving, even if it is perfectly smooth, the correct
equation is no longer (20) but (19), a fact which is
somehow missed in some approaches in the literature.
The homogeneous version of (19) (i.e., with its rhs

equated to zero) was first obtained using a Newtonian
approach [53]. Herein we have generalized it within the
relativistic formulation in order to discuss if the homo-
geneous version can also be applied for the models under
consideration. First of all, we note that if jQj < 2H for all t,
then

φðtÞ≡
Z

ð2H þQÞdt > 0 ð21Þ

in any integration interval. Thus, if φðtÞ increases with
time, the solution of (17) is a decaying one:

θmðtÞ ∝ e−φðtÞ → 0: ð22Þ

In all these cases the product function Qθm on the rhs of
(19) can be safely neglected. For the class of DE models of
the form (4) we can estimate, from the definition (18) of Q,
that

jQj
H

∼
jC _HḦ þ CHH _Hj

H3
¼ jOðC _HÞ þOðCHÞj: ð23Þ

To substantiate the last step, let us differentiate the identity
_H þH2 ¼ −qH2. Using q ¼ −ä=aH2 and taking into
account that q≃ const in each epoch, it is easy to see that
Ḧ≃2ðqþ1Þ2H3. Together with H _H ¼ −ðqþ 1ÞH3, these
relations provide immediately the estimate (23). It basically
tells us that jQj=H ≪ 1. Of course this relation holds good
insofar as CH and C _H are expected to be small dimension-
less coefficients in the entropic-force scenario. Therefore,
Eq. (22) is warranted and we conclude that for the entire
class of DE cosmologies (4) we can virtually ignore the rhs
of the differential Eq. (19). Hereafter we set it to zero.
For convenience we rewrite the homogeneous form of

(19) in terms of the scale factor as an independent variable,
which we will use shortly. After straightforward algebra,
we arrive at the following expression:

DaaðaÞ þ
�
3

a
þHaðaÞ

HðaÞ þ QðaÞ
aHðaÞ

�
DaðaÞ

−
�
4πGρmðaÞ
H2ðaÞ −

2QðaÞ
HðaÞ − a

QaðaÞ
HðaÞ

�
DðaÞ
a2

¼ 0; ð24Þ

where Xa ¼ dX=da and Xaa ¼ d2X=da2. In particular,
notice that for CH¼C _H¼0, Eq. (18) tells us that Q ¼ 0
and then (24) reduces to the standard perturbation Eq. [57].

Let us now comment on the effective approach to
perturbations based on Eq. (24). Use of this equation implies
a treatment of matter perturbations in which the dynamical
vacuum energy density is included only at the background
level; that is to say, we do not consider the vacuum energy
perturbations. We proceed within this approximation
because it is the simplest possible way to discuss the
perturbations of the entropic models under consideration,
which are themselves effective models of the dark energy.
We keep in mind the results from previous calculations of
cosmic perturbations in models where the dark energy
component was also parametrized as a power series of the
Hubble function, with or without exchange of energy with
the matter component (and including in some cases a
possible time variation of the gravitational coupling). In
these studies (see Refs. [55,56]), it is found that the full
perturbative treatment of matter and dark energy perturba-
tions in two different gauges (synchronous and conformal
Newtonian) leads to consistent results. Furthermore, the
confrontation of the models with the basic cosmological data
produces similar results to those obtained from the effective
treatment where the dynamical character of the dark energy
is encoded as in Eq. (24) [37,38]. We do not exclude,
however, that ambiguities can still be present in the
perturbation equations and the assumptions made in their
derivation. As indicated in the aforementioned references,
the gauge issues can be important, and in our case the lack of
a manifest covariant formulation can also play a role in this
issue. For the usual scales explored in the analysis of the
matter power spectrum, at sub-Hubble domains, we assume
that our effective approach reflects the basic features.
Using (8), (11), and (12), Eq. (24) can be cast as follows:

a2DaaðaÞ þ
3

2
AaDaðaÞ −

3

2
BDðaÞ ¼ 0; ð25Þ

where

A ¼ 1þ 3CH − 4α

1 − α
¼ 4 − 3ξ;

B ¼ ð1þ CHÞð1 − 3CHÞ þ 4αð2CH − αÞ
ð1 − αÞ2

¼ ð3ξ − 2Þð2 − ξÞ: ð26Þ
We recall that ξω ¼ ξ (ωm ¼ 0) in the structure formation
epoch, with ξ defined in (9).
As a particular case, we consider the situation corre-

sponding to C _H ¼ 0 (α ¼ 0). In this case ξ ¼ 1 − CH,
and we immediately recover the results obtained for the
ρDE ∼H2 model studied in [37]. The corresponding
perturbations, Eq. (25), take the form

a2DaaðaÞ þ
3

2
ð1þ 3CHÞaDaðaÞ

−
3

2
ð1þ CHÞð1 − 3CHÞa2DðaÞ ¼ 0: ð27Þ
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The general solution reads

DðaÞ ¼ C1a1−3CH þ C2a−3ð1þCHÞ=2: ð28Þ

As we can see, for jCHj < 1 (the expected situation) only
the a1−3CH mode is a growing one, provided CH < 1=3
(equivalent to ξ > 2=3 for C _H ¼ 0). However, this option
for a growing mode is incompatible with having positive
acceleration (or q < 0) for this cosmology, as we have
shown in the previous section—see Eq. (15).
As a matter of fact, this situation will replicate for the

entire class of entropic models of the form Eq. (4) and not
only for those with C _H ¼ 0. Indeed, the general solution of
(25) is a linear combination of the modes arþ and ar− , with

r� ¼ 1

2

�
1 −

3

2
A�

ffiffiffiffi
Δ

p �
; Δ≡

�
1 −

3

2
A

�
2

þ 6B:

ð29Þ

We can check that for C _H ¼ 0 these modes reduce to the
ones found in the particular case (28).
In order to avoid oscillatory solutions in the general case

C _H ≠ 0, we will consider only situations in which the
discriminant Δ > 0. A growing mode solution of (25) will
exist if rþ > 0 and/or r− > 0. We have two possibilities:
(i) if B > 0, then rþ > 0 and r− < 0 irrespective of the sign
of 1 − 3A=2, so we have one growing mode; and (ii) if
B < 0 and 1 − 3A=2 > 0, we have two growing modes:
rþ > 0 and r− > 0. For completeness, we note that if
B < 0 and 1 − 3A=2 < 0, then rþ < 0 and r− < 0, and in
this case we have no growing modes at all.
Let us now analyze if any of the two possibilities (i) or

(ii) can be realized in practice. From the explicit form of B
as a function of ξ in Eq. (26), we can see immediately that
B > 0 is equivalent to require 2=3 < ξ < 2. However, this
is incompatible with the acceleration condition ξ < 2=3.
Thus, B > 0 is not acceptable.
Similarly, let us consider if the scenario (ii) is feasible.

The condition B < 0 implies either ξ < 2=3 or ξ > 2. Only
the first case is compatible with the positive acceleration
condition ξ < 2=3. However, let us recall that scenario
(ii) requires the additional inequality 1 − 3A=2 > 0 in order
to ensure the existence of growing modes. Using (26), the
latter inequality can be equivalently expressed as ξ > 10=9.
Therefore, the intersection of positive acceleration with the
existence of growing modes finally yields ξ > 2. But this
possibility is also unacceptable because from Eq. (13) we
realize that this would entail Ωm0 > 2 for entropic-force
scenarios. As a result all entropic-force scenarios with
values of Ωm0 in a reasonable range (in particular, the
favorite range Ωm0 ≃ 0.27–0.30) are incompatible with the
existence of growing modes for structure formation.
The upshot of this analysis is that there are no

acceptable phenomenological scenarios for the entropic-
force cosmology in its original formulation [40]. The

model fails both at the background level and at the
perturbation level. The last feature is important for the
following reason: if the failure at the background level
concerning the absence of a transition point from
deceleration to acceleration would be just the late-time
effective behavior of a more general model where the
transition would occur, not even this possibility would be
allowed since the model has no growing modes for the
structure formation in the late-time Universe. The core of
the problem stems once more from the structure of the
DE evolution law of the entropic-force model, Eq. (4),
which does not have an additive constant and, therefore,
has no ΛCDM limit for any value of the parameter space.

IV. AN ALTERNATIVE ENTROPIC MODEL

In the absence of a constant term in Eq. (4), the question
that we want to address now is the following: if we replace
the term C _H

_HðtÞ with C1HðtÞ, then is it possible to provide
a viable look-alike entropic-force model? Our aim is to see
if one can introduce a change in the structure of the model
(2) such that at least one (or maybe two) of the previous
problems can be fixed. Since higher powers ofH (sayH3 or
H4 [58]) can have no phenomenological significance in the
late Universe (as they are too small), we used just H. We
were motivated also by the fact that vacuum models with a
linear term in H have also been discussed previously in the
literature trying to explain the value of the cosmological
constant problem within QCD [59–62].
In this case, the corresponding effective DE density is

ρDEðtÞ ¼
3

8πG
½C1HðtÞ þ CHH2ðtÞ�; ð30Þ

where here C1 is of course a dimensionful new constant
with the same dimensions as H. Combining Eqs. (3), (5),
and (30), we find

_H þ 3

2
ð1þ ωmÞð1 − CHÞH2 −

3

2
C1H ¼ 0: ð31Þ

The solution of it is

HðtÞ ¼ C1

ξω

e3C1t=2

e3C1t=2 − 1
; ð32Þ

where ξω ¼ ξ1ð1þ ωmÞ with ξ1 ¼ 1 − CH. This parameter
is indicated distinctively with respect to the last section to
make clear that the structure of the model is indeed different
and, hence, the comparison with the data should produce in
general different numerical results.
Upon a new integration it is easy to prove that the scale

factor of the Universe becomes

aðtÞ ¼ a1ðe3C1t=2 − 1Þ2=3ξω ; ð33Þ
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where a1 is the constant of integration. Combining the
above equations, we are led to a first expression for the
Hubble function in terms of the scale factor:

HðaÞ ¼ C1

ξω

�
1þ

�
a
a1

�
−3ξω=2

�
: ð34Þ

Below we focus on the matter dominated epoch, namely,
ωm ¼ 0 and ξω ¼ ξ1. Evaluating Eq. (34) at the present
time (a≡ 1), we obtain

C1 ¼
ξ1H0

1þ a3ξ1=21

: ð35Þ

Since the current value of the DE density (30) must
match the measured value of the vacuum energy density
ρDEðt0Þ ¼ ρΛ0 ¼ ΩΛ0ρc0 ¼ ð1 −Ωm0Þ3H2

0=8πG, we can
determine the coefficients

a1 ¼
�

Ωm0

ξ1 −Ωm0

�
2=3ξ1

; C1 ¼ H0ðξ1 −Ωm0Þ: ð36Þ

As we can see, the two natural independent parameters of
this model to be fitted to the data are ðΩm0; ξ1Þ.
Using the relations (36) in (34), we obtain the explicit

form of the normalized Hubble parameter as a function of
the scale factor:

EðaÞ ¼ HðaÞ
H0

¼ 1 −
Ωm0

ξ1
þΩm0

ξ1
a−3ξ1=2: ð37Þ

It correctly satisfies Eða ¼ 1Þ ¼ 1 in the matter dominated
epoch.2 Obviously the following condition must hold: ξ1 >
Ωm0 (or CH < ΩΛ0).
Finally, using the above equations, the scale factor

of the Universe, normalized to unity at the present epoch,
becomes

aðtÞ ¼
�

Ωm0

ξ1 − Ωm0

�
2=3ξ1 ½e3H0ðξ1−Ωm0Þt=2 − 1�2=3ξ1 : ð38Þ

In the model under consideration, there exists a transition
epoch in which the Hubble expansion changes from the
decelerating to the accelerating regime (ä ¼ 0). This is in
contrast to the model considered in the previous section
based on the DE density (4). For the current model the
inflection point can be readily calculated from the explicit
form (37) setting q ¼ 0 in the formula (15). In contrast to
the previous model, in this case it does not give a constant

and, hence, it determines the following value of the scale
factor and corresponding redshift:

aI ¼
1

1þ zI
¼

�ð3ξ1 − 2ÞΩm0

2ðξ1 −Ωm0Þ
�
2=3ξ1

: ð39Þ

It becomes clear that the transition epoch is present only for
ξ1 > 2=3 (i.e., CH < 1=3).
While the model of the previous section was discarded

both at the background and perturbation levels from pure
analytical considerations, in the present case the model
cannot be ruled out on the same grounds and we have to
further check it by comparison with the cosmological data.
Using a joint statistical analysis, involving the latest

observational data (SNIa-Union2.1 [64], BAO [65,66], and
the Planck CMB shift parameter [8,63]), an efficient test
can be implemented. Notice that the corresponding cova-
riances can be found in Basilakos et al. [67] for the SNIa/
BAO data and in [63] for the Planck CMB shift parameter,
respectively. We find that the overall likelihood function
peaks at Ωm0 ¼ 0.296� 0.017, ξ1 ¼ 1.189� 0.008 with
χ2minðΩm0; ξ1Þ≃ 568.3, resulting in a reduced value of
χ2min=d:o:f: ∼ 0.97. With these numerical values we see
from (36) that C1 is of order H0, as could be expected. At
the same time we find that the transition epoch is taking
place at aI ∼ 0.47 which corresponds to a redshift
zI ∼ 1.13. This value is substantially higher than in the
case of the concordance ΛCDM model, namely,
zI;Λ ∼ 0.70. However, this is not the main problem; we
still have to attend the analysis of matter perturbations.

A. The growth factor

In light of the new growth data (as collected by [67]) we
compare the growth of matter fluctuations of the effective
entropic-force model with observations. Following the
procedure of [37,68], to which we refer the reader for
more details, we introduce the new variable

y ¼ expð3C1t=2Þ with 0 < y < 1; ð40Þ

and using Eqs. (3), (18), and (30), we can write

ρm ¼ 3C2
1y

ξ1ðy − 1Þ2

Q ¼ 3C1½ð2 − ξ1Þy − ξ1�
2ξ1ðy − 1Þ

_Q ¼ 9C2
1ðξ1 − 1Þy

2ξ1ðy − 1Þ2 : ð41Þ

Inserting Eqs. (40) and (41) into Eq. (19), we arrive at the
following differential equation:

2When we include later on the CMB shift parameter in the
statistical analysis we need to include the radiation component in
the Hubble function. We assume it is strictly conserved, i.e.,
ρr ¼ ρr0a−4, with Ωr0 ¼ 4.153 × 10−5h−2 [63] and h ¼ 0.674.
We can effectively include radiation in the context of Eq. (37) by
adding a term Ωr0ða−2 − 1Þ.
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3ξ21yðy − 1Þ2D00 þ 2ξ1ðy − 1Þð5y − 3ξ1ÞD0

− 2ð2 − ξ1Þð3ξ1 − 2yÞD ¼ 0; ð42Þ

where primes indicate derivatives with respect to the new
variable y. The latter is related with the scale factor as
follows:

y ¼ 1þ ξ1 − Ωm0

Ωm0

a3ξ1=2: ð43Þ

The decaying solution of Eq. (42) can be identified easily: it
reads D−ðyÞ ¼ ðy − 1Þðξ1−2Þ=ξ1 ∼ a3ðξ1−2Þ=2 for ξ1 < 8=3
(hence, CH > −5=3). Thus, the corresponding growing
mode of Eq. (42) is

DþðaÞ ¼ Ca3ðξ1−2Þ=2
Z

a

0

dx

x3ξ1=2E2ðxÞ ; ð44Þ

where

C ¼ 3Ω2
m0

2ξ1

�
ξ1 − Ωm0

Ωm0

�
2ð3ξ1−2Þ=3ξ1

: ð45Þ

We point out that in the limit when the linear term in the
Hubble function of the DE density (30) vanishes (C1 → 0),
the above formulas simplify dramatically. In this case the
cosmological solution takes on the much simpler form:

EðaÞ ∼ a−3ξ1=2; DþðaÞ ∼ a3ξ1−2: ð46Þ

The resulting DE model is of course coincident with
the situation C _H ¼ 0 studied for the model of Sec. III,
which was problematic because the existence of growing
modes is incompatible with having accelerated expansion;
see Eq. (28).
Finally, let us consider the evolution of the growth rate of

clustering, defined as fðaÞ ¼ d lnDþ=d ln a. It can be
computed from the growing mode solution (44). We find

fðaÞ ¼ 3ðξ1 − 2Þ
2

þ C
a2E2ðaÞDþðaÞ

: ð47Þ

In Fig. 1, we plot the growth data as collected by Basilakos
et al. (see [67] and references therein) with the estimated
growth rate function, fðzÞσ8ðzÞ. The solid line in the
figure corresponds to the aforementioned best fit values
for SNIa/BAO data and the Planck CMB shift parameter,
i.e., for ðΩm0; ξ1Þ ¼ ð0.296; 1.188Þ. We have included also
the prediction of the concordance ΛCDM model—see the
dashed line. Note that the theoretical σ8ðzÞ is given by
σ8ðzÞ ¼ σ8DðzÞ, where DðzÞ ¼ DþðzÞ=Dþðz ¼ 0Þ is the
growth factor scaled to unity at the present time, and σ8 is
the rms mass fluctuation on R8 ¼ 8h−1 Mpc scales at
redshift z ¼ 0. We use for it the Planck parametrization
value: σ8 ¼ 0.818 [69].

From the comparison it becomes clear that the present
growth data strongly disfavor the alternate entropic-force
DE model (30). The lack of structure formation near our
time is quite evident as compared to the concordance
ΛCDM model. If we, however, enforce that the model
optimally fits only the data on the growth rate, we find
ξ1 ≃ 1.01 and Ωm0 ≃ 0.73 (see the dotted line in Fig. 1).
Obviously, the obtained value of Ωm0 is far beyond the
acceptable physical range of values and, thus, it must be
rejected.
Let us also mention that the DE model (30) with ξ1 → 1

(i.e., CH → 0) reduces to that of Borges et al. [54,62] in
which the DE term is directly proportional to the Hubble
parameter, ρDEðaÞ ∝ HðaÞ. In this framework, we repeat
our joint statistical analysis by imposing ξ1 ¼ 1 into
Eq. (37), and we find that the overall fit provides Ωm0 ¼
0.30� 0.01, but with a poor quality: χ2minðΩm0Þ=
d:o:f:≃ 2.7. The main problem here is related with the
fact that the ρDEðaÞ ∝ HðaÞ model cannot accommodate
the CMB data. Indeed, using the Planck CMB shift
parameter alone, we find that the corresponding likelihood
function peaks at the totally unrealistic value Ωm0 ≃ 0.97,
which is ∼3.2 times larger than that provided by the
SNIaþ BAO solution Ωm0 ≃ 0.30.
Finally, the following observation is in order. The DE

models in which the energy density is strongly dependent
on odd powers of the Hubble rate are not favored from the
theoretical point of view [34–36], as it is impossible to fit
them into the covariant form of the effective action of QFT
in curved spacetime. If they contain a combination of even
and odd powers of H, one can treat the odd powers

FIG. 1. Comparison of the observed (solid points) and theo-
retical evolution of the growth rate fðzÞσ8ðzÞ. The solid line
corresponds to the alternate entropic-force DE model (30) for the
best fit values ðΩm0; ξ1Þ ¼ ð0.296; 1.189Þ discussed in Sec. IV.
The dotted line shows the predicted growth rate in the case of
ðΩm0; ξ1Þ ¼ ð0.73; 1.01Þ. For comparison we also plot the
ΛCDM (dashed line). We use σ8 ¼ 0.818 [69], while for the
ΛCDM case we set Ωm0 ¼ 0.272 [67].
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phenomenologically as representing, e.g., bulk viscosity
effects. However, only the even powers can have a
fundamental origin. In this sense, DE models based on
pure linear terms inH are not well motivated, and in fact we
find that they fit the main cosmological data poorly. We
have seen that after including theH2 term in it, as in Eq. (4),
the new DE density behaves better at the background level
since it provides an acceptable fit value around Ωm0 ∼ 0.3.
Notwithstanding, it does not pass the stringent test of the
structure formation data.
Overall, the above analysis points out that even if we

replace the term C _H
_HðtÞ in Eq. (4) with C1HðtÞ, the

modified DE model, namely, Eq. (30), is unable to fit
simultaneously the observational data on Hubble expansion
and structure formation.

V. CONCLUSIONS

In this work we have considered the entropic-force
model [39] and reanalyzed the implications as a possible
dark energy candidate in cosmology within the context of
[40]. We have found that in its original formulation, the
effective dark energy implied by such a model is not viable
either at the background level or at the cosmic perturbation
level. Specifically, the analysis of the deceleration param-
eter immediately detects a fundamental problem, to wit: the
expansion of the Universe always accelerates or always
decelerates. While this is of course a severe problem, it
might still be cured if such behavior were only the late-time
behavior of a more complete model where the transition
from deceleration to acceleration would be present.
However, a detailed analysis of the cosmic perturbations
furnishes also a negative result, and this may give the final
blow to the model: it turns out that the existence of growing
modes for structure formation is incompatible with the
accelerated expansion.
In an attempt to rescue some form of the entropic-force

DE model, we have also addressed a modification of its
energy density by replacing the time derivative term _H with
the linear term H, while keeping the H2 one. The modified
model is better behaved at the background level, because
there is a transition point from deceleration to acceleration
and, moreover, the best fit value of Ωm0 is near 0.3.
However, the modified model is once more unable to fit
the most recent growth data on structure formation. Let us
mention that if we would also suppress the H2 component
(i.e., if the DE density would be reduced to the linear term
in the Hubble function), then the best fit value of Ωm0 has
poor quality in the allowed region and runs completely out
of range (near 1) if we single out the CMB data.
In all these cases, the absence of an additive term in the

structure of the DE density lies at the root of the main

difficulties with these models. This constant is essential for
the transition from deceleration into acceleration. It is also
essential to provide a late-time linear growth rate that can
describe the structure formation data in a way that is
comparable to the ΛCDM model. If the structure of the
entropic-force models is corrected with an additive term,
i.e., if the DE density becomes an “affine function” of the
Hubble terms, ρDE ¼ c0 þ c1H þ c _H

_H þ c2H2, then these
models have a well-defined ΛCDM limit when the coef-
ficients of the H, _H, and H2 terms approach zero. These
modified models can be phenomenologically compatible
with the cosmological data [48,70].
Let us note that we have focused on the study of the

entropic-force models of the Λ type, i.e., such that the DE
density (4) has the equation of state ωDE ¼ −1, as in
Ref. [48]. One may consider other possible implementa-
tions [49,50], but to get a viable one it is unavoidable to
introduce in all cases an additive term. Unfortunately this
cannot be done in a natural way in the entropic-force
formulation.
Such situation is in stark contradistinction to the running

vacuum models based on the renormalization group in
semiclassical gravity in curved spacetime [10]. The latter
types of models have existed in the literature since long ago
—see [34–36] and references therein—and have been
successfully tested [37,38,55,56]. They naturally incorpo-
rate the additive term as an integration constant, namely, in
the affine form mentioned above, but only the even powers
of H (and the powers of _H) are allowed, as expected from
the covariant QFT formulation in a curved background.
The entropic-force models that have became popular

lately are actually a particular case of the running vacuum
models, as clearly discussed in [48]. This particular case,
however, proves to be phenomenologically inviable at the
background level and/or at the perturbation level, as we
have clearly demonstrated here. Even if other formulations
of the entropic models are possible, the main result, namely,
that simple combinations of pure Hubble terms H, _H, H2

are not sufficient for a complete description of the cosmo-
logical data, stays in force.
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