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Entropic singularities give rise to quantum
transmission
Vikesh Siddhu 1,2✉

When can noiseless quantum information be sent across noisy quantum devices? And at

what maximum rate? These questions lie at the heart of quantum technology, but remain

unanswered because of non-additivity— a fundamental synergy which allows quantum

devices (aka quantum channels) to send more information than expected. Previously, non-

additivity was known to occur in very noisy channels with coherent information much smaller

than that of a perfect channel; but, our work shows non-additivity in a simple low-noise

channel. Our results extend even further. We prove a general theorem concerning positivity

of a channel’s coherent information. A corollary of this theorem gives a simple dimensional

test for a channel’s capacity. Applying this corollary solves an open problem by characterizing

all qubit channels whose complement has non-zero capacity. Another application shows a

wide class of zero quantum capacity qubit channels can assist an incomplete erasure channel

in sending quantum information. These results arise from introducing and linking logarithmic

singularities in the von-Neumann entropy with quantum transmission: changes in entropy

caused by this singularity are a mechanism responsible for both positivity and non-additivity

of the coherent information. Analysis of such singularities may be useful in other physics

problems.
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Entropy is fundamental. As a measure of complexity in a
statistical distribution, entropy is widely used in learning
theory1,2, economics3,4, and cryptography5. In physics,

entropy usually quantifies disorder. It is used to express laws of
thermodynamics6–8, explore the nature of black holes9–11, and
study a variety of other physical phenomenon12–18. Advances in
understanding mathematical and computational properties of
entropy19–22 have opened the doors for deeper insights in physics
and many other areas of study.

One area where entropy provides key insights is information
science23. The Shannon entropy not only quantifies the amount
of classical information in a source, it also plays a fundamental
role in answering a key practical question: when, and at what
maximum rate can classical information be sent across noisy
communication channels? The maximum Shannon entropy
common between a channel’s input and output, called the
channel mutual information C(1), gives an achievable rate at
which error correcting codes can recover noiseless information
sent across many uses of a noisy channel.

The channel mutual information satisfies a crucial property,
additivity: the channel mutual information for two channels used
together is the sum of each. This additivity ensures that the
channel capacity C, defined as the best possible achievable rate,
simply equals the channel mutual information C(1). More
remarkably, additivity implies that the channel capacity com-
pletely specifies a classical channel’s ultimate ability to send
information. These implications are not only fundamental to our
understanding of noisy classical information but also critical to
the use of channel capacity as a benchmark for error correcting
codes. These codes are essential for storing and sending noiseless
classical information across noisy channels24,25.

The physical world is not classical but quantum mechanical. It
contains quantum information, which is strikingly different from
its classical counterpart26–29. In practice, noisy quantum devices
carry quantum information. These devices, which may send,
store, or process information, are modeled mathematically by
completely positive trace-preserving maps, also called (noisy)
quantum channels. While quantum information can be extremely
useful for computing and communication, it is notoriously error
prone. Consequently, there are both fundamental and practical
reasons to understand when and at what maximum rate can
noiseless quantum information be stored, processed, or sent
across noisy quantum channels30–36. Despite dedicated efforts,
there is no satisfactory answer to this basic question. The key
reason behind this unsatisfactory state of affairs is nonadditivity
in the quantum analog37,38, Qð1Þ, of the channel mutual infor-
mation C(1): for two noisy quantum channels B1 and B2 used in
parallel, the channel coherent information Qð1Þ satisfies an
inequality,

Qð1ÞðB1 � B2Þ≥Qð1ÞðB1Þ þQð1ÞðB2Þ; ð1Þ

which can be strict39. Like C(1), Qð1Þ is an entropic quantity,
however, it represents an achievable rate for correcting errors in
quantum information sent across a noisy quantum channel. A
channel’s quantum capacity Q is defined to be the best possible
achievable rate30. Nonadditivity of Qð1Þ makes Q difficult to
compute40,41, and more markedly it makes Q an incomplete
measure42 of a channel’s ability to send quantum information.

The difficulty in computing Q essentially comes from a strict
inequality in (1), found when B1 and B2 are tensor products of
the same channel B. Low–dimensional channels which display
this type of nonadditivity include a variety of very noisy qubit
channels including the depolarizing39,43, the dephrasure44 and
other qubit Pauli43,45,46 and generalized erasure channels47,48. As
a result, even when a channel B is relatively simple, its quantum

capacity QðBÞ must be obtained as the limit n↦∞ of a sequence
Qð1ÞðB�nÞ=n32–36. This limit, sometimes called a regularization
ofQð1Þ, can be particularly intractable: there are very noisy high
dimensional channels for which each term in this sequence can be
larger than the previous one49. In addition, for any integer k there

is a channel ~B for whichQð1Þð~B�kÞ ¼ 0 butQð~BÞ > 050. This type
of unbounded nonadditivity makes it hard to even check if a
channel’s quantum capacity is strictly positive or zero.

Challenges in computing and checking the positivity of a
channel’s quantum capacity can be circumvented in the special
case of (anti)-degradable channels51,52, PPT channels53, DSPT
channels54, and less noisy channels55. However, even if one
computes a channel’s quantum capacity, nonadditivity implies
that this capacity may be an incomplete measure of the channel’s
ability to send quantum information. Instances of nonadditivity,
i.e., a strict inequality in (1), have been found when B1 and B2 are
different channels, each having no quantum capacity. One
instance, called superactivation has been found when B1 is a PPT
channel and B2 is a zero capacity erasure or depolarizing
channel42,56. Another instance of nonadditivity has been found
where B1 is a rocket channel and B2 is an erasure channel57, both
channels are again very noisy, B1 has small quantum capacity
while B2 has none, but together they have coherent information
much larger than the sum of quantum capacities of each channel.

In the past, instances of nonadditivity found in very noisy
channels have shown that quantum information and channels
can display a type of synergy which is absent from their classical
counterparts. Nonadditvity has previously not been found in low-
noise channels, those with coherent information comparable to
the quantum capacity of a perfect (identity) channel with the
same input dimension as the channel. By contrast, in certain low-
noise channels nonadditivity has been shown to be absent58, and
in low-noise Pauli channels nonadditivity has been shown to be
of little practical relavance59. While the study of nonadditivity
remains of fundamental interest, methods for finding and
exploring nonadditivity are scant. In high dimensional and high
noise PPT and rocket channels, nonadditivity is found by using
the special structure of these channels. Whereas in qubit and
other low dimensional but high noise channels, methods based on
degenerate quantum codes45 and numerical searches60 can
identify nonadditivity, but these too can falter in simple cases of
interest47.

Strategies to check if a general channel has zero or nonzero
quantum capacity are limited61,62. To test if a channel has zero
quantum capacity, one can check whether the channel is PPT or
anti-degradable. For special channels these two checks can be
done algebraically52,62,63, but in general, they require numerically
solving a semi-definite program64. Even if one performs these
checks, their results can be inconclusive because there may exist
zero capacity channels that are neither PPT nor anti-degradable.
Testing if a channel has nonzero quantum capacity is tricky.
Except in very special circumstances, there are no algebraic tests.
Numerics can be used to check if a channel’s coherent informa-
tion is nonzero. However, these numerics can be unreliable, even
for low-dimensional qubit channels44,65,66 without unbounded
nonadditivity. For high dimensional channels numerics can be
expensive43,67 in addition to being unreliable50.

Seeking physical and mathematical mechanisms to find and
understand positivity and nonadditivity remains an enduring
challenge in quantum information science. While this challenge
tempers hopes for rapid progress on understanding quantum
capacities, it also presents an opportunity to introduce new ideas
for addressing this challenge.

In this work, we introduce a simple but key property of
the von-Neumann entropy, which we call a log-singularity
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(see Fig. 1), and show that changes in entropy are caused by log-
singularities are a mathematical mechanism responsible for both
positivity and nonadditivity of the coherent information. Utiliz-
ing this mechanism, (1) we provide an instance of nonadditivity
using a zero capacity qubit channel in parallel with a low-noise
qutrit channel with Qð1Þ=log 23 ’ 0:6; (2) we prove a general
theorem which gives algebraic conditions under which a quantum
channel must have strictly positive coherent information. A
corollary of this theorem gives a simple, dimensional test for
capacity. An application of this corollary provides a character-
ization of all qubit channels whose complement has nonzero
quantum capacity. A separate application of the theorem reveals
how a large class of zero capacity qubit channels can assist an
incomplete erasure channel in sending quantum information.

Results
Log-singularity. Let ρ(ϵ) denote a density operator that depends
on a real positive parameter ϵ, and SðϵÞ ¼ �TrðρðϵÞlog ρðϵÞÞ
denote its von-Neumann entropy. If one or several eigenvalues of
ρ(ϵ) increase linearly from zero to leading order in ϵ then a small
increase in ϵ from zero increase S(ϵ) by xjϵlog ϵj for some con-
stant x > 0; i.e., dSðϵÞ=dϵ ’ �xlog ϵ, and we say S(ϵ) has an
ϵ log -singularity with rate x. For instance, a qubit density
operator with spectrum (1− xbϵ, xbϵ), 0 ≤ ϵ ≤ 1 and 0 ≤ xb ≤ 1 has
an ϵ log -singularity of rate xb. A quart density operator with
spectrum (1− xcϵ, xcϵ/3, xcϵ/3, xcϵ/3) and 0 ≤ xc ≤ 1, has an
ϵ log -singularity of rate xc (also see Fig. 1).

The term ϵ log -singularity comes from the behavior where the
derivative of S(ϵ) with respect to ϵ is logarithmic in ϵ and this
derivative tends to infinity as ϵ tends to zero. While S(ϵ) is
continuous, the behavior of continuity bounds on S(ϵ) can be
dominated by ϵ log -singularities in the sense that changes in
continuity bounds can be essentially logarithmically in ϵ for small
ϵ (see Supplementary Note 2). For very small ϵ, this singularity
causes a sharp change in the von-Neumann entropy. Since this
sharp change occurs for very small parameter values ϵ, its effects
can be prohibitively hard to detect numerically. However, when
these effects appear, they dominate the behavior of the von-
Neumann entropy and the physics which may directly depend on
this entropy.

Understanding of the physics of sending noiseless quantum
information across a noisy quantum channel is aided by the
channel’s coherent information Qð1Þ. To define a quantum
channel and its coherent information, consider an isometry
J: a↦ b⊗ c that generates a pair of quantum channels B : a 7!b
and C : a 7!c, where each channel may be called the complement
of the other. These channels map an input density operator ρa to
outputs ρb :¼ BðρaÞ ¼ TrcðJρaJyÞ and ρc :¼ CðρaÞ ¼ TrbðJρaJyÞ,
respectively. The dimensions db and dc, of outputs b and c,
respectively are the ranks of BðIaÞ and CðIaÞ, respectively. These
are the smallest possible output dimensions required to define B
and C (in the notation of Def. 4.4.4 in68, db is the Choi-rank of C
and dc is the Choi-rank of B). These definitions make the channel
pair setting symmetric with respect to the replacement of one
channel in the pair with its complement. The coherent
information (or the entropy bias) of B at ρa,
ΔðB; ρaÞ :¼ SðρbÞ � SðρcÞ, maximized over density operators ρa
gives the channel coherent informationQð1ÞðBÞ.

When considering an input density operator, ρa(ϵ), we use a
concise notation SbðϵÞ :¼ SðρbðϵÞÞ, ScðϵÞ :¼ SðρcðϵÞÞ, and
ΔðϵÞ :¼ ΔðB; ρaðϵÞÞ ¼ SbðϵÞ � ScðϵÞ. At ϵ= 0 if ρa(ϵ) has rank
da, then by definition of db, rank of ρb(0) will be db (see
Supplementary Note 3), as a result, Sb(ϵ) will not have an
ϵ log -singularity. A similar argument shows if ρa(0) is rank da
then Sc(ϵ) does not have an ϵ log -singularity. When the rank of
ρa(0) is strictly less than da, then an ϵ log -singularity can be
present in Sb(ϵ) or Sc(ϵ) (see Fig. 2), or an ϵ log -singularity can be
present in both Sb(ϵ) and Sc(ϵ) in which case the ϵ log -singularity
with larger rate is said to be stronger.

Positivity of coherent information. Changes in the von-
Neumann entropy caused by log -singularities can act as a
mechanism which makes Qð1ÞðBÞ > 0 (see Fig. 3). To illustrate
this mechanism consider a convex combination of input density
operators ρ̂a and σa:

ρaðϵÞ ¼ ð1� ϵÞρ̂a þ ϵσa; ϵ 2 ½0; 1�: ð2Þ
This convex combination (2) leads to other such combinations,

ρbðϵÞ ¼ ð1� ϵÞρ̂b þ ϵσb and ρcðϵÞ ¼ ð1� ϵÞρ̂c þ ϵσc; ð3Þ
at the outputs of B and C, respectively. Let ρ̂a be a pure state, then
ΔðB; ρ̂aÞ ¼ 0 i.e., Δ(0)= 0 (see Supplementary Note 3). Assume
ρ̂a; σa; and the channel pair ðB; CÞ are such that an ϵ log -singu-
larity is present in Sb(ϵ) but not in Sc(ϵ); that is, for a small
enough increase in ϵ from zero, Sb(ϵ) increases by jOðϵlog ϵÞj but
Sc(ϵ) has no Oðϵlog ϵÞ increase. Thus, for small enough ϵ,

Fig. 1 Behaviour of the von-Neumann entropy in the vicinity of an
ϵ log-singularity. Two density operators ρb(ϵ) and ρc(ϵ) with spectrum
(1− xbϵ, xbϵ) and (1− xcϵ, xcϵ/3, xcϵ/3, xcϵ/3) respectively have entropies
Sb(ϵ) and Sc(ϵ) respectively, where 0≤ ϵ≤ 1. For fixed ϵ log -singularity
rates xb= 9/13 and xc= 6/13, of Sb(ϵ) and Sc(ϵ), respectively, a plot of
these entropies S(ϵ) as a function of ϵ. The inset shows the gradient of the
entropies as a function of log 2ϵ for small ϵ.

Fig. 2 Schematic for the reason behind an ϵ log -singularity. An input
density operator ρa(ϵ) is mapped by a channel B to a density operator ρb(ϵ)
and by the channel’s complement C to a different density operator ρc(ϵ).
Below each operator is a representation of its spectrum where closed and
open circles indicate eigenvalues that, for all 0≤ ϵ≤ 1, are nonzero and
zero, respectively. A circle with ϵ indicates an eigenvalue that increases
linearly from zero to leading order in ϵ. Since the spectrum of ρb(ϵ) has a
circle with ϵ, its von-Neumann entropy has an ϵ log -singularity.
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ΔðϵÞ ’ jOðϵlog ϵÞj > 0; since ΔðϵÞ≤Qð1ÞðBÞ, we conclude
Qð1ÞðBÞ > 0.

In the illustration above, let the channels B : a 7!b and C :
a 7!c be defined by an isometry L: a↦ b⊗ c of the form,

L 0j i ¼ 00j i; L 1j i ¼
ffiffiffi
2
9

r

01j i þ
ffiffiffi
7
9

r

10j i; and

L 2j i ¼ 1
ffiffiffi
2

p ð 02j i þ 13j iÞ;
ð4Þ

where f ij ig represents the standard basis, and ij
�� �

denotes
ij i � jji 2 b� c. Let [ψ] denote the dyad jψihψj. A channel input
of the form in (2) with ρ̂a ¼ ½0� and σ= (9[1]+ 4[2])/13 leads to
channel outputs of the form (3). These outputs ρb(ϵ) and ρc(ϵ)
have ϵ log -singularities with rates xb= 9/13 and xc= 6/13,
respectively (see Fig. 1). Since xb > xc, Qð1ÞðBÞ > 0, as shown in
Fig. 3.

In general, a log -singularity-based mechanism can make
Qð1ÞðBÞ > 0 if there is a channel input ρa(ϵ) for which Δ(0)= 0,
and either there is an ϵ log -singularity in Sb(ϵ) but not in Sc(ϵ) or
there is an ϵ log -singularity in both Sb(ϵ) and Sc(ϵ) but the one in
Sb(ϵ) is stronger, in either case, an argument similar to the one in
our illustration above implies that Qð1ÞðBÞ > 0. An analogous
log -singularity-based mechanism can make Qð1ÞðCÞ > 0. In
principle, this mechanism can be applied to a quantum channel
B, regardless of how small or largeQð1ÞðBÞmay be. In practice, we
find that the above mechanism applies in a general situation
presented next.

Theorem 1. If a quantum channel B, with output and environ-
ment dimension db and dc respectively, maps some pure state to
an output of rank dc < db, then Qð1ÞðBÞ > 0.

This theorem applies quite generally, including cases where
db ≥ dc. In these db ≥ dc cases, a channel B’s coherent information
is strictly positive if the theorem holds for any sub-channel of B.
There are simple examples (for instance see Supplementary
Note 4) of channels with db= dc where the above theorem
applies.

Theorem 1 can be applied to the incomplete erasure channel
CðρÞ ¼ λρ� ð1� λÞC1ðρÞ47 whose output is split into two
orthogonal subspaces (see Fig. 4). The channel’s input is sent
unchanged to the first subspace with probability λ, else it is sent
via a noisy channel C1 to the second subspace. This channel C is
relevant for describing noise in experiments where the channel
user knows if noise has acted or not.

Suppose the incomplete erasure channel C has a qubit input
and C1 is any zero quantum capacity qubit channel with a qubit
environment63. Any such qubit channel C1 has a noise parameter
0 ≤ p ≤ 1/2; where at p= 0, C1 erases its input by taking it to a
fixed pure state, making C a regular erasure channel. This regular
erasure channel has zero coherent information, i.e., Qð1ÞðCÞ ¼ 0
when λ is below a threshold λ0= 1/269. As the noise in C1 is
decreased by continuously increasing p, this threshold is expected
to decrease continuously. While ordinary numerics may seem to
confirm this expectation, simple use of Theorem 1 shows that for
any p > 0, Qð1ÞðCÞ > 0 for any λ > 0, i.e., an arbitrarily small
increase in p from zero shifts the threshold value from λ0= 1/2 to
λ0= 0. This discontinuous shift doesn’t appear in standard
numerics because for small p, Qð1ÞðCÞ can be as small as
O(e−1000)47, a number much beyond ordinary numerical
precision. Such discontinuous shifts reveal an unexpected
behavior: a channel C1 which can’t send quantum information
on its own, i.e., it has no quantum capacity, can nonetheless assist
an incomplete erasure channel in sending quantum information.
Such assistance was found previously for two specific qubit
channels C1 using arguments tailored for those specific
channels44,47. Our argument here generalizes those results and
points to log -singularities as a generic mathematical cause behind
this assistance. This assistance is particularly intriguing because it
occurs for a wide variety of zero capacity qubit channels C1 but
doesn’t occur for arbitrary zero capacity channels. For instance,
when C1 is a zero quantum capacity erasure channel with
arbitrary input dimension and erasure probability μ ≥ 1/2,
Qð1ÞðCÞ ¼ 0 for 0 ≤ λ ≤ 1− 1/(2 μ).

To check if a channel B : a 7!b has strictly positive coherent
information one may numerically find an input density operator
ρ for which the entropy difference ΔðB; ρÞ > 0. This numerical
search can be unreliable because ΔðB; ρÞ is generally non-convex
in ρ and ΔðB; ρÞ can be affected by log -singularities. The search
can also be expensive for channels with large input and output
dimensions. A corollary of Theorem 1 gives an algebraic result
revealing a wide and simple set of channels with large output
dimension and nonzero coherent information:

Fig. 3 Illustration of log -singularity-based mechanism behind positivity
of the channel coherent information. For the channel B defined by
isometry in eq. 4, the entropy difference Δ(ϵ)= Sb(ϵ)− Sc(ϵ) for density
operators below eq. 4 as a function of ϵ is plotted above. Here Sb(ϵ)
and Sc(ϵ) have the same entropy at ϵ= 0 and they both have ϵ log
-singularities. The singularity in Sb(ϵ) has a rate xb= 9/13 which is higher
than xc= 6/13, the rate of the singularity in Sc(ϵ). This higher rate xb makes
both Δ(ϵ) and Qð1ÞðBÞ strictly positive for small ϵ, even though for larger ϵ,
Δ(ϵ) < 0.

Fig. 4 Incomplete erasure channel C. Channel C’s input A, with probability
λ goes via I (the identity channel) to an output subspace as A, or else via C1
(a noisy channel) to an orthogonal subspace as C1ðAÞ. When C1 ¼ T
(where T ðAÞ ¼ TrðAÞ 0j i 0h j) then C becomes the usual erasure channel
with erasure probability 1− λ, whose quantum capacity is zero for λ≤ 1/2.
However, an application of Theorem 1 shows that as C1 is changed from T
to one of several different zero capacity qubit channels, coherent
information of C becomes positive for all λ > 0.
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Corollary 1. Any channel B has Qð1ÞðBÞ > 0 if its input dimen-
sion da > 1 and output dimension db > da(dc− 1).

This result is easy to apply: given a channel one simply uses its
dimensions to check if the channel satisfies the conditions of
Corollary 1. For instance, Corollary 1 implies that any channel
whose output dimension is larger than its input dimension has a
strictly positive Qð1Þ whenever the channel’s environment is a
qubit, i.e., dc= 2.

Qubit channels are extremely useful for characterizing noise in
experiments. Despite the vast body of work dedicated to studying
the capacity of qubit channels63,70–74, a basic question has
remained open: when does the complement of a qubit channel
have nonzero quantum capacity? Corollary 1, in conjunction with
prior work63, answers this question. If the complement of a qubit
channel has output dimension 1 or 2, then conditions under
which this complement has nonzero capacity can be found in
ref. 63; for all remaining cases, Corollary 1 (see Supplementary
Note 4) shows that the complement has strictly positive coherent
information and quantum capacity. This positivity result contains
as a special case the results of65 which showed that any qubit
Pauli channel B with dc= 3 or 4 has a complement with positive
channel coherent information.

Nonadditivity of coherent information. A mechanism based on
log -singularities can give rise to nonadditivity of Qð1Þ. For two
(possibly different) quantum channels B1 and B2, let

Qð1ÞðB1Þ ¼ ΔðB1; ρ
�
a1Þ; and Qð1ÞðB2Þ ¼ ΔðB2; ρ

�
a2Þ; ð5Þ

for some density operators ρ�a1 and ρ�a2 and let B :¼ B1 � B2.
Choose ρa(ϵ) at the input of B with the property that ρað0Þ ¼
ρ�a1 � ρ�a2 and Sb(ϵ) has a stronger ϵ log -singularity than Sc(ϵ),
then a small enough increase in ϵ from zero will increase Δ(ϵ)
from Qð1ÞðB1Þ þQð1ÞðB2Þ by jOðϵlog ϵÞj indicating a strict
inequality in (1). This log -singularity-based mathematical
mechanism responsible for nonadditivity requires Sb(ϵ) to have
an ϵ log -singularity. As stated earlier, this requirement can be
satisfied if ρa(0) has less than full rank. A condition satisfied by
several channels with zero and nonzero coherent information.
This mechanism will now be used in an explicit instance of
nonadditivity using two channels, one with zero and another with
large positive coherent information.

To present this instance of nonadditivity, we introduce a low-
noise qutrit channel B1 whose coherent information is compar-
able to that of a qutrit identity channel. This channel’s
superoperator B1ðρÞ ¼ Trc1ðJ1ρJy1Þ comes from an isometry
J1: a1↦ b1⊗ c1 of the form,

J1 0j i ¼ ffiffi
s

p
00j i þ

ffiffiffiffiffiffiffiffiffiffi
1� s

p
11j i; J1 1j i ¼ 21j i; and

J1 2j i ¼ 20j i; ð6Þ

where 0 ≤ s ≤ 1. Since an exchange of s with 1− s can be achieved
by local unitaries in a1, b1, and c1, we restrict ourselves to
0 ≤ s ≤ 1/2. The channel coherent informationQð1ÞðB1Þ is given by
its entropy difference ΔðB1; ρ

�
a1Þ where ρ�a1 ¼ ð1� wÞ½0� þ w½1�,

0 <w < 1 (see Supplementary Note 5). At s= 0, Qð1ÞðB1Þ ¼ 1 and
decreases monotonically with the noise parameter s to become
≃0.695 at s= 1/2. These values of Qð1ÞðB1Þ bound the quantum
capacity of B1 from below and they are comparable to the
quantum capacity, log 23, of the qutrit identity channel.

A log -singularity-based argument stated earlier shows that
using B1 in parallel with B2, a zero quantum capacity qubit
amplitude damping channel with damping probability p ≥ 1/2,
results in nonadditivity, i.e., a strict inequality in (1) for all
0 < s ≤ 1/2 and 1=2 ≤ p < �pðsÞ (see Fig. 5 and Methods Section).
This nonadditivity has several interesting features. First, it shows

the existence of previously unknown nonadditivity when using a
low-noise channel. Second, the nonadditivity reported here
fosters a more nuanced understanding of quantum capacity.
Even in a setting using very simple low-dimensional channels, the
quantum capacity provides an incomplete description of a
channel’s ability to send quantum information. As shown here,
despite having no quantum capacity, the qubit amplitude
damping channel B2 does posses a separate ability to assist
transmission of quantum information when used in parallel with
a simple qutrit channel B1. Third, the nonadditivity here is robust
against amplitude damping noise: additional amplitude damping
noise beyond p= 1/2 does not immediately destroy this
nonadditive effect which survives till p < �pðsÞ. Fourth, this
instance of nonadditivity has a very wide range: it is present
over the entire parameter space of the qutrit channel B1, except at
a single point s= 0. Fifth, numerical techniques, which are
commonly used to find nonadditivity, can easily miss this wide
range of nonadditivity which appears because of changes in
entropy caused by log -singularities.

Discussion
We have discussed logarithmic (log ) singularities that occur quite
generally in the von-Neumann entropy of any density operator
being moved linearly from the boundary to the interior of the set
of density operators. In the region where this singularity occurs, it
dominates the behavior of the von-Neumann entropy. This kind
of dominance can be used to extract insights about physics which
depends on this entropy. We have investigated the physics of
sending quantum information. Our investigation leads to an
insight that log -singularities act as a mathematical source behind
both positivity and nonadditivity in a channel’s coherent infor-
mation. An analysis of log -singularities could potentially be
useful in other areas where the von-Neumann entropy plays a
central role. One area of this type is the study of continuous
variable channels. Capacities of these channels remain an active
area of research75–81, and these capacities also display a variety of
exotic behaviour82, including superactivation83–85. Extending our
log -singularity ideas to investigate such exotic behavior would be
an interesting direction of future work.

Checking if any general channel has nonzero or zero quantum
capacity is a fundamental but hard problem. While some general
methods have been proposed to solve this problem61, they are not
always easy to apply and don’t necessarily lead to new channels
with zero or positive quantum capacity. By contrast, the algebraic
log -singularity-based method proposed here is easy to apply and
it unearths a variety of channels with positive quantum capacity.
Using it, we give Theorem 1 which reveals certain general con-
ditions for strict positivity of a channel’s coherent information.

Fig. 5 Nonadditivity in a low-noise channel. For the low-noise qutrit
channel B1 with noise parameter 0 < s≤ 1/2, 0:695 � Qð1ÞðB1Þ < 1 and
qubit amplitude damping channel B2 with damping probability 1/2≤ p≤ 1,
Qð1ÞðB2Þ ¼ QðB2Þ ¼ 0, we find Qð1ÞðB1 � B2Þ to be strictly larger than
Qð1ÞðB1Þ þQð1ÞðB2Þ when 1=2 � p � �pðsÞ with �pðsÞ plotted above.
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Corollary 1 of Theorem 1 unearths a wide variety of channels
with strictly positive coherent information. Corollary 1 only
makes use of a channel’s dimensions. Extending this corollary, for
example by showing Qð1ÞðBÞ > 0 for some db > dc, would be an
interesting direction of future research. Yet another direction
would be to supplement our mathematical log -singularity rea-
soning with more physical arguments. Such reasoning may help
explain the positivity of Qð1Þ found in the incomplete erasure
channel and clarify why the simplest zero capacity channels
behave differently from others when used as part of the incom-
plete erasure channel. This clarification may provide further
insights into the transmission of quantum information. Another
source of insight may be a quantitative analysis of bounds on the
quantum capacity59,64,86–91 of the incomplete erasure channel or
some other channel where a log -singularity-based mechanism is
responsible for strict positivity of the channel’s coherent infor-
mation. In certain cases, log -singularities can dominate
continuity-based bounds on the coherent information and it
would be interesting to see if such effects also appear in continuity
bounds on a channel’s quantum capacity86.

Using log -singularities, we have shown that the coherent
information and quantum capacity of several channels is nonzero.
It follows that the two-way quantum capacity30 and the private
capacity36 of these same channels are also nonzero. These obser-
vations comes from the simple fact that the quantum capacity of a
channel is a lower bound on the channel’s private and two-way
quantum capacities. These other capacities are even less under-
stood than the quantum capacity and our log -singularity-based
analysis could prove useful in their investigation. For instance, the
reverse coherent information92, which is a lower bound on the
two-way quantum capacity, may yield to a log -singularity-based
analysis, similar to the one performed here. Admittedly, our
log -singularity-based method for showing positivity of capacity
does not solve the general problem of finding all channels with
strictly positive capacity. Results concerning unbounded
nonadditivity49,50 temper hopes about the existence of an easy to
apply but a completely general method for checking positivity of
the quantum capacity. Our work nonetheless points out that such
tempering need not hinder progress in finding new, interesting,
and potentially insightful instances of channels with strictly
positive quantum capacity.

Another aspect of our findings is how changes in the von-
Neumann entropy caused by log singularities is a mathematical
mechanism responsible for nonadditivity. Prior search for such
mechanisms have focussed on the structure of special
channels42,56,57 used for obtaining nonadditivity or on the use of
certain tailored quantum codes45,60,93. We open another direction
by showing how a fundamental property of the von-Neumann
entropy can lead to nonadditivity. This log -singularity property
can be analyzed to find nonadditivity in channels with large, small,
or no quantum capacity. The algebraic nature of this analysis
allows us to identify nonadditivity over wide ranges of a channel’s
parameter, without the need for traditional numerics43,46,67. While
our work opens one path, it is not the only path forward. We leave
open the exciting but challenging possibility of finding other
mathematical and physical principles that may explain non-
additive effects in quantum information science.

Unlike prior work, nonadditivity of the coherent information
reported here occurs in a low-noise channel. From a fundamental
physics perspective, nonadditivity using the product of one low-
noise channel with another low-dimensional but zero capacity
qubit amplitude damping channel is surprising because it implies
that even in such a simple setting the quantum capacity of the
amplitude damping channel does not fully characterize its
resourcefulness for sending quantum information.

This simple example adds to the collection of exotic channels
from which further physics can be extracted. In principle, this
low-dimensional and low-noise channel can be experimentally
realized. Given the practical relevance of low-noise channels, our
finding of nonadditivity in such channels suggests that non-
additivity is not just a fundamental curiosity but a potential
resource for quantum technologies.

Methods
Proof of Theorem 1. A log -singularity-based mechanism responsible for making a
channel’s coherent information strictly positive is the key ingredient in the proof
of Theorem 1. Assume dc < db and B maps some pure state [ψ]a to an output
Bð½ψ�aÞ of rank dc. Consider an input density operator ρa(ϵ) of the form in eq. 2
where ρ̂a is the pure state [ψ]a and σa= Ia/da. The outputs ρb(ϵ) and ρc(ϵ) have the
form in (3) where ρ̂b and ρ̂c have the same rank dc, σc, and σb have ranks dc and db,
respectively (see para 3 in Methods Section). As a result Sb(ϵ) has an ϵ log -sin-
gularity while Sc(ϵ) doesn’t, consequently Qð1ÞðBÞ > 0. The absence of an
ϵ log -singularity in Sc(ϵ) follows from the fact that at ϵ= 0, ρc(ϵ) is a rank dc
operator ρ̂c. To notice the presence of an ϵ log -singularity in Sb(ϵ), it is helpful to
rewrite ρb(ϵ) in eq. 3, as

ρbðϵÞ ¼ ρ̂b þ ϵωb; ð7Þ
where

ωb :¼ σb � ρ̂b: ð8Þ
At ϵ= 0, ρb(ϵ) is ρ̂b , which has db− dc zero eigenvalues. Corresponding to these
zero eigenvalues is an eigenspace of dimension db− dc > 0. Let P0 be a projector
onto this eigenspace and

~ωb :¼ P0ωbP0 ¼ P0σbP0: ð9Þ
Since σb has rank db, the operator ~ωb is positive definite on the support of P0, thus
~ωb has (db− dc) strictly positive eigenvalues {ei}. Elementary results from per-
turbation theory (for instance see Section 5.2 in ref. 94) show that all db− dc zero
eigenvalues of ρb(ϵ) at ϵ= 0 become nonzero for positive ϵ, and to leading order in
ϵ these eigenvalues increase linearly such that the ith such eigenvalue is simply ϵei.
As a result, Sb(ϵ) has an ϵ log -singularity.

Nonadditivity. A log -singularity-based mechanism is responsible for nonadditivity
(1) when B1 and its complement C1 are channels defined by J1 in (6) and B2, along
with its complement C2, are defined an isometry J2 : Ha2 7!Hb2 �Hc2 of the form,

J2 0j i ¼ 00j i; J2 1j i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
10j i þ ffiffiffi

p
p

01j i: ð10Þ
Here B2 represents a qubit amplitude damping channel with damping probability
p. We shall be interested in the parameter region 1/2 ≤ p ≤ 1 where B2 is anti-
degradable and Qð1ÞðB2Þ ¼ QðB2Þ ¼ 063. Consider the channel pair
B ¼ B1 � B2; C ¼ C1 � C2, with channel input

ρaðϵÞ ¼ ð1� wÞ½00�a þ w½χϵ�a; ð11Þ
where

χϵ
�� �

a
¼

ffiffiffiffiffiffiffiffiffiffiffi
1� ϵ

p
10j ia þ

ffiffiffi
ϵ

p
21j ia; ð12Þ

0 ≤ ϵ ≤ 1, and w is chosen such that at ϵ= 0,

ρað0Þ ¼ ðð1� wÞ½0�a1 þ w½1�a1Þ � ½0�a2 ¼ ρ�a1 � ρ�a2; ð13Þ
i.e., Δð0Þ ¼ Qð1ÞðB1Þ þQð1ÞðB2Þ. For any ϵ > 0 and s > 0, an eigenvalue ðð1� pÞwÞϵ
of ρb(ϵ) and an eigenvalue (pkw)ϵ,

k ¼ ð1� sÞð1� wÞ=ðwþ ð1� sÞð1� wÞÞ < 1; ð14Þ
of ρc(ϵ) increases linearly from zero to leading order in ϵ. Thus Sb(ϵ) has an
ϵ log -singularity of rate (1− p)w and Sc(ϵ) has a ϵ log -singularity of rate pkw. The
ϵ log -singularity in Sb(ϵ) is stronger when p < �pðsÞ ¼ 1=ð1þ kÞ (plotted in Fig. 5).
This stronger singularity implies nonadditivity, i.e., a strict inequality in eq. 1.

Data availability
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Code availability
Source code for the plots in this study are available on a Github repository, https://
github.com/vsiddhu/logSing.
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