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The entropy of a hierarchical network topology in an ensemble of sparse random networks, with “hidden
variables” associated with its nodes, is the log-likelihood that a given network topology is present in the chosen
ensemble. We obtain a general formula for this entropy, which has a clear interpretation in some simple
limiting cases. The results provide keys with which to solve the general problem of “fitting” a given network
with an appropriate ensemble of random networks.
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I. INTRODUCTION

Entropy is a key concept in information theory �1� and in
the theory of dynamical systems �2�. In information theory,
the problem of inference of a probability distribution on the
basis of a finite number of independent observations is usu-
ally addressed using the maximum-likelihood principle or
via the minimization of the Kullback-Leibler distance be-
tween a given �empirical� distribution and an inferred one.
Recently, several studies have extended the tools of informa-
tion theory along these lines in order to measure the perfor-
mance of filtering procedures of correlation matrices in the
case of multivariate data �3,4�. In the framework of graph
theory large deviations of the ensemble of random Erdös and
Renyi graphs where derived by studying the free energies of
statistical mechanics models defined on them �5,6�. There is
now increased interest, in the community of complex net-
works �7–9�, in the definition of entropy measures that are
related to the networks’ topological structure �10� or to dif-
fusion processes defined on them �11�. The inference prob-
lem applied to complex networks can be formulated as the
identification of the ensemble of networks which retains the
essential structural characteristics and complexity of a given
real network realization. The identification of this ensemble
is an active field of research. One aims to fit a given specific
network with a suitable network ensemble that retains some
information on its structure. Newman and Leicht have pro-
posed this approach to find the community structure in a
given network �12�. Later, this method was extended to de-
fine ensembles of networks that have other topological char-
acteristics in common with the real network, such as the
degree sequence and/or the degree correlations. As we add
further features that a desired ensemble is to have in common
with a given real network, we effectively consider ensembles
with decreasing cardinality. The cardinality of an ensemble
of networks with a given topology has attracted the attention
of the graph theory community �13–15� and more recently
also of the statistical mechanics community �10�.

In this paper we evaluate the entropy of a given hierarchi-
cal topology in a “canonical” or “hidden variable” ensemble;
i.e., we calculate the normalized logarithm of the probability
that a given topology appears in this ensemble. By hierarchi-

cal topology we will mean the set of the generalized degrees
of the nodes, defined as the sequence ki= �ki

1 ,ki
2 , . . . ,ki

L� of
the number of nodes at distance 1 ,2 , . . . ,L from the node i.
The canonical or hidden variable �16–20� ensembles are a
generalization of the G�N , p� ensemble for heterogeneous
nodes. The hetereogeneity of the nodes is described in terms
of some hidden variables xi, defined on each node i of the
network, and the probability pij of a link between a node i
and a node j is not p as in G�N , p�, but it is a general func-
tion Q�xi ,xj� of the hidden variables at i and j nodes. These
ensembles correspond to networks which satisfy soft con-
straints; for example, the degree of a node is not fixed, but
only the average degree of each node is fixed, allowing for
Poissonian fluctuations.

We derive a general formula for the entropy of a given
topology in a canonical ensemble using ideas and methods
from the study of diluted combinatorial optimization prob-
lems and statistical mechanical systems on sparse networks
�21–41�. In the simple case where we study the likelihood of
a degree distribution of a network belonging to the chosen
ensemble the entropy is found to be the Kullback-Leibler
distance between the probability distribution of the degrees
and the expected probability of the typical topology of the
network.

The paper is structured as follows: in Sec. II we introduce
the definition of the problem, in Sec. III we provide the
asymptotic entropy expression of the network topology in a
given ensemble, in Sec. IV we study the form that the en-
tropy takes in special and relevant cases, and the conclusions
are presented in Sec. V.

II. FORMULATION OF THE PROBLEM
AND DEFINITIONS

To model the essential properties of a real network it is
useful to think of it as an instance of an ensemble of net-
works. The ensemble can be either “microcanonical” or “ca-
nonical” depending on whether the networks in the ensemble
are subject to hard or soft constraints. The main example of
what we call a microcanonical ensemble is G�N ,M� where
the number of links is fixed to be exactly M, and the main
example of a canonical ensemble is G�N , p� in which only
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the average number of links �M�= pN�N−1� /2 is fixed.
These ensembles can be generalized to ensembles of random
graphs with a given degree sequence and with a given hidden
variable distribution. In this paper we will calculate the en-
tropy of a given network topology �defined in terms of its
hierarchical structure� in a general canonical ensemble. This
entropy is defined as the probability that the given network
topology is found in the canonical network ensemble under
consideration.

A. Canonical ensembles

We consider networks characterized by N nodes �or
“sites”�, labeled i=1, . . . ,N, and a symmetric matrix c with
entries cij � �0,1� that specify whether �cij =1� or not �cij
=0� nodes i and j are connected. We choose cii=0 for all i.
We write the set of all such undirected networks as G
= �0,1�N�N−1�1/2. On this set G we introduce the following
probability measure, in order to define an ensemble �G ,W� of
random networks:

W�c	�x�� = 

i�j

� c

N
Q�xi,xj��cij,1

+ �1 −
c

N
Q�xi,xj��cij,0� .

�1�

Note that this definition obeys �cW�c 	 �x��=1 for all �x�. In
�1� the �x�= �x1 , . . . ,xN� represent hidden variables, drawn for
each site independently with statistics p�x� to be defined
later, and the function Q�x ,x���0 is chosen such that
�xx�p�x�p�x��Q�x ,x��=1. The latter condition ensures that
asymptotically c represents the average connectivity—viz.,
limN→��N−1�ijcij�=c. Note that throughout this paper the
hidden variables �xi� can be scalar, discrete, or multidimen-
sional.

B. Hierarchical constraints topologies

Next we introduce a hierarchy of single-site observables
with the objective to characterize with increasing precision
the local topology of a network c�G. They can be inter-
preted as generalized degrees ki�c�= (ki

1�c� , . . . ,ki
L�c�) of in-

dividual nodes i:

ki
��c� = �

j1¯j�

cij1
cj1j2

¯ cj�−1j�
� �0,1,2, . . . ,N�� . �2�

In the absence of local loops, ki
��c� measures the size �mea-

sured in number of nodes� of the local environment of node
i, at a distance of � links. However, in this tree the nodes are
counted with a multiplicity equal to their number of descen-
dants encountered; similarly, in the case of local loops, nodes
that can be visited from site i via multiple routes of length
�� are counted with this multiplicity. Note that ki

1�c�=� jcij
is the ordinary degree of node i and that �2� can also be
written as

ki
1�c� = �

j

cij, ki
�+1�c� = �

j

cijkj
��c� . �3�

By definition, if ki
1�c�=0, then ki

��c�=0 for all �. It is now
natural to characterize the global topology of a network c

either by giving its N generalized degree vectors
�k1�c� , . . . ,kN�c�� themselves or by giving the collective gen-
eralized degree statistics, conditioned on the values of the
hidden variables—i.e.,

P�k	x,c� = P�k1, . . . ,kL	x,c� =
1

Np�x��i=1

N

�k,ki�c���x − xi� ,

�4�

where we adopt the convention that always k= �k1 , . . . ,kL�
�NL, unless indicated otherwise. Note that the definition �4�
obeys �kP�k 	x ,c�=1 for all x and c.

C. Entropy of a network contraint topology
in a given ensemble

Our goal is to quantify to what extent the above charac-
terization of networks, by the generalized degrees �k�
��k1 , . . . ,kN� or by the degree statistics PL�k�, specifies their
microstructure. This can be measured by the effective num-
ber of networks in the ensemble �G ,W� that meet the relevant
contraints—i.e., �apart from a constant� by the Boltzmann
entropies:
constrain degrees:

�L��k�	�x�� =
1

N
ln �

c�G
W�c	�x��


i

�ki,ki�c�, �5�

constrain statistics:

�L�P	�x�� =
1

N
ln �

c�G
W�c	�x��


k,x
��P�k	x� − P�k	x,c��

=
1

N
ln �

k1¯kN



k,x

��P�k	x� −

�
i

�k,ki
��x − xi�

Np�x�
�

�eN�L��k�	�x��. �6�

The larger �L�¯�, the larger the effective number of graphs
with the imposed global topology—viz., �ki� or P�k 	x�—so
the less specific is the proposed macroscopic topology char-
acterization. We will find that generally �L�¯�=O�N0� as
N→�. The remainder of this paper deals with the calcula-
tion of �5� and �6� in the limit N→� and their dependence
on the choices made for P�k 	x� and the for ensemble char-
acteristics as defined by p�x� and Q�x ,x��.

III. ASYMPTOTIC VALUES OF THE ENTROPY OF
NETWORK TOPOLOGY IN A GIVEN ENSEMBLE

A. Derivation of steepest-descent extremization formulas

Since the ensemble �1� is invariant under all node permu-
tations, the difference between the two formulas �5� and �6�
should reflect only the node permutation freedom that is
present in �6� but absent from �5�. We evaluate �5� and �6� by
writing each Kronecker � and each � function in integral
form. Upon defining the shorthand ki

0=1 for all i and �i ·ki
=��=1

L �i
�ki

�, expression �3� allows us to simplify the term
�k,ki�c� to
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�ki,ki�c� = �
−	

	 d�ie
i�i·ki

�2	�L exp�− i�
j

cij�
�=1

L

�i
�kj

�−1 . �7�

We next define

D���,k�	�x�� = �
c�G

W�c	�x��exp�− i�
ij

cij�
�=1

L

�i
�kj

�−1
�8�

and subsequently find out that our two entropies can be writ-
ten in the form

�L��k�	�x�� =
1

N
ln �

−	

	



i
�d�ie

i�i·ki

�2	�L �D���,k�	�x�� ,

�9�

�L�P	�x�� =
1

N
ln � 


k,x
�dP̂�k	x�eiNP̂�k	x�P�k	x�

2	/N
�

� �
k1¯kN

exp�N�L��k�	�x�� − i�
i

P̂�ki	xi�
=

1

N
lim

→0

ln � 

k,x
�dP̂�k	x�eiN
P̂�k	x�P�k	x�

2	/N

�

� �
k1¯kN

�
−	

	



i
�d�ie

i��i·ki−P̂�ki	xi�/p�xi��

�2	�L �
�D���,k�	�x�� . �10�

The core of the problem is apparently to calculate the func-
tion D��� ,k�� in �8�, which involves the introduction of a
measure W�� ,k ,x 	 �� ,k��=N−1�i�k,ki

��x−xi����−�i�:

D���,k�	�x�� = 

i�j
�1 +

c

N
Q�xi,xj�

��exp�− i�
�=1

L

��i
�kj

�−1 + � j
�ki

�−1� − 1��
= exp� 1

2
cN� dx dx�Q�x,x���

−	

	

d� d��

��
kk�

W��,k,x	 ¯ � � W���,k�,x�	 ¯ �

��exp�− i�
�=1

L

���k�−1� + ���k�−1� − 1�
+ O�N0�� . �11�

We isolate W�¯	¯ � via suitable integrations over � func-
tions, using the functional measure �dW�
=lim
�→0 lim
x→0
�,k,x�dW�� ,k ,x�
�
x�N /2	�, result-
ing in

D���,k�� =� �dW dŴ�exp�iN�
−	

	

d�dx

��
k

Ŵ��,k,x�W��,k,x� + O�N0�
�exp�1

2
cN� dx dx�Q�x,x���

−	

	

d� d��

��
kk�

W��,k,x�W���,k�,x��
��exp�− i�

�=1

L

���k�−1� + ���k�−1� − 1�
�exp�− i�

i

Ŵ��i,ki,xi� . �12�

Now only the last line contains microscopic variables, and it
factorizes fully over the nodes of the network. Upon insert-
ing �12� into �9� and �10� this allows us to evaluate both
expressions for N→� via steepest-descent integration over
the distributions W�� ,k ,x�, leading to

�L��k�	�x�� = extr�W,Ŵ��1��W,Ŵ�� , �13�

�L�P	�x�� = extr�W,Ŵ,P̂��2��W,Ŵ, P̂�� , �14�

with the functions

�1��W,Ŵ�� = i�
−	

	

d� dx�
k

Ŵ��,k,x�W��,k,x� + ���W��

+� dx p�x��
k

P�k	x�

�ln �
−	

	 d�

�2	�Lei��·k−Ŵ��,k,x��, �15�

�2��W,Ŵ, P̂�� = i�
−	

	

d� dx�
k

Ŵ��,k,x�W��,k,x�

+ ���W�� + i� dx�
k

P̂�k	x�P�k	x�

+� dx p�x�ln �
−	

	 d�

�2	�L

��
k

ei��·k−P̂�k	x�/p�x�−Ŵ��,k,x��, �16�

where
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���W�� =
1

2
c� dx dx� Q�x,x���

−	

	

d� d��

��
kk�

W��,k,x�W���,k�,x��

��exp�− i�
�=1

L

���k�−1� + ���k�−1� − 1� .

�17�

It will be convenient to introduce new functions Q�k 	x�
=exp�−iP̂�k 	x� / p�x�� and V�� ,k ,x�=exp�−iŴ�� ,k ,x�� so
that our saddle-point equations simplify to

�L��k�	�x�� = extr�V,W��̃1��V,W�� , �18�

�L�P	�x�� = extr�Q,V,W��̃2��Q,V,W�� , �19�

with the functions

�̃1��V,W�� = ���W�� − �
−	

	

d� dx�
k

W��,k,x�ln V��,k,x�

+� dx p�x��
k

P�k	x�ln �
−	

	 d�

�2	�L

�V��,k,x�ei�·k, �20�

�̃2��Q,V,W�� = ���W��

− �
−	

	

d� dx�
k

W��,k,x�ln V��,k,x�

−� dx p�x��
k

P�k	x�ln Q�k	x�

+� dxp�x�ln �
k

Q�k	x��
−	

	 d�

�2	�L

�V��,k,x�ei�·k. �21�

B. Simplification and reduction of the functional
saddle-point equations

We can now do the functional variations of �̃1�¯� and

�̃2�¯� and find our saddle-point equations from which to

solve �Q ,V ,W�. For �̃1�¯� �referring to ensembles with
constrained generalized degrees� these are found to be the
following:

ln V��,k,x� = c� dx� Q�x,x���
−	

	

d���
k�

W���,k�,x��

��exp�− i�
�=1

L

���k�−1� + ���k�−1� − 1� ,

�22�

W��,k,x� =
p�x�P�k	x�V��,k,x�ei�·k

�
−	

	

d��V���,k,x�ei��·k

. �23�

For �̃2�¯� �referring to ensembles with constrained distri-
butions of generalized degrees� these are found to be the
following:

ln V��,k,x� = c� dx� Q�x,x���
−	

	

d���
k�

W���,k�,x��

��exp�− i�
�=1

L

���k�−1� + ���k�−1� − 1� ,

�24�

W��,k,x� =
p�x�Q�k	x�V��,k,x�ei�·k

�
k�

Q�k�	x��
−	

	

d��V���,k�,x�ei��·k�

,

�25�

P�k	x� =

Q�k	x��
−	

	

d�V��,k,x�ei�·k

�
k�

Q�k�	x��
−	

	

d�V��,k�,x�ei�·k�

. �26�

The last equation is easily solved, viz.,

Q�k	x� =
P�k	x�

�
−	

	

d�V��,k,x�ei�·k

, �27�

whereas in both cases �constrained degrees versus con-
strained degree statistics� we can eliminate immediately
the kernels W�� ,k ,x�, leaving us in either case with a
closed problem for the kernel V�� ,k ,x� only. Upon in-
serting the solution �27� into �26� one finds that this remain-
ing problem is in fact identical for both types of
constraints—namely,
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log V��,k,x� = c� dx� p�x��Q�x,x���
k�

P�k�	x��
�

−	

	

d��V���,k�,x��ei��·k��exp�− i�
�=1

L

���k�−1� + ���k�−1� − 1�
�

−	

	

d��V���,k�,x��ei��·k�

. �28�

In addition one finds that �23� holds in both cases. The solution of �28� is of the form

V��,k,x� = exp�− c� dx� Q�x,x��p�x��exp�c �
��NL

�k,�,x�e−i�·�� , �29�

where �k ,� ,x� then obeys

�k,�,x� =� dx� p�x��Q�x,x���
k�

P�k�	x��

�=1

L

���,k
�−1�

�
−	

	

d� exp�i�
�=1

L

���k�� − k�−1� + c �
���NL

�k�,��,x��e−i�·���
�

−	

	

d� exp�i� · k� + c �
���NL

�k�,��,x��e−i�·���
. �30�

The two integrals over � in the latter fraction can be done. Both are of the form

I�k,k�,x� = �
−	

	

d� exp�i� · k + c �
���NL

�k�,��,x��e−i�·��� = �2	�L �
m�0

cm

m! �
�1
¯�m�NL

�

n=1

m

�k�,�n,x����k, �
n�m

�n, �31�

and hence the equation for �k ,� ,x� becomes

�k,�,x� = ��1,1� dx� p�x��Q�x,x���
k�

P�k�	x��

�=1

L−1

���+1,k��

�
m�0

cm

m! �
�1
¯�m�NL

�

n=1

m

�k�,�n,x���

�=1

L

�k��,k�−1+ �
n�m

��
n

�
m�0

cm

m! �
�1. . .�m�NL

�

n=1

m

�k�,�n,x����k�, �
n�m

�n

�32�

=��1,1� dx� p�x��Q�x,x���
k�

k1�

c
P�k�	x��


�=1

L−1

���+1,k��

�
�1
¯�k1�−1

�

n=1

k1�−1

�k�,�n,x���

�=1

L

�k��,k�−1+ �
n�k1�

��
n

�
�1
¯�k1�

�

n=1

k1�

�k�,�n,x����k�, �
n�k1�

�n

, �33�

where we use the conventions that �
n=1
m un�m=0�1, ��n=1

m un�m=0�0, and ���1. . .�m
u��1 , . . . ,�m��m=0�1. If L=1, we have k=

→k and �→1, so �k ,� ,x�→�k ,x�. This describes the situation where the degrees are not generalized, but measure as usual
only the number of direct links per node. Here our equation for �¯� simplifies drastically to

L = 1: �k,x� =� dx� p�x��Q�x,x���
k�

k�
P�k�	x��

c�k�,x��
. �34�

The right-hand side is clearly independent of k, so �k ,x�=�x� with
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�x� =� dx� p�x��
Q�x,x��
c�x�� �

k

kP�k	x�� . �35�

If L�1, we can manipulate at most some further Kronecker �’s, and the final form is therefore

�k,�,x� =
�2��1,1

c
� dx� p�x��Q�x,x�� �

k��0

P��2, . . . ,�L,k�	x��

�

�
�1
¯��2−1

�

n=1

�2−1

���2, . . . ,�L,k��,�n,x����k�,kL−1+ �
n��2

�L
n


�=1

L−1

���+1−k�−1, �
n��2

��
n

�
�1
¯��2

�

n=1

�2

���2, . . . ,�L,k��,�n,x����k�, �
n��2

�L
n


�=1

L−1

���+1, �
n��2

��
n

. �36�

C. Simplification of the asymptotic entropy formulas

At this stage we insert our previous results for the kernels
�V ,W ,Q� into �18�–�21� to arrive at more explicit expres-
sions for the asymptotic entropies, which will only involve
the function �k ,� ,x� of �36�. The first step is to substitute
expression �27� into �21�. This leads, in combination with the
fact that at the relevant saddle points the kernels �V ,W� obey
identical equations for the two cases �constrained generalized
degrees versus constrained statistics of generalized degrees�,
to the simple and natural relation between our two entropies:

lim
N→�

�L�P	�x�� = lim
N→�

�L��k�	�x��

−� dx p�x��
k

P�k	x�ln P�k	x� . �37�

The extra freedom to construct microscopic network realiza-
tions in the case where we only constrain the generalized
degree distribution, as opposed to constraining the actual val-
ues of the generalized degrees, is measured by the Shannon
entropy of the imposed distribution P�k 	x�.

Relation �37� could be also derived from the definition of
��¯�, given in �5� and �6�. In fact, we can observe that the
probability W�c 	 �x�� present in the definition �5� of
���k� 	 �x�� is invariant under all permutations of the labels of
those nodes that have the same hidden variable x; this fol-
lows directly from definition �1�. Consequently �L��k� 	 �x��
must also be invariant under any permutation of the labels of
nodes with same value of x. It follows that �L��k� 	 �x�� is
dependent on the degree sequence �k� only through the dis-
tributions �P�k 	x��. Therefore, we can use this simple insight
to predict the relation between �L��k� 	 �x�� and �L�P 	 �x��,
Eq. �37�. In fact, because �L��k� 	 �x�� must be only depen-
dent on the distribution P�k 	x�, we have that

�L�P	�x�� =
1

N
ln �

k1¯kN



k,x

��P�k	x�

−
�i

�k,ki
��x − xi�

Np�x�
�eN�L��k�	�x��

=
1

N
ln eN�L��k�	�x��


x

�Np�x��!

k�Np�x�P�k	x��!

,

�38�

where �k� is any generalized degree sequence with degree
distributions P�k 	x�. Using �38� we can derive relation �37�.

In order to evaluate limN→��L��k� 	 �x�� we only need to
express limN→��L��k� 	 �x�� in terms of the function
�k ,� ,x�. We first note that at the relevant saddle point the
function ���W��, Eq. �17�, takes the value

���W�� =
1

2
� dx�

−	

	

d��
k

W��,k,x�ln V��,k,x� .

�39�

Insertion into �20�, followed by elimination of W�� ,k ,x� via
�23�, leads us to

lim
N→�

�L��k�	�x��

=� dx p�x��
k

P�k	x�ln �
−	

	 d�

�2	�LV��,k,x�ei�·k

−
1

2
� dx p�x��

k
P�k	x�

�

�
−	

	

d�ei�·kV0��,k,x�ln V��,k,x�

�
−	

	

d�V0��,k,x�ei�·k

, �40�

where V0�� ,k ,x�=V�� ,k ,x�exp�c�dx� Q�x ,x��p�x���. The
final step is the elimination of V�� ,k ,x� via �29�, followed
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by integration over �, using the property that �k ,� ,x�=0
unless �1=1:

�
−	

	 d�

�2	�LV0��,k,x�ei�·k

= �
m�0

cm

m! �
�1
¯�m



n�m

��k,�n,x���k,�n�m�n = �k,0

+

ck1��k1 −
1

2
�

k1! �
�1
¯�k1



n�k1

��k,�n,x���k,�n�k1
�n,

�41�

�
−	

	 d�

�2	�LV0��,k,x�ln V0��,k,x�ei�·k

= �
m�0

cm

�m − 1�! �
�1
¯�m



n�m

��k,�n,x���k,�n�m�n

=

ck1��k1 −
1

2
�

�k1 − 1�! �
�1
¯�k1



n�k1

��k,�n,x���k,�n�k1
�n.

�42�

So one arrives at the compact result, where we have used the
fact that if k1=0, then k�=0 for all � �which follows from the
definition of the generalized degrees�:

lim
N→�

�L��k�	�x�� = �
k1

P�k1�ln 	c�k1�

+
1

2�c −� dx p�x��
k

k1P�k	x��
+� dx p�x��

k
P�k	x�

�ln� �
�1
¯�k1

� 

n�k1

�k,�n,x���k,�n�k1
�n� ,

�43�

with the average-c Poissonian degree distribution 	c�k�
=cke−c /k!.

IV. APPLICATIONS OF THE GENERAL THEORY

A. Regular random graphs

Our first application domain is that of the r-regular degree
distribution P�k 	x�=�k,k�r�, with k�r�= �r ,r2 , . . . ,rL�. Here
one can solve �36� explicitly:

�k,�,x� =
�2��1,1

c
� dx� p�x��Q�x,x�� �

k��0

���2,. . .,�L,k��,k�r�

�
�1
¯�k1�x��−1

�

n=1

r−1

�k�r�,�n,x����kL�r�,kL−1+ �
n�r

�L
n


�=1

L−1

�r�−k�−1, �
n�r

��
n

�
�1
¯�k1�x��

�

n=1

r

�k�r�,�n,x���

�=1

L

�r�, �
n�r

��
n

.

�44�

The solution is seen to be of the form �k ,� ,x�
=�k ,x���,�1,r,r2,. . .,rL−1� and independent of kL. Insertion of
this form into the above equation then gives

�k,x� =
r

c
� dx� p�x��Q�x,x��



�=1

L−1

�k�,r�

�k�r�,x��
. �45�

We conclude that

�k,�,x� = �x��

�=1

L−1

�k�,r���

�=1

L

���,r�−1� , �46�

where �x� is the solution of

�x� =
r

c
� dx� p�x��

Q�x,x��
�x��

. �47�

For the entropies �37� and �43� one then finds

lim
N→�

�L�P	�x�� = lim
N→�

�L��k�	�x��

= ln 	c�r� + r� dx p�x�ln �x� +
1

2
�c − r� .

�48�

As expected, the two entropies are identical �since for regular
graphs there is no entropy contribution from degree permu-
tations� and independent of L �since upon specifying that the
degrees are r-regular, the full distributions P�k 	x� are
uniquely specified for any L�. In the special case Q�x ,x��
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=1 of uncorrelated degrees the above solution simplifies fur-
ther. Now �x�=�r /c and

lim
N→�

�L�P	�x�� = lim
N→�

�L��k�	�x��

= ln 	c�r� +
1

2
r ln�r/c� +

1

2
�c − r� . �49�

B. Case L=1

For L=1 we have already simplified our formula for the
function �k ,� ,x� to relation �35� for a simple function �x�.
We can do the same for expression �43� for the entropy,
which gives

lim
N→�

�1��k�	�x�� = �
k

P�k�ln 	c�k� +
1

2
�c − k̄�

+� dx p�x��
k

P�k	x�ln k�x� , �50�

lim
N→�

�1�P	�x�� = �
k

P�k�ln 	c�k� +
1

2
�c − k̄�

−� dx p�x��
k

P�k	x�ln�P�k	x�/k�x�� ,

�51�

with 	c�k�=cke−c /k!, with k̄=�dx p�x��kkP�k 	x�, P�k�
=�dx p�x�P�k 	x�, and where �x� is to be solved from

�x� =� dx� p�x��
Q�x,x��
c�x�� �

k

kP�k	x�� . �52�

We see immediately that for Q�x ,x��=1 �the Erdös-Rényi
ensemble� and upon choosing P�k 	x�= P�k� �since for
Q�x ,x��=1, the hidden variables x are obsolete� we would

have had �x�=�k̄ /c∀x. Expression �50� now becomes

Q�x,x�� = 1:� limN→� �1��k�	�x�� = �
k

P�k�ln 	c�k� +
1

2
�c − k̄� +

1

2
k̄ ln�k̄/c� ,

limN→� �1�P	�x�� = − �
k

P�k�ln�P�k�/	c�k�� +
1

2
�c − k̄� +

1

2
k̄ ln�k̄/c� .� �53�

So, if one also chooses k̄=c, the entropy of networks with
degree distribution P�k� in the Erdös-Rényi ensemble is mi-
nus the Kullback-Leibler distance between P�k� and a Pois-
son degree distribution, provided the ensemble and P�k�
have the same average connectivity. An alternative derivation
of Eq. �53� can also be obtained starting from the expression
of the total number of graphs with given degree sequence
N��k�� derived in �10,13,15�:

N��k�� = �k̄N − 1�!!
e−�/4


iki!
, �54�

with �= �k2 / k̄�2−1 and k2=�iki
2 /N. The entropy ���k�� of

the degree sequence �k� in the Erdös-Rényi ensemble is the
logarithm of the probability of having one of the total num-
ber N��k�� of possible networks in the ensemble. Since in a
Erdös-Rényi network each link has a probability c /N to be
present, we have

lim
N→�

�1��k�� = lim
N→�

1

N
ln�N��k��

�� c

N
Nk̄/2�1 −

c

N
N�N−1�/2−Nk̄/2� . �55�

Upon inserting the expression of N��k��, Eq. �54�, into Eq.
�55�, we recover Eq. �53�.

The other terms in �50� apparently represent the effect of
average connectivity mismatches and of the degree correla-
tions induced by Q�· , · � and make matters more complicated.
The simple form of our L=1 equations, however, still allows
us to push the analysis further for certain cases, by solving
�x� explicitly from Eq. �52�. For instance, if the �symmet-
ric� kernel Q�x ,x�� has an eigenfunction f�x�=�p�x�k�x�,
with k�x�=�kkP�k 	x�, then

� dx� Q�x,x��f�x�� = �f�x�, f�x� = �p�x�k�x�:

�x� =��

c
f�x� . �56�

If Q�· , · � has this property, together with the normalization
�dx dx� p�x�Q�x ,x��p�x��=1, then one finds that the entropy
�50� becomes

lim
N→�

�1���k��	�x�� = �
k

P�k�ln 	c�k� +
1

2
�c − k̄�

+
1

2
� dx p�x�k�x�ln��p�x�k�x�/c�

= �
k

P�k�ln 	c�k� +
1

2
�c − k̄�
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+
1

2
� dx p�x�k�x�ln�p�x�k�x��

+
1

2
k̄ ln��/c� , �57�

�where k̄=�dx p�x�k�x��. Let us next discuss some example
kernels Q�x ,x�� for which �x� can be solved explicitly, ei-
ther directly, or via the above procedure based on using
eigenfunctions of Q�· , · �.

�i� First example: Here we assume Q�x ,x�� to be such that
the conditional connectivities k�x�=�kkP�k 	x� are the typical
ones for the ensemble �1�, which implies that

k�x� = c� dx� Q�x,x��p�x�� �58�

and k̄=c. In this case Eq. �52� has the solution �x�=k�x� /c,
which leads to the following simple expression for the entro-
pies:

lim
N→�

�1��k�	�x�� =� dx p�x��
k

P�k	x�ln 	k�x�, �59�

lim
N→�

�1�P	�x�� = −� dx p�x��
k

P�k	x�ln�P�k	x�/	k�x�� .

�60�

This indicates that in this case the entropy limN→��1�P 	 �x��
takes the form of an integral over p�x� of the Kullback-
Leibler distance between the probabilities P�k 	x� and the
Possion distribution 	k�x�. We note that for the hidden vari-
able model the typical degree distribution of the nodes with
hidden variable x is indeed 	k�x� �20�.

�ii� Second example:

Q�x,x�� = a0 + a1��x − x��, k�x� =
1

2
c/p�x� , �61�

with x� �−1,1�. Normalization of Q�· , · � tells us that a0=1
−a1�dx p2�x�, and we need 0�a1� ��dx p2�x��−1 to ensure
non-negative bond probabilities in our network ensemble.
The networks in this ensemble have a nontrivial community
structure. In fact, nodes with the same hidden variable have a
larger probability to be connected. Here one finds a solution

with k̄=c and �x�=, where

 =�1 − a1� dx p2�x� +
1

2
a1, �62�

lim
N→�

�1��k�	�x�� = �
k

P�k�ln 	c�k�

+
1

2
c ln�1 − a1�

−1

1

dx p2�x� +
1

2
a1� .

�63�

�iii� Third example:

Q�x,x�� =
g�x� + g�x��

2� dx�p�x��g�x��
, k�x� =

���g2�0 + g�x��2

p�x�
,

�64�

with x� �−1,1�, with the shorthand ���0= 1
2�−1

1 dx��x� and
with g�x��0 for all x� �−1,1�. Here one finds the solution

�x� =
1
�c� �g�0 + ��g2�0

� dx�p�x��g�x��
���g2�0 + g�x�� ,

� =
�g�0 + ��g2�0

� dxp�x�g�x�
. �65�

C. Case L=2

Here we have to find first the solution of �36�, which now
reduces to

„�k1,k2�,�1,��,x…

=
�

c
� dx� p�x��Q�x,x�� �

k��0

P��,k�	x��

�

�
�1¯��−1

�

n=1

�−1

„��,k��,�1,�n�,x�…��k�,k1+ �
n��

�n

�
�1¯��

�

n=1

�

„��,k��,�1,�n�,x�…��k�, �
n��

�n

.

�66�

We observe that the right-hand side is independent of k2, so
the solution of our equation must have the form
(�k1 ,k2� , �1,�� ,x)=�k1 ,� ,x�, where

�k,�,x� =
�

c
� dx� p�x��Q�x,x�� �

k��0

P��,k�	x��

�

�
�1¯��−1

�

n=1

�−1

��,�n,x����k�,k+ �
n��

�n

�
�1¯��

�

n=1

�

��,�n,x����k�, �
n��

�n

. �67�

The entropy would become

Let us limit ourselves to the simplest scenario where there
are no degree correlations—i.e., Q�x ,x��=1. Here we have
�k ,� ,x�=�k ,��, and we need only the generalized degree
statistics P�k1 ,k2�=�dx p�x�P�k1 ,k2 	x�. Our formulaes
thereby reduce to
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�k,�� =
�

c
�

k��0

P��,k��
�

�1¯��−1

�

n=1

�−1

��,�n���k�,k+ �
n��

�n

�
�1¯��

�

n=1

�

��,�n���k�, �
n��

�n

,

�69�

lim
N→�

�2��k�	�x�� = �
k1

P�k1�

�ln 	c�k1� +
1

2�c − �
k1k2

k1P�k1,k2��
+ �

k1k2

P�k1,k2�ln� �
�1¯�k1

� 

n�k1

�k1,�n��
��k2, �

n�k1

�n� . �70�

Here one observes the validity of the following simple rela-
tion:

�
k2

�k1,k2��k2,k1� =
k1

c
P�k1� . �71�

V. CONCLUSIONS

In conclusion, we have calculated the entropies
�L��k� 	 �x�� and �L�P 	 �x�� of hierarchical constrained net-
work topologies in the “canonical” ensemble of large sparse
networks described in terms of “hidden variables.”

The expression of the entropy �L�P 	 �x�� assumes a very
clear form in the case in which the network topology under
study is the degree distribution of a network of the ensemble.
Here the entropy measures the large deviation of the topol-
ogy of the given networks from the typical topology of net-
works in the chosen ensemble.

The entropy measures the likelihood that a particular net-
work topology belongs to an ensemble; as such, it is an im-
portant quantity whenever one seeks to represent or charac-
terize observed networks in terms of appropriate random
network ensembles. We therefore believe that it may have
many applications in the future in the context of community
detection problems as well as other inference problems on
complex networks.
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