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Abstract. The Maximum Entropy Method is well-known and widely used in image analysis in astronomy. In its
standard form it presents certain drawbacks, such an underestimation of the photometry. Various refinements of
MEM have been proposed over the years. We review in this paper the main entropy functionals which have been
proposed and discuss each of them. We define, from a conceptual point of view, what a good definition of entropy
should be in the framework of astronomical data processing. We show how a definition of multiscale entropy
fulfills these requirements. We show how multiscale entropy can be used for many applications, such as signal
or image filtering, multi-channel data filtering, deconvolution, background fluctuation analysis, and astronomical
image content analysis.
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1. Introduction

The term “entropy” is due to Clausius (1865), and the
concept of entropy was introduced by Boltzmann into sta-
tistical mechanics in order to measure the number of mi-
croscopic ways that a given macroscopic state can be re-
alized. Shannon (1948) founded the mathematical theory
of communication when he suggested that the informa-
tion gained in a measurement depends on the number of
possible outcomes out of which one is realized. Shannon
also suggested that the entropy can be used for maximiza-
tion of the bit transfer rate under a quality constraint.
Jaynes (1957) proposed to use the entropy measure for
radio interferometric image deconvolution, in order to se-
lect between a set of possible solutions that contains the
minimum of information or, following his entropy def-
inition, which has maximum entropy. In principle, the
solution verifying such a condition should be the most
reliable. A great deal of work has been carried out in
the last 30 years on the use of entropy for the general
problem of data filtering and deconvolution (Ables 1974;
Bontekoe et al. 1994; Burg 1978; Frieden 1978a; Gull &
Skilling 1991; Mohammad-Djafari 1994, 1998; Narayan &
Nityananda 1986; Pantin & Starck 1996; Skilling 1989;
Weir 1992). Traditionally information and entropy are
determined from events and the probability of their
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occurrence. But signal and noise, rather than events and
occurrences of events, are the basic building-blocks of sig-
nal and data analysis in the physical sciences. Instead of
the probability of an event, we are led to consider the
probabilities of our data being either signal or noise.

Observed data Y in the physical sciences are gener-
ally corrupted by noise, which is often additive and which
follows in many cases a Gaussian distribution, a Poisson
distribution, or a combination of both. Other noise models
may also be considered. Using Bayes’ theorem to evaluate
the probability distribution of the realization of the origi-
nal signal X , knowing the data Y , we have

p(X |Y ) =
p(Y |X).p(X)

p(Y )
(1)

p(Y |X) is the conditional probability distribution of get-
ting the data Y given an original signal X , i.e. it repre-
sents the distribution of the noise. It is given, in the case
of uncorrelated Gaussian noise with variance σ2, by:

p(Y |X) = exp

− ∑
pixels

(Y −X)2

2σ2

 · (2)

The denominator in Eq. (1) is independent of X and is
considered as a constant. This is the case of stationary
noise. p(X) is the a priori distribution of the solution X .
In the absence of any information on the solutionX except
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its positivity, a possible course of action is to derive the
probability of X from its entropy, which is defined from
information theory.

The main idea of information theory (Shannon 1948)
is to establish a relation between the received information
and the probability of the observed event (Bijaoui 1984).
If we denote I(E) the information related to the event
E, and p the probability of this event happening, then we
consider that

I(E) = f(p). (3)

Then we assume the two following principles:

– The information is a decreasing function of the proba-
bility. This implies that the more information we have,
the less will be the probability associated with one
event;

– Additivity of the information. If we have two inde-
pendent events E1 and E2, the information I(E) as-
sociated with the occurrence of both is equal to the
addition of the information of each of them:

I(E) = I(E1) + I(E2). (4)

Since E1 (of probability p1) and E2 (of probability p2)
are independent, then the probability of both happening
is equal to the product of p1 and p2. Hence

f(p1p2) = f(p1) + f(p2). (5)

Then we can say that the information measure is

I(E) = k ln(p) (6)

where k is a constant. Information must be positive, and
k is generally fixed at −1.

Another interesting measure is the mean information
which is denoted

H = −
∑
i

pi ln(pi). (7)

This quantity is called the entropy of the system and was
established by Shannon (1948).

This measure has several properties:

– It is maximal when all events have the same probability
pi = 1/Ne (Ne being the number of events), and is
equal to ln(Ne). It is in this configuration that the
system is the most undefined;

– It is minimal when one event is sure. In this case, the
system is perfectly known, and no information can be
added;

– The entropy is a positive, continuous, and symmetric
function.

If we know the entropy H of the solution (the next sec-
tion describes different ways to calculate it), we derive its
probability by

p(X) = exp(−αH(X)). (8)

Given the data, the most probable image is obtained by
maximizing p(X |Y ). Taking the logarithm of Eq. (1), we
thus need to maximize

ln(p(X |Y )) = −αH(X) + ln(p(Y |X))− ln(p(Y )). (9)

The last term is a constant and can be omitted. Then,
in the case of Gaussian noise, the solution is found by
minimizing

J(X) =
∑

pixels

(Y −X)2

2σ2
+ αH(X) =

χ2

2
+ αH(X) (10)

which is a linear combination of two terms: the entropy of
the signal, and a quantity corresponding to χ2 in statis-
tics measuring the discrepancy between the data and the
predictions of the model. α is a parameter that can be
viewed alternatively as a Lagrangian parameter or a value
fixing the relative weight between the goodness-of-fit and
the entropy H.

For the deconvolution problem, the object-data rela-
tion is given by the convolution

Y = P ∗X (11)

where P is the point spread function, and the solution is
found (in the case of Gaussian noise) by minimizing

J(X) =
∑

pixels

(Y − P ∗X)2

2σ2
+ αH(X). (12)

The way the entropy is defined is fundamental, because
from its definition will depend the solution. The next sec-
tion discusses the different approaches which have been
proposed in the past. Multiscale Entropy, presented in
Sect. 3, is based on the wavelet transform and noise mod-
eling. It is a means of measuring information in a data set,
which takes into account important properties of the data
which are related to content. We describe how it can be
used for signal and image filtering, and in Sect. 4 for image
deconvolution. The case of multi-channel data is consid-
ered in Sect. 5. We then proceed to the use of multiscale
entropy for description of image content. We pursue three
directions of enquiry, respectively described in Sects. 6,
7 and 8. In Sects. 6 and 7, we determine whether signal
is present in the image or not, possibly at or below the
image’s noise level; and how multiscale entropy is very
well correlated with the image’s content in the case of as-
tronomical stellar fields. Knowing that multiscale entropy
represents well the content of the image, we finally use it
to define the optimal compression rate of the image. In all
cases, a range of examples illustrate these new results.

2. The concept of entropy

We wish to estimate an unknown probability density p(X)
of the data. Shannon (1948), in the framework of the in-
formation theory, defined the entropy of an image X by

Hs(X) = −
Nb∑
k=1

pk log pk (13)
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where X = {X1, ..XN} is an image containing integer val-
ues, Nb is number of possible values which a given pixel
Xk can take (256 for an 8-bit image), and the pk values
are derived from the histogram of X :

pk =
#Xj = k

N
(14)

#Xj = k gives the number of pixels satisfying Xj = k.
If the image contains floating values, it is possible to

to build up the histogram L of values Li, using a suitable
interval ∆, counting up how many times mk each interval
(Lk, Lk + ∆) occurs among the N occurrences. Then the
probability that a data value belongs to an interval k is
pk = mk

N , and each data value has a probability pk.
The entropy is minimum and equal to zero when the

signal is flat, and increases when we have some fluctua-
tions. Using the entropy in Eq. (10) leads to the mini-
mization of:

J(X) =
χ2

2
+ αHs(X). (15)

This is a minimum entropy restoration method.
The trouble with this approach is that, because the

number of occurrences is finite, the estimate pk will be
in error by an amount proportional to m

− 1
2

k (Frieden
1978b). The error becomes significant when mk is small.
Furthermore this kind of entropy definition is not easy to
use for signal restoration, because the gradient of Eq. (15)
is not easy to compute. For these reasons, other entropy
functions are generally used. The main ones are as follows,
where N is the number of pixels, and k represents a pixel
index:

– Burg (1978):

Hb(X) = −
N∑
k=1

ln(Xk) (16)

– Frieden (1978a):

Hf(X) = −
N∑
k=1

Xk ln(Xk) (17)

– Gull & Skilling (1991):

Hg(X) =
N∑
k=1

Xk −Mk −Xk ln
(
Xk

Mk

)
(18)

where M is a given model, usually taken as a flat
image.

Each of these entropies can be used, and they correspond
to different probability distributions that one can asso-
ciate with an image (Narayan & Nityananda 1986). See
(Frieden 1978a; Skilling 1989) for descriptions. The last
of the above definitions of entropy has the advantage of
having a zero maximum when X equals the model M . All
of these entropy measures are negative (if Xk > 1), and
maximum when the image is flat. They are decreasing

when we introduce information, so minimizing the infor-
mation is equivalent to maximizing the entropy for these
definitions. They are negative because an offset term is
omitted which has no importance for the minimization of
the functional. The fact that we consider that a signal has
maximum information value when it is flat is evidently a
curious way to measure information. A consequence is that
we must now maximize the entropy if we want a smooth
solution, and the probability of X must be redefined by:

p(X) = exp(αH(X)). (19)

The sign has been inverted (see Eq. (8)), which is natural if
we want the best solution to be the smoothest. These three
entropies, above, lead to the Maximum Entropy Method
(MEM), for which the solution is found by minimizing (for
Gaussian noise)

J(X) =
N∑
k=1

(Yk −Xk)2

2σ2
− αH(X). (20)

For the Shannon entropy (which is obtained from the his-
togram of the data), this is the opposite. The entropy is
null for a flat image, and increases when the data contains
some information. So, if the Shannon entropy were used
for restoration, this would lead to a Minimum Entropy
Method.

In 1986, Narayan & Nityananda (1986) compared sev-
eral entropy functions, and finally concluded by saying
that all were comparable if they have good properties, i.e.
they enforce positivity, and they have a negative second
derivative which discourages ripple. They showed also that
results varied strongly with the background level, and that
these entropy functions produced poor results for negative
structures, i.e. structures under the background level (ab-
sorption area in an image, absorption band in a spectrum,
etc.), and compact structures in the signal.

The Gull and Skilling entropy gives rise to the difficulty
of estimating a model. Furthermore it has been shown
(Bontekoe et al. 1994) that the solution is dependent on
this choice. The α parameter determination is also not
straightforward: see discussion in Pantin & Starck (1996).

In order to resolve these problems, Gull and Skilling
proposed to limit the resolution of the solution, by in-
troducing the concept of hidden image S and Intrinsic
Correlation Function C (ICF, Gaussian- or cubic spline-
like) in the Preblur MAXENT algorithm. The idea is to
search for an image O which is the convolution product of
a hidden solution S by C: O = C∗S. Hence, the functional
to minimize is:

Hg(h) =
N∑
k=1

Sk −Mk − Sk ln
(
Sk
Mk

)
· (21)

Since in astronomical images many scale lengths are
present, the Multi-channel Maximum Entropy Method, de-
veloped by Weir (1991, 1992), uses a set of ICFs having
different scale lengths, each defining a channel. Many new
parameters appear in such an approch which lead to new
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troubles in practice (Bontekoe et al. 1994). Most of them
can be fixed by using the Pyramid Maximum Entropy
(Bontekoe et al. 1994), or a wavelet approach (Pantin &
Starck 1996).

As described above, many studies have been carried
out in order to improve the functional to be minimized.
But the question which should be raised is: what is a good
entropy for signal restoration?

In Starck et al. (1998b), the benchmark properties for
a good “physical” definition of entropy were discussed.
Assuming that a signal X is the sum of several compo-
nents:

X = S +B +N (22)

where S is the signal of interest, B the background, and N
the noise, we proposed that the following criteria should
be verified:

1. The information in a flat signal is zero (S = 0, N = 0
and B = Constant);

2. The amount of information in a signal is independent
of the background (i.e., H(X) is independent of B);

3. The amount of information is dependent on the noise
(i.e., H(X) is dependent on N); A given signal X does
not furnish the same information in the different cases
where the noise N is high or small;

4. The entropy must work in the same way for a pixel
which has a value B + ε, and for a pixel which has a
value B − ε. H(X) must be a function of the absolute
value of S instead of S;

5. The amount of information is dependent on the corre-
lation in the signal. If the signal S presents large fea-
tures above the noise, it contains a lot of information.
By generating a new set of data from S, by randomly
taking the pixel values in S, the large features will ev-
idently disappear, and this new signal will contain less
information. But the pixel values will be the same as
in S.

Figure 1 illustrates the last point perfectly. The second im-
age is obtained by distributing randomly the Saturn image
pixel values, and the standard entropy definitions produce
the same information measurement for both images. The
concept of information becomes subjective, or at least it
depends on the application domain. Indeed, for someone
who is not involved in image processing, the second image
contains less information than the first one. For someone
working on image transmission, it is clear that the sec-
ond image will require more bits for lossless transmission,
and from this point of view, he/she will consider that the
second image contains more information. Finally, for data
restoration, all fluctuations due to noise are not of inter-
est, and do not contain relevant information. From this
physical point of view, the standard definitions of entropy
seem badly adapted to information measurement in signal
restoration.

These points are not axioms, but rather desirable prop-
erties that should be respected by the entropy functional

in order to characterize well the data. We see that in these
properties we are taking account of: (i) the background –
very much a relative notion, associated with our under-
standing of the image or signal; and (ii) the noise – im-
portant when handling scientific images and signals. The
background can also be termed continuum, or DC compo-
nent, and is often very dependent on the semantics of the
image. Our signal generation process could be conceived in
terms of thermodynamics (Ferraro et al. 1999): the rate of
variation of entropy is composed of internal heat changes,
and heat transfers from external sources. The latter is our
noise, N , and the former is signal including background.

Among all entropy functions proposed in the past, it
is the Shannon one (Shannon 1948) which best respects
the desiderata listed above. Indeed, if we assume that the
histogram bin is defined as a function of the standard de-
viation of the noise, the first four points are verified, while
none of these criteria is verified with other entropy func-
tions (and only one of the desiderata is verified for the
Gull and Skilling entropy by taking the model equal to
the background).

Our critique of information measures is solely in view
of our overriding goal, namely to define a demonstrably
appropriate measure for image and signal processing in
the physical sciences.

3. Multiscale entropy

3.1. Definition

Following on from the desirable criteria discussed in the
previous section, a possibility is to consider that the en-
tropy of a signal is the sum of the information at each
scale of its wavelet transform (Starck et al. 1998b), and
the information of a wavelet coefficient is related to the
probability of it being due to noise. Let us look at how this
definition holds up in practice. Denoting h the information
relative to a single wavelet coefficient, we define

H(X) =
l∑

j=1

Nj∑
k=1

h(wj,k) (23)

with h(wj,k) = − ln p(wj,k). l is the number of scales, and
Nj is the number of samples (pixels, time- or wavelength-
interval values) in band (scale) j. For Gaussian noise, we
get

h(wj,k) =
w2
j,k

2σ2
j

+ Const. (24)

where σj is the noise at scale j. Below, when we use the
information in a functional to be minimized, the constant
term has no effect and we will omit it. We see that the
information is proportional to the energy of the wavelet
coefficients. The larger the value of a normalized wavelet
coefficient, then the lower will be its probability of being
noise, and the higher will be the information furnished by
this wavelet coefficient. We can see easily that this entropy
fulfills all the requirements listed in the previous section.
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Fig. 1. Saturn image (left) and the same data distributed differently (right). These two images have the same entropy, using
any of the standard entropy definitions

Just as for Shannon entropy, here information increases
with entropy. Using such an entropy for optimization pur-
poses will ordinarily lead to a minimum entropy method.

Equation (23) holds if the wavelet coefficients are
statistically independent, which should imply that our
approach is limited to an orthogonal or bi-orthogonal
transform. This limitation may be addressed through the
use of the so-called cycle-spinning algorithm (also named
translation-invariant algorithm) (Donoho 1995), which
consists of performing the process of “transform,” “de-
noise,” and “inverse transform” on every orthogonal basis
corresponding to versions of the data obtainable by com-
binations of circular left-right and upwards-downwards
translations. Donoho (Donoho 1995) has shown that us-
ing a non-decimating wavelet transform is equivalent to
performing a set of decimated transforms with shift on
the input signal. This means that Eq. (23) remains true
for non-decimated wavelet transforms if it is normalized
by the number of shifts. We will consider the orthogonal
case in the following, knowing it can be generalized to
non-decimated transforms.

3.2. Signal and noise information

Assuming that the signal X is still composed of the
three components S, B, N (X = S + B + N), H is

independent of B but not of N . Hence, our information
measure is corrupted by noise, and we decompose our in-
formation measure into two components, one (Hs) corre-
sponding to the non-corrupted part, and the other (Hn)
to the corrupted part. We have (Starck et al. 1998b)

H(X) = Hs(X) +Hn(X). (25)

We will define in the following Hs as the signal informa-
tion, and Hn as the noise information. It is clear that
noise does not contain any meaningful information, and
so Hn describes a semantic component which is usually
not informative to us. For each wavelet coefficient wj,k,
we have to estimate the proportions hn and hs of h (with
h(wj,k) = hn(wj,k) + hs(wj,k)) which should be assigned
to Hn and Hs. Hence signal information and noise infor-
mation are defined by

Hs(X) =
l∑

j=1

Nj∑
k=1

hs(wj,k)

Hn(X) =
l∑

j=1

Nj∑
k=1

hn(wj,k). (26)

If a wavelet coefficient is small, its value can be due to
noise, and the information h relative to this single wavelet
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coefficient should be assigned to Hn. If the wavelet coef-
ficient is high, compared to the noise standard deviation,
its value cannot be due to the noise, and h should be as-
signed to Hs. h can be distributed as Hn or Hs based on
the probability Pn(wj,k) that the wavelet coefficient is due
to noise, or the probability Ps(wj,k) that it is due to sig-
nal. We have Ps(wj,k) = 1 − Pn(wj,k). For the Gaussian
noise case, we estimate Pn(wj,k) that a wavelet coefficient
is due to the noise by

Pn(wj,k) = Prob(W > | wj,k |)

=
2√

2πσj

∫ +∞

|wj,k|
exp(−W 2/2σ2

j )dW

= erfc

(
| wj,k |√

2σj

)
·

The idea for deriving hs and hn is the following: we imag-
ine that the information h relative to a wavelet coeffi-
cient is a sum of small information components dh, each
of them having a probability to be noise information. To
understand this principle, consider two coefficients u and
w (w > u) with Gaussian noise (σ = 1). The informa-
tion relative to w is h(w) = w2. When u varies from 0
to w with step du, the information h(u) increases until
it becomes equal to h(w). When it becomes closer to w,
the probability that the difference w − u can be due to
the noise increases, and the added information dh is more
corrupted by the noise. By weighting the added informa-
tion by the probability that the difference w−u is due to
the noise, we have:

hn(wj,k) =
∫ |wj,k|

0

Pn(| wj,k | −u)
(
∂h(x)
∂x

)
x=u

du (27)

which is the noise information relative to a single wavelet
coefficient, and

hs(wj,k) =
∫ |wj,k|

0

Ps(| wj,k | −u)
(
∂h(x)
∂x

)
x=u

du (28)

which is the signal information relative to a single wavelet
coefficient. For Gaussian noise, we have

hn(wj,k) =
1
σ2
j

∫ |wj,k|
0

u erfc

(
| wj,k | −u√

2σj

)
du

hs(wj,k) =
1
σ2
j

∫ |wj,k|
0

u erf

(
| wj,k | −u√

2σj

)
· (29)

3.3. Filtering

The problem of filtering or restoring data D can be ex-
pressed by the following: we search for a solution D̃ such
that the difference between D and D̃ minimizes the infor-
mation due to the signal, and such that D̃ minimizes the
information due to the noise.

J(D̃) = Hs(D − D̃) +Hn(D̃). (30)

Fig. 2. Filtered wavelet coefficient versus the wavelet coeffi-
cient with different α values (from the top curve to the bottom
one, α is equal, respectively, to 0, 0.1, 0.5, 1, 2, 5, 10)

Furthermore, the smoothness of the solution can be con-
trolled by adding a parameter α:

J(D̃) = Hs(D − D̃) + αHn(D̃). (31)

In practice (Chambolle et al. 1998), we minimize for each
wavelet coefficient wj,k:

j(w̃j,k) = hs(wj,k − w̃j,k) + αhn(w̃j,k). (32)

The solution is found by first computing the gradient
∇(J(w̃j,k)) (Starck 1999):

∇(j(w̃j,k)) =
∫ wj,k−w̃j,k

0

Ps(u)du

+α(w̃j,k −
∫ w̃j,k

0

Ps(u)du) (33)

which gives for the Gaussian case:

∇(j(w̃j,k)) = −wj,k − w̃j,k
σ2
j

erf

(
wj,k − w̃j,k√

2σj

)

+

√
2
π

1
σj

1− e
− (wj,k−w̃j,k)2

2σ2
j


+α

 w̃j,k
σ2
j

erfc

(
w̃j,k√

2σj

)
+

1
σj

√
2
π

1− e
−
w̃2
j,k

2σ2
j

 · (34)

The solution of the equation ∇(j(w̃j,k)) = 0 can be ob-
tained by any minimization routine. In our examples be-
low, we have used simple dichotomy.

Figure 2 shows the result when minimizing the func-
tional j with different α values, and noise standard devi-
ation equal to 1. The filtered wavelet coefficient is plotted
versus the wavelet coefficient. From the top curve to the
bottom, α is respectively equal to 0, 0.1, 0.5, 1, 2, 5, 10.
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The higher the value of α, the more the filtered wavelet
coefficient is reduced. When α is equal to 0, there is no
regularization and the data are unchanged.

Simulations have shown (Starck & Murtagh 1999) that
the MEF method produces a better result than the stan-
dard soft or hard thresholding, from both the visual as-
pect and PSNR (peak signal-to-noise ratio). Figures 3 and
4 show the filtering respectively on simulated noisy blocks
and on a real spectrum.

A robust way to constrain α is to use the fact that
we expect a residual with a given standard deviation at
each scale j equal to the noise standard deviation σj at
the same scale. Then rather than a single α we have an
αj per scale. A full description of the MEF algorithm can
be found in Starck & Murtagh (1999).

4. Deconvolution

4.1. Introduction

Consider an image characterized by its intensity distribu-
tion (the “data”) I, corresponding to the observation of a
“real image” O through an optical system. If the imaging
system is linear and shift-invariant, the relation between
the data and the image in the same coordinate frame is a
convolution:

I = O ∗ P +N (35)

P is the point spread function (PSF) of the imaging sys-
tem, and N is additive noise. In practiceO∗P is subject to
non-stationary noise which one can tackle by simultaneous
object estimation and restoration (Katsaggelos 1991). The
issue of more extensive statistical modeling will not be fur-
ther addressed here (see Llacer & Núñez 1990; Lorenz &
Richter 1993; Molina 1994), beyond noting that multires-
olution frequently represents a useful framework, allow-
ing the user to introduce a priori knowledge of objects of
interest.

We want to determine O(x, y) knowing I and P . This
inverse problem has led to a large amount of work, the
main difficulties being the existence of: (i) a cut-off fre-
quency of the point spread function, and (ii) the additive
noise. See for example (Cornwell 1989).

Equation (35) is usually in practice an ill-posed prob-
lem. This means that there is no unique and stable
solution.

4.2. The principle

The most realistic solution is that which minimizes the
amount of information, but remains compatible with the
data. By the MEM method, minimizing the information is
equivalent to maximizing the entropy and the functional
to minimize is

J(O) =
N∑
k=1

(Ik − (P ∗O)k)2

2σ2
I

− αH(O). (36)

where H is either the Frieden or the Gull and Skilling
entropy.

Similarly, using the multiscale entropy, minimizing the
information is equivalent to minimizing the entropy and
the functional to minimize is

J(O) =
N∑
k=1

(Ik − (P ∗O)k)2

2σ2
I

+ αH(O). (37)

We have seen that in the case of Gaussian noise,H is given
by the energy of the wavelet coefficients. We have

J(O) =
N∑
k=1

(Ik − (P ∗O)k)2

2σ2
I

+ α
l∑

j=1

Nj∑
k=1

w2
j,k

2σ2
j

(38)

where σj is the noise at scale j, Nj the number of pixels
at the scale j, σI the noise standard deviation in the data,
and l the number of scales.

Rather than minimizing the amount of information in
the solution, we may prefer to minimize the amount of
information which can be due to the noise. The function
is now:

J(O) =
N∑
k=1

(Ik − (P ∗O)k)2

2σ2
I

+ αHn(O) (39)

and for Gaussian noise, Hn has been defined by

Hn(X) =
l∑

j=1

Nj∑
k=1

1
σ2
j

∫ |wj,k|
0

u erf

(
| wj,k | −u√

2σj

)
· (40)

The solution is found by computing the gradient ∇(J(O))
and performing the following iterative schema:

On+1 = On − γ∇(J(On)). (41)

We consider an αj per scale, and introduce thereby an
adaptive regularization which depends on the signal-to-
noise ratio of the input data wavelet coefficients.

4.3. The parameters

In order to introduce flexibility in the way we restore the
data, we introduce two parameters βj,k and αj,k which al-
low us to weight, respectively, the two terms of the equa-
tion to be minimized:

J(O) =
1

2σ2
I

N∑
k=1

∑
j

∑
l

βj,kwj,l(R)ψj,l(k)

2

+
l∑

j=1

Nj∑
k=1

αj,kh(wj,k(O))

where R = I − P ∗ O, and R =
∑
j

∑
k wj,k(R)ψj,k

(wj,k(R) are the wavelet coefficients of R, and wj,k(O)
are the wavelet coefficients of O).
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Fig. 3. Top, noisy blocks and filtered blocks overplotted. Bottom, filtered blocks

We consider three approaches for estimating βj,k

1. No weighting: βj,k = 1;
2. Soft weighting: βj,k = Ps(wj,k(I)).

In this case, βj,k is equal to the probability that the
input data wavelet coefficient is due to signal (and not
to noise);

3. Hard weighting: βj,k = 0 or 1 depending on
Pn(wj,k(I)) (Pn(wj,k(I)) = 1− Ps(wj,k(I))). This cor-
responds to using only significant input data wavelet
coefficients.

αj,k is the product of two values: αj,k = αuβ
′
j,k.

– αu is a user parameter (defaulted to 1) which allows
us to control the smoothness of the solution. Increasing
αu produces a smoother solution;

– β′j,k depends on the input data and can take the fol-
lowing value:

1. No regularization (β′j,k = 0): only the first term of
the functional is minimized;

2. No protection from regularization (β′j,k = 1): the
regularization is applied at all positions and at all
the scales;

3. Soft protection (β′j,k = Pn(wj,k(I))): the regular-
ization becomes adaptive, depending on the prob-
ability that the input wavelet coefficient is due to
noise;

4. Hard protection (β′j,k = 0 or 1 depending on
Pn(wj,k(I)));

5. Soft + hard protection: (β′j,k = 0 or Pn(wj,k(I))
depending on Pn(wj,k(I))).

We see that choosing a hard weighting and no regular-
ization leads to deconvolution from the multiresolution
support (Starck et al. 1998a).
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Fig. 4. Top, noisy blocks and filtered blocks overplotted. Bottom, filtered blocks

4.4. Examples

Figure 5 shows a simulation. The original image (panel
(a)) contains stars and galaxies. Fig. 5b shows the data
(blurred image + Gaussian noise), Fig. 5c shows the de-
convolved image, and Fig. 5d the residual image (i.e. data
minus solution reconvolved by the PSF). The blurred im-
age SNR is 12dB, and the deconvolved image SNR is
23.11 dB.

5. Multichannel data

5.1. Introduction

The challenge for multichannel data restoration is to have
a data representation which takes into account at the
same time both the spatial and the spectral (or temporal)
correlation. A three-dimensional transform-based coding
technique has been proposed in Saghri et al. (1995),

consisting of a one-dimensional spectral Karhunen-Loève
transform (Karhunen 1947) (KLT) and a two-dimensional
spatial discrete cosine transform (DCT). The KLT is used
to decorrelate the spectral domain and the DCT is used to
decorrelate the spatial domain. All images are first decom-
posed into blocks, and each block uses its own Karhunen-
Loève transform instead of one single matrix for the whole
image. Lee (Lee 1999) has improved this approach by in-
troducing a varying block size. The block size is adapted
using a quadtree and a bit allocation for each block. The
DCT transform can also be replaced by a wavelet trans-
form (WT) (Epstein et al. 1992; Tretter & Bouman 1995).

We introduce here the Wavelet-Karhunen-Loève trans-
form (WT-KLT) and show how to use it for noise removal.
Decorrelating first the data in the spatial domain using
the WT and afterwards in the spectral domain using the
KLT, allows us to derive robust noise modeling in the WT-
KLT space, and hence to filter the transformed data in an
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Fig. 5. a) Original image, b) blurred image + Gaussian noise, c) deconvolved image, and d) residual image

efficient way. We show also that the correlation matrix can
be computed by different methods, taking into account the
noise modeling.

5.2. The Wavelet-Karhunen-Loève transform

5.2.1. Definition

The Karhunen-Loève transform, also often referred to as
eigenvector, Hotelling transform, or Principal Component
Analysis (PCA) (Karhunen 1947; Loève 1948; Hotelling
1933) allows us to transform discrete signals into a se-
quence of uncorrelated coefficients. Considering a vector
D = d1, ..., dL of L signals or images of dimension N (i.e.
N pixels per image), we denote M = {m1, ...,mL} the
mean vector of the population (mi is the mean of the ith
signal di). The covariance matrix C of D is defined by
C = (D −M)(D −M)t, and is of order L × L. Each el-
ement ci,i of C is the variance of di, and each element
ci,j is the covariance between di and dj . The KLT method
consists of applying the following transform to all vectors
xi = {d1(i), ..., dL(i)} (i = 1..N):

yi = Λ−
1
2A(xi −M) (42)

where Λ is the diagonal matrix of eigenvalues of the covari-
ance matrix C, and A is a matrix whose rows are formed
from the eigenvectors of C (Gonzalez 1993), ordered fol-
lowing the monotonic decreasing order of eigenvalues.

Because the rows of A are orthonormal vectors, A−1 =
At, and any vector xi can be recovered from its corre-
sponding yi by:

xi = Λ
1
2Atyi +M. (43)

The Λ matrix multiplication can be seen as a normaliza-
tion. Building A from the correlation matrix instead of the
covariance matrix leads to another kind of normalization,
and the Λ matrix can be suppressed (yi = A(xi−M) and
xi = Atyi +M). Then the norm of y will be equal to the
norm of x.

We suppose now that we have L observations of the
same view, e.g. at different wavelengths (or at different
epochs, etc.), and denote as dl one observation, W (l) its
wavelet transform, and wl,j,k one wavelet coefficient at
scale j and at position k. The standard approach would
be to use an orthogonal wavelet transform, and to calcu-
late the correlation matrix C from the wavelet coefficients
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instead of the pixel values:

Cm,n =

∑J
j=1

∑Nj
k=1 wm,j,kwn,j,k√∑J

j=1

∑Nj
k=1 w

2
m,j,k

√∑J
j=1

∑Nj
k=1 w

2
n,j,k

(44)

where J is the number of bands, and Nj is the number
of coefficients in band j (Murtagh 1998). In (Lee 1999), a
more complex approach was proposed, which is to decom-
pose the images into Nb blocks and apply a KLT for each
block separately. We investigate here different approaches
for data restoration.

5.2.2. Correlation matrix and noise modeling

We introduce a noise model into our calculation of the
correlation matrix. Indeed, if the input sequence D con-
tains noise, then the wavelet coefficient are noisy too.
Eigenvalues at the high scales are computed with noisy
WT coefficients and we may lose the true underlying cor-
relation that may exist between the input images dl. The
expression of the correlation matrix has to be modified in
order to allow us to take the noise into account. We add a
weighting term to each wavelet coefficient which depends
on the signal-to-noise ratio. The correlation matrix is cal-
culated by

Cm,n = ∑
J

j=1

∑
Nj

k=1
pj(wm,j,k)wm,j,kpj(wn,j,k)wn,j,k√∑J

j=1

∑Nj

k=1
p2
j
(wm,j,k)w2

m,j,k

√∑J

j=1

∑Nj

k=1
p2
j
(wn,j,k)w2

n,j,k

(45)

where pj is a weighting function. The standard approach
corresponds to the specific case where pj(wm) = 1 (no
weighting). By considering that only wavelet coefficients
with high signal-to-noise ratio should be used for the cor-
relation matrix calculation, pj can be defined by:

pj(w) =
{

1 if w is significant
0 if w is not significant (46)

and a wavelet coefficient w is said to be “significant” if
its probability to be due to the noise is smaller than a
given ε value. In the case of Gaussian noise, it suffices to
compare the wavelet coefficients w to a threshold level tj .
tj is generally taken as λσj , where σj is the noise standard
deviation at scale j, and λ is chosen between 3 and 5.
The value of λ = 3 corresponds to a probability of false
detection of 0.27%, for a Gaussian statistic.

Changes brought about in the first eigenvalue through
such hard thresholding in wavelet space are studied in
(Murtagh 1998). This hard weighting scheme may lead to
problem if only a few coefficients are significant, and can
be replaced by a soft weighting scheme, by defining pj(w)
by:

pj(w) = 1− Prob(W > | w |) (47)

where Prob(W > | w |) is the probability that a wavelet
coefficient is larger than w due to the noise. For Gaussian

noise, we have:

pj(w) = 1− 2√
2πσj

∫ +∞

|w|
exp(−W 2/2σ2

j )dW

= erf

(
| w |√

2σj

)
· (48)

5.2.3. Scale and Karhunen-Loève transform

We can also analyze separately each band of the wavelet
transform, and then apply one KLT per resolution level.
This implies calculating a correlation matrix C(j) for each
band j.

C(j)
m,n = ∑Nj

k=1 pj(wm,j,k)wm,j,kpj(wn,j,k)wn,j,k√∑Nj
k=1 p

2
j(wm,j,k)w2

m,j,k

√∑Nj
k=1 p

2
j(wn,j,k)w2

n,j,k

·

(49)

This has the advantage of taking into account more com-
plex behavior of the signal. Indeed, structures of different
sizes may have a different spectral behavior (for example,
stars and galaxies in astronomical images), and a band-
by-band independent analysis allows us to represent better
such data.

5.2.4. The WT-KLT transform

The final WT-KLT algorithm has the following steps:

1. Estimate the noise standard deviation σ(l) of each in-
put data set dl;

2. Calculate the wavelet transform W (l) of each input
data set dl;

3. For each band j of the wavelet transform, calcu-
late the correlation matrix C(j) relative to the vector
xj =

{
W

(1)
j ,W

(2)
j , ...,W

(L)
j

}
, where W

(l)
j represents

the band j of the wavelet transform W (l) of dl;
4. For each band j, we diagonalize the matrix C(j) and

build the transform matrix Aj from the eigenvectors
of C(j);

5. For each band j and each position k, we apply the ma-
trix Aj to the vector xj,k = {w1,j,k, w2,j,k, ..., wL,j,k}:

yj,k = Ajxj,k; (50)

6. The WT-KLT coefficients cl,j,k are derived from yj,k
by cl,j,k = yj,k(l). The l index in the transformed co-
efficients no longer represents the observation number,
but instead the eigenvector number. l = 1 indicates the
main eigenvector while l = L indicates the last one.

The mean vector M disappears in this algorithm because
the wavelet coefficients are of zero mean.

Figure 6 shows the flowchart of the WT-KLT trans-
form.
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Fig. 6. WT-KLT transform flowchart. Each frame of the input
dataset is first wavelet transformed, and a principal component
analysis is applied at each resolution level

5.2.5. The WT-KLT reconstruction algorithm

The reconstruction algorithm has the following steps:

1. For each band j and each position k, we apply the
matrix Atj to the vector yj,k = {c1,j,k, c2,j,k, ..., cL,j,k}

xj,k = Atjyj,k; (51)

2. The wavelet coefficients wl,j,k are derived from xj,k by
wl,j,k = xj,k(l);

3. An inverse wavelet transform of W (l) furnishes dl.

5.3. Noise modeling in the WT-KLT space

Since a WT-KLT coefficient c is obtained by two succes-
sive linear transforms, analytic noise modeling can be car-
ried out in order to derive the noise standard deviation
associated with the c value.

5.3.1. Non-Gaussian noise

If the noise in the data D is Poisson, the Anscombe trans-
formation (Anscombe 1948)

t(D) = 2

√
D +

3
8

(52)

acts as if the data arose from a Gaussian white noise
model, with σ = 1, under the assumption that the mean
value of I is sufficiently large. The arrival of photons, and
their expression by electron counts, on CCD detectors may
be modeled by a Poisson distribution. In addition, there
is additive Gaussian read-out noise. The Anscombe trans-
formation has been extended to take this combined noise
into account. The generalization of the variance stabilizing

Anscombe formula is derived as (Starck et al. 1998a):

t(D) =
2
g

√
gD +

3
8
g2 + σ2 − gm (53)

where g is the electronic gain of the detector, σ and m the
standard deviation and the mean of the read-out noise.

This implies that for the filtering of an image with
Poisson noise or a mixture of Poisson and Gaussian noise,
we will first pre-transform the data D into another dataset
t(D) with Gaussian noise. Then t(D) will be filtered, and
the filtered data will be inverse-transformed.

For other kinds of noise, modeling must be performed
in order to define the noise probability distribution of the
wavelet coefficients (Starck et al. 1998a). In the following,
we will consider only stationary Gaussian noise.

5.3.2. Noise level on WT-KLT coefficients

Assuming a Gaussian noise standard deviation σl for each
signal or image dl, the noise in the wavelet space follows
a Gaussian distribution σl,j , j being the scale index. For
a bi-orthogonal wavelet transform with an L2 normaliza-
tion, σl,j = σl for all j. Since the WT-KLT coefficients are
obtained from a linear transform, we can easily derive the
noise standard deviation of a WT-KLT coefficient from
the noise standard deviation of the wavelet coefficients, as
follows. Considering the noise standard deviation vector
s = {σ1, ..., σL}, we apply the following transformation:

yj = A2
js

2 (54)

and the noise standard deviation relative to a WT-KLT
coefficient cl(j, k) is

√
yj(l).

5.4. Multiscale entropy and multichannel data

The multiscale entropy relative to a set of observations
D(1..M) can be written as:

H(D) =
L∑
l=1

J∑
j=1

Nj∑
k=1

h(cl,j,k) (55)

where J is the number of scales used in the wavelet trans-
form decomposition, L the number of observations, k a
pixel position, c a WT-PCA coefficient, and l denotes the
eigenvector number.

The last scale of the wavelet transform is not used,
in line with our development of this methodology, so this
entropy measurement is background independent. This in
turn is very important because the background can vary
from one wavelength to another.

As for a wavelet coefficient in the case of single channel
data, we know the noise standard deviation relative to a
coefficient, and coefficients are of zero mean. Therefore,
we can apply the same filtering method. The filtered WT-
PCA coefficients are found by minimizing for each cl,j,k:

j(c̃l,j,k) = hs(cl,j,k − c̃l,j,k) + αhn(c̃l,j,k). (56)



742 J.-L. Starck et al.: Entropy and astronomical data analysis

Fig. 7. Simulation: integrated Root Mean Square Error (verti-
cal) versus the noise standard deviation (horizontal). See text

5.5. Example

Figure 7 shows a simulation. We created a dataset of 18
frames, each containing a source at the same position,
but at different intensity levels. The source is a small
Gaussian. The data cannot be coadded because the level
of the source varies from one frame to another (variable
source). Additive noise was used, and the data were fil-
tered. We calculated the Root Mean Square Error (RMSE)
on each individual frame using a 5× 5 square centered on
the source. Hence, the RMSE reflects well the photomet-
ric errors. The addition of the 18 RMSE values, which we
call IRMSE (integrated RMSE), furnishes us with a reli-
able measurement of the filtering quality. The simulation
was repeated with 12 noise levels, and four different filter-
ing methods were compared. Figure 7 shows the IRMSE
versus the noise standard deviation plot. The four meth-
ods are (i) multiscale entropy applied on the WT-KLT
coefficients (diamond), (ii) reconstruction from a subset
of eigenvectors of the KLT (triangle), (iii) multiscale en-
tropy applied on each frame independently (square), and
(iv) thresholding applied to the wavelet transform of each
frame (star). This simulation shows clearly that the ap-
proach proposed here, multiscale entropy applied to the
WT-KLT coefficients, outperforms all other methods.

The same experiments were performed using a sim-
ulated Planck dataset. The dataset contains ten images,
each one being a linear combination of 6 sky components
images (CMB, SZ, free-free, etc.). As in the previous sim-
ulation, noise was added, and the data were filtered by
the four methods. The only difference is that the RMSE
is calculated on the full frames. Figure 8 shows IRMSE
versus the noise standard deviation plot. Diamonds, tri-
angles, squares and stars represent the same methods as

Fig. 8. Planck simulation: integrated Root Mean Square Error
(vertical) versus the noise standard deviation (horizontal).
See text

before. Again, the multiscale entropy applied on the WT-
KLT coefficients outperforms the other methods.

6. Multiscale entropy applied to background
fluctuation analysis

The mean entropy vector

The multiscale entropy has been defined by:

H(X) =
l∑

j=1

N∑
k=1

h(wj) (57)

with h(wj = ln(p(wj(k)))). In order to study the behavior
of the information at a given scale, we prefer to calculate
the mean entropy vector E defined by:

E(j) =
1
N

N∑
k=1

h(wj) (58)

E(j) gives the mean entropy at scale j. From the mean en-
tropy vector, we have statistical information on each scale
separately. Having a noise model, we are able to calcu-
late (generally from simulations) the mean entropy vector
E(noise)(j) resulting from pure noise. Then we define the
normalized mean entropy vector by

En(j) =
E(j)

E(noise)(j)
· (59)

Figure 9 shows the result of a simulation. Five simulated
images were created by adding n sources to a 1024× 1024
image containing Gaussian noise of standard deviation
equal to 1 (and arbitrary mean). The n sources are identi-
cal, with a maximum equal to 1, standard deviation equal
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Fig. 9. Mean entropy versus the scale of 5 simulated images
containing undetectable sources and noise. Each curve corre-
sponds to the multiscale transform of one image. From top to
bottom, the image contains respectively 400, 200, 100, 50 and 0
sources

to 2, and zero covariance terms. Defining the signal-to-
noise ratio (SNR) as the ratio between the standard de-
viation in the smallest box which contains at least 90%
of the flux of the source, and the noise standard devia-
tion, we have a SNR equal to 0.25. The sources are not
detectable in the simulated image, nor in its wavelet trans-
form. Figure 10 shows a region which contains a source at
the center. It is clear there is no way to find this kind of
noisy signal. The five images were created using a number
of sources respectively equal to 0, 50, 100, 200 and 400,
and the simulation was repeated ten times with different
noise maps in order to have an error bar on each entropy
measurement. For the image which contains 400 sources,
the number of pixels affected by a source is less than 2.5%.

When the number of sources increases, the difference
between the multiscale entropy curves increases. Even
if the sources are very faint, the presence of signal can
be clearly detected using the mean entropy vector. But
it is obvious that the positions of these sources remain
unknown.

7. Multiscale entropy as a measure of relevant
information in an image

Since the multiscale entropy extracts the information from
the signal only, it was a challenge to see if the astronomical
content of an image was related to its multiscale entropy.

For this purpose, we studied the astronomical content
of 200 images of 1024× 1024 pixels extracted from scans of
8 different photographic plates carried out by the MAMA
digitization facility (Paris, France) (Guibert 1992) and
stored at CDS (Strasbourg, France) in the Aladin archive
(Bonnarel et al. 1999). We estimated the content of these
images in three different ways:

1. By counting the number of objects in an astronom-
ical catalog (USNO A2.0 catalog) within the image.

Fig. 10. Region of a simulated image containing an unde-
tectable source at the center

The USNO (United States Naval Observatory) cata-
log was originally obtained by source extraction from
the same survey plates as we used in our study. (A
catalog is the term commonly applied in astronomy
to a relational table, or a tabular array, of coordinate
positions followed by object feature measurements;)

2. By counting the number of objects estimated in the im-
age by the Sextractor object detection package (Bertin
& Arnouts 1996). As in the case of the USNO catalog,
these detections are mainly point sources (i.e. stars, as
opposed to spatially extended objects like galaxies);

3. By counting the number of structures detected at sev-
eral scales using the MR/1 multiresolution analysis
package (MR/1 1999).

Figure 11 show the results of plotting these numbers for
each image against the multiscale signal entropy of the im-
age. The best results are obtained using the MR/1 pack-
age, followed by Sextractor and then by the number of
sources extracted from USNO. The latter two basically
miss the content at large scales, which is taken into ac-
count by MR/1. Unlike MR/1, Sextractor does not at-
tempt to separate signal from noise.

Sextractor and multiresolution methods were also ap-
plied to a set of CCD (charge coupled detector, i.e. digital,
as opposed to the digitized photographic plates used pre-
viously) images from CFH UH8K, 2MASS and DENIS
near infrared surveys. Results obtained were very similar
to what was obtained above. This lends support to (i) the
quality of the results based on MR/1, which take noise
and scale into account, and (ii) multiscale entropy being
a good measure of content of such a class of images.
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Fig. 11. Multiscale entropy versus the number of objects: the
number of objects is, respectively, obtained from (top) the
USNO catalog, (middle) the Sextractor package, and (bottom)
the MR/1 package

8. Multiscale entropy and optimal compressibility

Subsequently we looked for the relation between the mul-
tiscale entropy and the optimal compression rate of an
image which we can obtain by multiresolution techniques
(Starck et al. 1998a). By optimal compression rate we

1 10 100 1000
10

100

Fig. 12. Multiscale entropy of astronomical images versus the
optimal compression ratio. Images which contain a high num-
ber of sources have a small ratio and a high multiscale entropy
value. With logarithmic numbers of sources, the relation is al-
most linear

mean a compression rate which allows all the sources to
be preserved, and which does not degrade the astrome-
try (object positions) and photometry (object intensities).
Louys et al. (Louys et al. 1999) and Couvidat (Couvidat
1999) have estimated this optimal compression rate using
the compression program of the MR/1 package (MR/1
1999). We note that photometry and astrometry (and vi-
sual quality) were used in this work, given the crucial im-
portance in astronomy of flux conservation and complete-
ness. The cited references may be referred to for further
details.

Figure 12 shows the relation obtained between the mul-
tiscale entropy and the optimal compression rate for all
the images used in our previous tests, both digitized plate
and CCD images. The power law relation is obvious thus
allowing us to conclude that:

– The compression rate depends strongly on the astro-
nomical content of the image. We can then say that
compressibility is also an estimator of the content of
the image;

– The multiscale entropy allows us to predict the optimal
compression rate of the image.

9. Conclusion

We have seen that information must be measured from the
transformed data, and not from the data itself. This is so
that a priori knowledge of physical aspects of the data can
be taken into account. We could have used the Shannon
entropy, perhaps generalized (Sporring & Weickert 1999),
to measure the information at a given scale, and derive
the bins of the histogram from the standard deviation of
the noise, but for several reasons we thought it better to
directly introduce noise probability into our information
measure. Firstly, we have seen that this leads, for Gaussian
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noise, to a very physically meaningful relation between the
information and the wavelet coefficients: information is
proportional to the energy of the wavelet coefficients nor-
malized by the standard deviation of the noise. Secondly,
this can be generalized to many other kinds of noise, in-
cluding such cases as multiplicative noise, non-stationary
noise, or images with few photons/events. We have seen
that the equations are easy to manipulate. Finally, ex-
periments have confirmed that this approach gives good
results.

For filtering, the multiscale entropy has the following
advantages:

– It provides a good trade-off between hard and soft
thresholding;

– No a priori model on the signal itself is needed as
with other wavelet-based Bayesian methods (Chipman
et al. 1997; Crouse et al. 1998; Vidakovic 1998;
Timmermann & Nowak 1999);

– It can be generalized to many different noise distribu-
tions;

– The regularization parameter α can be easily fixed au-
tomatically. Cross-validation (Nason 1996) could be an
alternative, but with the limitation to Gaussian noise.

Replacing the standard entropy measurements by the
Multiscale Entropy avoids the main problems in the MEM
deconvolution method.

We have seen also how our new information measure
allows us to analyze image background fluctuation. In the
example discussed, we showed how signal which was below
the noise level could be demonstrated to be present. Our
SNR was 0.25. This innovative analysis leads to our being
able to affirm that signal is present, without being able to
say where it is.

To study the semantics of a large number of digital and
digitized photographic images, we took already prepared
– external – results, and we also used two other processing
pipelines for detecting astronomical objects within these
images. Therefore we had three sets of interpretations of
these images. We then used Multiscale Entropy to tell us
something about these three sets of results. We found that
Multiscale Entropy provided interesting insight into the
performances of these different analysis procedures. Based
on strength of correlation between Multiscale Entropy and
analysis result, we argued that this provided circumstan-
tial evidence of one analysis result being superior to the
others.

We finally used Multiscale Entropy to provide a mea-
sure of optimal image compressibility. Using previous
studies of ours, we had already available to us a set of
images with the compression rates which were consistent
with the best recoverability of astronomical properties.
These astronomical properties were based on positional
and intensity information, – astrometry and photometry.
Papers cited contain details of these studies. Therefore
we had optimal compression ratios, and for the corre-
sponding images, we proceeded to measure the Multiscale
Entropy. We found a very good correlation. We conclude

that Multiscale Entropy provides a good measure of image
or signal compressibility.

The breadth and depth of our applications lend cre-
dence to the claim that Multiscale Entropy is a good
measure of image or signal content. Compared to previ-
ous work, we have built certain aspects of the semantics of
such data into our analysis procedures. As we have shown,
the outcome is a better ability to understand our data.
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at http://jstarck.free.fr

Starck, J. & Murtagh, F. 1999, Signal Proc., 76, 147
Starck, J., Murtagh, F., & Bijaoui, A. 1998a, Image Processing

and Data Analysis: The Multiscale Approach (Cambridge
University Press, Cambridge, UK)

Starck, J., Murtagh, F., & Gastaud, R. 1998b, IEEE Trans.
Circ. Syst. II, 45, 1118

Timmermann, K. E., & Nowak, R. 1999, IEEE Trans. Sig.
Proc., 46, 886

Tretter, D., & Bouman, C. 1995, IEEE Trans. Im. Proc., 4, 308
Vidakovic, B. 1998, J. Am. Stat. Assoc., 93, 173
Weir, N. 1991, in 3rd ESO/ST-ECF Data Analysis Workshop
Weir, N. 1992, in Astronomical Data Analysis Software and

System 1, ed. D. Worral, C. Biemesderfer, & J. Barnes,
Astronomical Society of the Pacific, 186


