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Abstract - We obtain n e w  entropy and m u t u a l  in- 
formation formulae for regenerative stochastic pro- 
cesses. We use them on Markov  channels  to generalize 
the resul ts  i n  Goldsmi th  and Varaiya [3]. Also w e  ob- 
tain tighter bounds on capaci ty  and better algori thms 
than in [3]. 

I. INTRODUCTION 
We obtain new formulae for the entropy and mutual informa- 
tion for regenerative processes including many Harris recur- 
rent Markov and long range dependent processes. Using our 
results we improve upon the lower bound for the capacity of 
the Markov channels without feedback considered in [3]. We 
generalize all the results in [3] while significantly simplifying 
the proofs, we also modify the algorithm in [3] to obtain the 
mutual information and obtain a substantially simpler algo- 
rithm. 

11. ENTROPY AND MUTUAL INFORMATION 
Let {X, ,  k 2 0) be a discrete valued regenerative stochastic 
process (see [l] chapter V). Let 1 5 TI < T2 < T3 < . . . be the 
regeneration epochs for {X,} with r = TZ -TI  a regeneration 
length. Denote X: = ( X m , .  . . , X,). Entropy per sample of 
X is given by H ( X )  = limn+m i H ( X ; ) ,  if the limit exists. 

The next theorem and lemma provides existence and rates 
of convergence of H ( X ) .  For X starting in any initial dis- 
tribution, define YO = -log P ( X F ) ,  Y, = -log P(X:zz;), 
n 2 1, where P( . . . )  denotes the distribution of X .  Let 
S, = -logP(X;), Yo(n) = - logP(XTAn) .  The following 
theorem can be proved using regenerative theory (see e.g. [l] 
Chapter V). 

Theorem 1 Let E [ r ]  < CO, E[Yl] < CO and P[Yo < CO] = 1. 
Then S,/n + E Y l / E r  a.s.. Furthermore, i f  E[Yo] < CO then 
the limit H ( X )  also exists and equals E [ Y l ] / E r .  If in addi- 
tion, 0 < war(Y1) < m then [S, - nEYl /Er]n - ;  converges 
in distribution to normal r.v. N(0, a2) (CLT), where 
a' = var(Y1)  + ($)'Var(7-) - w c o v ( Y 1 , r ) .  Under the 

same conditions the law of iterated logarithm also holds. 0 
L e m m a  1 For an  irreducible countable Markov chain { X , }  
with transition matrix P ( j  I i ) ,  E[Y,"] < m f o r  any a 2 1 
i f  f o r  some E > 0,  P(jli) 2 E whenever P ( j  I i )  > 0 and 
E[r2"]  < 03. 0 

For an irreducible, ergodic Markov chain, the expression 
E [ Y l ] / E [ r ]  reduces to the well known expression. Theorem 1, 
along with its proof is valid for continuous time regenera- 
tive processes with values in a general Polish space and m- 
dependence in cycles. Theorem 1 can be used on regenerative 
processes X and Y with common regeneration epochs to ob- 
tain limits for I(x;, y;")/n fi I ( X ,  Y ) .  
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111. APPLICATION TO MARKOV CHANNELS 
Consider one user transmitting to another via a Markov fading 
channel. Let (Zn ,Sn)  be a countable, irreducible, aperiodic, 
ergodic Markov chain. Intervisit time to a particular state 
will represent a regeneration epoch. S, is the channel state. 
Given Z,, X ,  is independent of everything else. Unlike in [3], 
our model allows inter-symbol interference. 

Following [3], define pn(s, z )  = P(S ,  = s, 2, = z I Yn- ' )  
and T,(s ,z)  = P(S ,  = s , Z ,  = z I Yy- ' ,X ," - l ) .  The proofs 
in [3] do not hold for Markov inputs in general. Our key 
observation is that {T,} and {p,} are regenerative sequences. 
The regeneration epochs of {p,} and {T,} are same as that of 
((2,) S,)}. Therefore, T ,  -+ T and p, -+ p converge in total 
variation to their unique distributions. 

Next we provide recursive formulae for I ( X T ,  Y;"). We have 
shown that 
I ( X T , Y ? )  = C;==,[-E[log(C,,, E, P(K I si = % X i  = z) 

P ( X i  = z I zi = Z)Pi(S, z ) ) ]  +E[log(CS,Z P(yz I xi, si = s) 

) I ] .  =,,=, P ( X ;  IS;=s',Z;=z')a; (S',Z') 

,(Xi ISi  = s , Z ; = t ) x ;  ( S J )  

We have obtained recursive formulae for p, and 7rn as in [3]. 
Now as in [3], we can obtain the limit of I ( X ,  Y) /n .  How- 

ever unlike for the iid inputs, computing these distributions 
for Markov inputs is extremely complicated. Therefore, we 
consider another algorithm. Observe that,  from our results 
[log P(Y;" I X ; ) / P ( X r ) / n ]  -+ I ( X ,  Y )  a.s.  and hence we can 
obtain recursive algorithms to compute an aproximation for 
the limit from formulae for p, and T,. 

We obtain a lower bound on channel capacity using the 
above algorithm, by calculating sup,(,) I ( X ,  Y )  by restrict- 
ing the supremum to the set of (hidden) Markov chain inputs. 
This lower bound is obviously tighter than Iiid obtained in [3]. 
As in [3], to compute this bound via optimization algorithms, 
it helps to know if limn+m I ( X F ,  Y;")/n is a continuous func- 
tion of the distribution of {Z,}. We have proved it, using the 
regenerative setup for finite state spaces. 

The decision feedback decoder designed in the section VI 
of [3] can be directly extended to our setup. We have demon- 
strated the utility of our algorithm by applying on some 
Markov channels. 
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