Entropy and Cortical Activity:
Information Theory and PET
Findings

Functional segregation requires convergence and diver-
gence of neuroanatomical connections. Furthermore, the
nature of functional segregation suggests that (1) sig-
nals in convergent afferents are correlated and (2) sig-
nals in divergent efferents are uncorrelated. The aim of
this article is to show that this arrangement can be
predicted mathematically, using information theory and
an idealized model of cortical processing.

In theory, the existence of bifurcating axons limits
the number of independent output channels from any
small cortical region, relative to the number of inputs.
An information theoretic analysis of this special (high
input:output ratio) constraint indicates that the maximal
transfer of information between inputs, to a cortical
region, and its outputs will occur when (1) extrinsic
connectivity to the area is organized such that the en-
tropy of neural activity in afferents is optimally low and
(2) connectivity intrinsic to the region is arranged to
maximize the entropy measured at the initial sagments
of projection neurons.

Under the constraints of the model, a low entropy
is synonymous with high cormrelations between axonal
firing rates (and vice versa). Consaquently this antisym-
metric arrangement of functional activity in convergent
and divergent connections underlying functional seg-
regation is exactly that predicted by the principle of
maximum preservation of information, considered in the
context of axonal bifurcation.

The hypothesis that firing in convergent afferents is
correlated (has low entropy) and spatially coherent was
tested using positron emission tomographic measure-
ments of cortical synaptic function in man. This hy-
pothesis was confirmed.

K.]J. Friston,' C. D. Frith,' R. E. Passingham,'? R. J.
Dolan,' P. F. Liddle,! and R. S. J. Frackowiak'

' MRC Cyclotron Unit, Hammersmith Hospital,
London W12 OHS, United Kingdom and

? Department of Experimental Psychology, Oxford
University, Oxford OX1 3UD, United Kingdom

Certain patterns of cortical projections are so common
that they could amount to rules of cortical connec-
tivity. “These rules revolve around one, apparently,
overriding strategy that the cerebral cortex uses—that
of functional segregation” (Zeki, 1990). Functional
segregation demands that cells with common func-
tional properties be grouped together. This in turn
necessitates both convergence and divergence of cor-
tical connections. Anatomical convergence is re-
quired to assemble functionally distinct sets of sig-
nals, distributed over a functionally heterogeneous
area, into a specialized area. Divergent efferents seg-
regate and disseminate mixed signals to more spe-
cialized regions. Convergence is seen on many scales.
For example, the connections between V1 and V5 are
convergent in the sense that one V5 cell receives
projections from many V1 cells, evidenced by the
smaller areal extent of V5 compared to V1 and the
larger receptive fields found in V5 (Zeki, 1971). Sim-
ilarly, there is convergent input from V1 blobs (in
which low spatial frequency and wavelength selec-
tivity are represented) to the thin stripes of V2 in
which cells have similar properties with larger recep-
tive fields (Livingstone and Hubel, 1984) and from
several thin stripes in V2 to V4 (Zeki and Shipp, 1989).
As convergent projections assemble similar attributes
of the visual field, it is inferred that firing rates in
convergent afferents are correlated. Divergent con-
nections, on the other hand, mediate redistribution
of functionally distinct signals to different areas and
subareas. Indeed, it was on the basis of the anatomical
evidence for multiple and divergent projections from
V1 to extrastriate areas that the role of V1 as a func-
tional segregator was first proposed (Zeki, 1975). As
divergent connections parcel out functionally differ-
ent signals to various extrastriate regions, it is con-
cluded that firing rates in divergent efferents are large-
ly uncorrelated. The capacity to decorrelate outputs
is considered by some to be a central component of
feature detection (e.g., Foldiak, 1989; Oja, 1989; Hor-
nik and Kuan, 1992).

Alternative arrangements are unlikely on the
grounds that they would preclude categorization of
events in the sensory field. In general, uncorrelated
signals in convergent connections would confound
independent features and disallow any subsequent
separate categorization on the basis of those features.
In most processes with a biological flavor (e.g., Pois-
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son point processes and stationary Gaussian process-
es), conflating two dissimilar inputs (4 and B) is ir-
reversible, where categorizaton can proceed on the
basis of 4 or B but not on the basis of 4 and B alone.
Similarly, correlated signals in divergent efferents
would lead to a complete failure in segregating a
functionally mixed input and a potential failure to
extract features necessary for categorization.

Functional segregation therefore suggests two an-
tisymmetric features of cortical organization: (1) sig-
nals in convergent afferents are correlated, and (2)
signals in divergent efferents are uncorrelated. The
aim of this article is to show that this arrangement
and its conceptual counterpart—functional segrega-
tion—are exactly consistent with a simple formula-
tion of cortical processing in information theoretical
terms.

By considering a particular constraint imposed by
axonal bifurcation, we demonstrate that information
transfer is optimized when inputs to a cortical region
are substantially correlated (have an optimal and low
entropy) and outputs are uncorrelated (have a high
entropy). We describe the theory below and provide
empirical evidence of autocorrelated, coherent affer-
ent activity in the cortex using PET measurements of
neurophysiology.

Theory

The behavior of any cortical region, of small arbitrary
diameter, is characterized by its inputs (afferents),
outputs (efferents), and the transformation of neural
discharge patterns between the two. Using the ter-
minology of Shepherd and Koch (1990), we define
inputs as extrinsic axons (arising from distant cells)
giving rise to arborizations that synapse on cell pro-
cesses within the region. Outputs are the single out-
put points (initial segments) of projection (principal
orrelay) cells giving rise to at least one extrinsic axon.
Extrinsic connections connect distant cortical regions,
as distinct from intrinsic connections (e.g., interneu-
rons or recurrent axonal collaterals).

This definition of an output is strictly neuroana-
tomical, but functional independence is implicit. Two
axons deriving from the same initial segment are con-
sidered to be part of the same output and exhibit the
same pattern of firing. Only different outputs can fire
independently.

The synaptic, parasynaptic, and ephaptic transfor-
mation of discharge patterns is effected by direct con-
nections between extrinsic afferents and projection
cells (e.g., direct axodendritic synapses on the apical
dendrites of large pyramidal cells), by intrinsic con-
nections (e.g., stellate interneurons), and by intrinsic
recurrent collaterals (Mountcastle, 1978; Powell,
1981).

Axonal Bifurcation and Constraints on
Extrinsic Connectivity

One special aspect of brain connectivity, central to
the argument developed below, is that the number
of inputs to a cortical region exceeds the number of
outputs. This characteristic is the main constraint un-
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der which the optimization of information transfer is
considered. It is self-evident that the number of in-
puts to a single neuron (multiple dendritic synapses)
exceeds the number of outputs (single initial seg-
ment) from that neuron. It is also self-evident, but
perhaps not so obvious, that the number of inputs to
gray matter area will, on average, be substantially
greater than the number of outputs. This is a conse-
quence of bifurcating or nonrecurrent axonal collat-
erals.

Imagine a closed surface or boundary at all gray-
white matter interfaces. The number of axonal fibers
crossing that surface into white matter is less than or
equal to the number crossing in the opposite direc-
tion—the gray matter inputs (the possible inequality
results from axonal bifurcation in the white matter
volume). Because one initial segment (output) can
give rise to several extrinsic axons, the number of
outputs is less than the number of fibers entering
white matter, which in turn is less than or equal 10
inputs traversing the boundary in the other direction.
Therefore, the number of outputs is less than the
number of gray matter inputs. In general, if an efferent
axon bifurcates on average 7 times there will be n +
1 axonal fibers for each output. Given that all extrinsic
afferent fibers represent an input, the input:output
ratio would be (7 + 1):1. This argument assumes that
the difference between effectors and receptors is small
in comparison to the total number of extrinsic axons.

Double labeling experiments have demonstrated
that the Meynert cells of layer 6 in V1 project through
bifurcating axons to both V5 and the superior collic-
ulus (Fries et al., 1985). Nonrecurrent axonal collat-
erals (e.g., bifurcating axons) can mediate backward
connections. Studies of axonal bifurcation show that,
in general, backward projections are less submodality
specific than outward projections (Bullier and Ken-
nedy, 1987; Shipp and Zeki, 1989a, b). Because back-
ward projections are common, axonal bifurcation may
be ubiquitous.

Examples of High Input:Output Ratios

V5 receives convergent afferents from V1, shown by
the fact that V5 receptive fields are larger than the V1
receptive fields of which they are composed (Zeki,
1971). Consequently, a single V5 neuron receives ax-
onal afferents from more than one V1 cell. The num-
ber of initial segments on V5 projection cells cannot
exceed the number of V5 cells. Therefore, the number
of inputs to V5 exceeds its outputs. Examples can be
found where the reduction in outputs is high. Each
of the A laminae of the cat’s lateral geniculate nucleus
(LGN) contains roughly 400,000 cells, of which about
300,000 are projection cells. The LGN receives slight-
ly fewer than 100,000 retinogeniculate axons and more
than 4,000,000 corticogeniculate axons, in addition
to afferents from the brainstem reticular formation and
the reticular nucleus of the thalamus (Sherman and
Koch, 1990). The input:output ratio is, in this ex-
ample, about 14:1. Note that this output reduction is
largely due to backward projections from the cortex.



Entropy and Correlations

The application of information theory often takes the
form of optimizing a particular aspect of performance
under a series of constraints. In what follows, the
transfer of information associated with the transfor-
mation of neural firing by a small region of cortex is
the object of optimization. In the context of brainlike
function, the principle of maximum information pres-
ervation has an intuitive, predictive, and construct
validity (Linsker, 1988; Foldiak, 1990) and is related
to the concept of redundancy reduction (Barlow, 1961;
Atick and Redlich, 1990). Linsker has coined the term
infomax in reference to this principle and has dis-
cussed its ramifications and precedents (Linsker,
1988).

The main constraint under which the principle of
information preservation is developed is the reduc-
tion or constriction of outputs relative to inputs. A
heuristic argument suggests that if information in an
input space is redistributed over a substantially small-
er number of outputs, information transfer will be
enhanced by mutual predictability in the inputs. This
implies that firing in one input is predictive of (and
predicted by) activity in the remainder; that is inputs
will be correlated. Conversely, efficient use of (noise-
less) outputs prohibits mutual prediction and re-
quires the outputs to be independent or uncorrelated.

Put another way, if there is a constriction in the
number of available channels, transfer will be more
efficient if less information tries to get through at
once. These heuristic arguments can be illustrated
more formally using information theory: information
(D) is the improbability of an event (x) expressed as
the logarithm of the inverse of its probability [p(x)],
or

I(x) = —=In(p(x)). (1)

An event with low information is highly probable, and
its occurrence could have been predicted. For a num-
ber of continuous events (neural activity across sev-
eral axons, x) the average information is referred to
as entropy [H(x)]. For an n-dimensional space where
the probability density of axonal firing is Gaussian,
the entropy is given by (Jones, 1979)

H(x) = In((2xe)"|px|)/2, @

where px is the covariance matrix (and |px| its de-
terminant) describing the covariance between neural
firing. Following transformation, in accord with the
principle of information preservation, the entropy
(average information) of the outputs should be high.
The model of cortical processing we use is defined
by the following assumptions: (1) stationary multi-
variate Gaussian continuous input with zero mean
and unit variance, (2) additive uncorrelated orthog-
onal Gaussian noise in, and only in, the inputs, and
(3) linear transformations under the constraint that
Zic? = 1, where ¢, is the coeflicient scaling the con-
tribution from input 7 to output f. The last constraint
conserves total synaptic contacts a dendritic tree can
express. For example, if synaptic efficacy is propor-
tional to the radii of postsynaptic specializations, then

the total areal extent of all specializations on one tree
is unity. For this idealized model, the entropy of the
outputs [H(y)] is arithmetically related to the mutual
information between inputs and outputs [/(x, 3)]. The
mutual information reflects the information that y
conveys about x (Jones, 1979):

I(x, ) = H(» — H(2), 3)

where H(z) is the entropy of noise in the inputs. For
unchanging noise characteristics, an increase in H(y)
is equivalent to an increase in the mutual information.
Optimizing information transfer thus reduces to max-
imizing H(y) under the constraints imposed (1) by
the model assumptions and (2) bya high input:output
ratio.

The linear transformation that maximizes output
entropy (under the above assumptions) is a principal
component transformation (Linsker, 1988; Foldiak,
1989; Oja, 1989; Hornik and Kuan, 1992). This trans-
formation renders the outputs orthogonal or inde-
pendent (not mutually predictive). For a more de-
tailed analysis of the role of noise under less restrictive
constraints than those assumed here, see Linsker
(1988) and Atick and Redlich (1990). We use the
principal component transformation to examine how
the upper limit on H(y) = H_,, depends on the co-
variance structure of the inputs (Cx) and the input:
output ratio (rn:m).

This dependency is illustrated in Figure 1 by mod-
eling the input covariance matrix as a Gaussian au-
tocovariance matrix:

px(i,j. 1 — j= b) = exp(—F/(269). 4

As 8 gets bigger, the covariance between distant in-
puts increases and the inputs exhibit a greater degree
of intercorrelation or coherence. 8 will be referred to
as coherence. The upper limit on H(y) is given by
Equation 2 where |px| = Il¢, and ¢, are the m largest
eigenvalues of px. It is immediately obvious, from
Figure 1, that as soon as an initially incoherent input
becomes more coherent, H,,, increases, therein po-
tentially optimizing information transfer. This effect
is more sustained with higher input:output ratios. The
upper solid line in Figure 1 corresponds to a ratio of
2:1 (on average extrinsic axons from projection cells
bifurcate once). In this case, the optimal input co-
herence is realized fairly soon. Subsequent increases
result in a progressive reduction in output entropy as
the capacity to support high variances in the large
number of orthogonal outputs fails. For higher ratios,
the optimal coherence (largest H_,,) is much greater.
This behavior is a general feature of all monotonic
decreasing autocovariance functions we have exam-
ined. Figure 2 illustrates the generality of this behav-
ior by relating H,,, to the entropy of the inputs for a
number of autocovariance functions. Initially as input
entropy falls (coherence increases), H,,, increases to
a maximum and then declines monotonically. The
location of the maxima depends on the nature of the
autocovariance function and input:output functions;
however, all are associated with nontrivially low en-
tropies (nonzero coherence). The three autocovari-
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ance functions depicted in Figure 2 are a Gaussian
(Eq. 4), an exponential px(b) = exp(—h/8) | 4.0, and
a hyperbolic function px(b) = (b + 1)?|,., (see Fig.
2 caption for the ranges of 8 used).

The use of autocovariance matrices assumes that
the input covariance pattern [px(5)] is stationary; cross-
covariances are a function of distance between inputs
(b), not specific locations. This is appropriate given
that we are modeling an organizational principle that
is invariant over the entire cortex.

In conclusion, there is an optimal coherence that
maximizes the entropy of the outputs for any input:
output ratio. In other words, given the above con-
straints, the most informative and balanced neural
activity in a series of independent, uncorrelated out-
puts from an area is associated with low-optimal-en-
tropy, correlated activity in the inputs. This is exactly
the arrangement predicted by functional segregation:
(1) correlated activity in convergent afferents and (2)
uncorrelated activity in divergent efferents. Hebb’s
rule can be seen as satisfying a special case of this
arrangement—where the input entropy is unspecified
and the cortical area in question reduces to a single
dendritic tree. Oja (1982) has analyzed a model with
a single output unit using a local Hebbian connection
strength modification rule and demonstrated that the
unit extracts the principal component with the largest
eigenvalue (©) from a stationary input. The entropy
{H(y)] of a unidimensional Gaussian distribution is
given by (Jones, 1979) H(y) = log(27e)/2. Conse-
quently, output entropy is maximized. Note the an-
tisymmetric nature of this conclusion: to comply with
the principle of maximal information preservation—
in this context maximization of output entropy-—there
is an almost paradoxical requirement that the entropy
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of the inputs be significantly less than chance expec-
tation.

Examples of Correlated Inputs

“The EEG is both a consequence and a sign of cor-
related activity in the brain” (Cook, 1991). If neurons
converging onto cortex all fired independently, then
the effects on the electrical field outside the cranium
would largely cancel. High- and low-frequency field
potential changes imply a strong local correlation.

Example of Independent Outputs

There are divergent projections from V1 to V5 and
V4. Independent activation of V5 and V4 has been
demonstrated in human subjects using functional im-
aging (Zeki et al., 1991). Therefore, firing in V1 ef-
ferents projecting to V5 can be independent of firing
in projections to V4.

Empirical Validation

We predicted that convergent afferentation in the cor-
tex will have a low entropy over a range of spatial
domains. This prediction can be reformulated in terms
of the instantaneous measurement of neural activity,
predicted to have nontrivial autocovariance, or to be
spatially coherent.

There is a substantial amount of empirical evi-
dence to suggest that regional cerebral blood flow
(rCBF) is coupled to neural discharge rates in cortical
afferents (e.g., Fox and Raichle, 1986). Compelling
evidence that this coupling operates over small spa-
tiotemporal domains is provided by high-resolution
optical imaging of microcirculatory events in ocular
dominance columns of monkey cortex during visual
stimulation (Frostig et al., 1990). This and other ev-
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idence (Conrad and Klingelhofer, 1989) suggests that
tCBF is coupled to afferent activity over a scale of less
than 1 mm and less than 1 sec. rCBF is therefore a
neurophysiological index of afferent activity that we
predicted would show nontrivial autocovariance over
many millimeters.

The spatial frequencies of multiple realizations of
stationary processes remain unchanged when inte-
grated. Consequently, the coherence or autocovari-
ance of the stationary component of many instanta-
neous rCBF measurements integrated over time will
be the same as any single measurement in isolation.
We use this to advantage in the PET technique, which
gives the integrated rCBF over several minutes.

Clearly, actual cortical activity may have many non-
stationary components, reflecting regional specificity
of function. These nonstationary components are not
the subject of the present analysis. As a first step, we
wished to demonstrate coherence as a ubiquitous and
regionally invariant characteristic of cortical activity.
Provisional work (K. J. Friston, C. D. Frith, R. E. Pas-
singham, R. J. Dolan, P. F. Liddle, and R. S. J. Frac-
kowiak, unpublished observations) using statistical
tests of sphericity, suggests that it is possible to mea-
sure regional differences in entropy.

The spatial resolution of PET is poor, but in a well-
behaved way (Glick et al., 1989). The confounding
effect of poor resolution on estimating autocovariance
(coherence) can be accounted for by deconvolution
with the noise power spectrum (NPS).

Methods
To remove systematic and nonstationary neurophys-
iological components, due to regional variations in

perfusion and anatomical configuration of gyri, we
used the difference in activity between two measure-
ments of cortical rCBF to estimate its autocovariance.
Experimental control was exerted over the physio-
logical differences by using two tasks repeated in a
pairwise fashion. The choice of these tasks was ar-
bitrary from the point of view of the present analysis,
as regional differences were not an issue. The tasks
were chosen because they activate extensive and
widespread cortical regions (Frith et al., 1991).

Data Acquisition

Six normal male volunteers where scanned 12 times
in the same session while performing one of two tasks
in an alternating sequence (repeating a heard letter
and responding with a word that began with a heard
letter). Similarly, the standard (Hoffman) three-di-
mensional human brain phantom was scanned 12 times
using '°F at a concentration of 0.6 uCi/cc in the gray
matter compartment. The total counts per image cor-
responded to the human studies. Permission to per-
form these studies was obtained from the local ethical
committee and Advisory Committee for the Admin-
istration of Radioactive Substances of the UK. Scans
were obtained with a CTI (model 953B; CTI, Knox-
ville, TN) PET camera as a fully three-dimensional
acquisition. Reconstructed (Townsend et al., 1992)
images had a resolution of 5.2 mm (T. J. Spinks, T.
Jones, D. L. Bailey, D. W. Townsend, S. Grootnook,
P M. Bloomfield, M. C. Galardi, M. E. Casey, B. Sipe,
and J. Reed, unpublished observations). The volume
images contained 128 x 128 x 31 vozxels correspond-
ing to 2 x 2 x 3.1 mm. O was administered intra-
venously as radiolabeled water infused over 2 min.
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Figare 3. Picture of the brein showing the extent of conical surface analyzed. An
example of & fitted corteal ellipse & superemposed on & transverse sechion.

The total counts per voxel during the buildup phase
of radioactivity served as an estimate of rCBF (Fox
and Mintun, 1989). The tasks began 20 sec prior to
delivery of radiolabeled water.

Data Analysis

The cortical rim was sampled from the 12 scans from
each subject and the phantom. This sampling used
an ellipse fitted to the length and width of 20 con-
secutive slices (see Fig. 3). Subtracted sequential pairs
(Kijewski and Judy, 1987) were used to estimate the
rCBF autocovariance function,

The objective of our analysis was to show that the
human data, but not the phantom data, exhibited non-
trivial autocovariance over many millimeters. Follow-
ing normalization to zero mean and unit variance, the
one dimensional subtracted rCBF data were subject
to Fast Fourier transformation. The transformed rCBF
data were averaged across all cortical ellipses from
one subject and divided by the NPS in frequency space.
This corresponds to deconvolution in Cartesian space.
The resulting spectral density functions can be seen
in Figure 4a for the six subjects and the phantom
data, included for comparison. Inverse Fourier trans-
formation of the spectral density functions yielded
the corresponding autocovariance functions (Cox and
Miller, 1980), which because of the initial normal-
ization are also the autocorrelation functions (Fig.
4b).

We used an empirical estimate of the NPS (poly-
nomial fit of the Fourier transform of subtracted se-
quential phantom pairs) to ensure a proper estimate
of low spatial frequencies. This accounted for two-
dimensional aliasing due to pixel sampling (Kijewski
and Judy, 1987).

Results

Figure 4a shows the normalized spectral density func-
tions for the phantom data (solid line circled at the
beginning) and the six subjects. The phantom data
receive equal contributions from all frequencies, con-
sistent with uncorrelated white noise these data rep-
resent. In contrast, the physiological data have rela-
tively large contributions from low spatial frequencies
that result in monotonic declining autocorrelations
at increasing distances. This coherence is seen in the
corresponding autocorrelation functions in Figure 4b.
Again, the phantom autocorrelation function is given
for comparison and is rendered as a solid line. Au-
tocorrelation is evident (in this conservative analysis;
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see below) at 5 mm and beyond. This coherence can-
not be explained by intrinsic connectivity, which has
a maximal spatial extent of 3 mm (Mountcastle, 1978).

Although the autocovariance is significantly great-
er than 0 over large distances [e.g., mean p(8 mm)
= 0.0644; t = 6.47; p < 0.001; df = 5), the size of the
autocorrelations is very small. This is because the
rCBF process is embedded in large amounts of un-
correlated noise associated with the high-resolution
PET technique used. Figure 45 illustrates this point
in that the low-frequency structure in the rCBF data
“sits on top of"’ a substantial amount of white noise
distributed uniformly over all frequencies. We chose
to use a high-resolution technique in order to lend a
stereotactic validity to our sampling of the cortex. It
is possible to extend the analysis and partition the
observed process into an uncorrelated noise process
and a residual correlated process corresponding to
the underlying rCBF differences. However, the results
presented above are sufficient to confirm the hypoth-
esis that afferent cortical activity exhibits autocovar-
iance.

Discussion

We have examined the implications that functional
segregation holds for the arrangement of activity in
convergent afferents and divergent efferents. The ar-
rangement implied by functional segregation is pre-
cisely that predicted theoretically using ideas from
information theory. This theoretical analysis led to a
hypothesis about the spatial autocorrelations of ac-
tivity in convergent afferents in the cortex. We de-
signed an experiment to test and confirm this hy-
pothesis.

In analogy with the application of information the-
ory to continuous channels (e.g., Shannon's contin-
uous channel theorem), we have taken an idealized
model and reduced the problem to one of finding the
largest H(y) subject to certain constraints (e.g., when
the input is power limited, see Jones, 1979). The con-
straint of particular interest in this formulation derives
not from the role of noise (Atick and Redlich, 1990)
or available power in the inputs but from the topo-
graphic arrangement of the connections, namely, a
reduction in the number of independent channels at
each cortical transformation. Axonal bifurcation has
been used as empirical support for this constraint,
which implies that the dimensionality of inputs to a
cortical region exceeds that of the outputs. Inputs are
defined as extrinsic axonal afferents to the region.
Outputs are the initial segments of projection cells.
This information theoretic approach suggests that a
low optimal input entropy maximizes information
transfer. Firing rates measured in afferent axons will
be of low entropy when those firing rates are corre-
lated or coherent. This would mean, at a symbolic
level, that events captured by neural firing map close
together if and only if those events were in some way
mutually predictive. In other words, probabilistic reg-
ularities or invariances in extrapersonal space would
be embodied in the spatial convergence of neural
projections.
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Spatial coherence was measured in terms of the
autocorrelation of a series of subtracted rCBF mea-
surements in the cortex. The equivalence between
cross-correlations over time and the autocorrelation
of a single observation over space depends on the
assumption of stationariness. As predicted, autocor-
relation was evident over extensive (10-20 mm) do-
mains.

Massive divergence and convergence are a nec-
essary consequence of these entropic considerations.
As extrinsic efferents (and their collaterals) are un-
correlated (high entropy), it is unlikely they will ter-
minate in the same cortical area. This implies that
efferents are divergent. Divergence implies conver-
gence, and both are features of cortical organization
(Mesulam, 1990; Zeki, 1990). The classification of
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convergent versus divergent connections is purely a
matter of where the connections being described are
referred. A cortical focus can receive convergent pro-
jections from extensive and different areas and sub-
areas but can only give rise to divergent connections.
No single set of axons can be both convergent with
reference to one point and divergent with respect to
another. This is important given the assertion that
these two classes have opposite entropic tendencies.

The transformation effected by intrinsic connec-
tivity is assumed to resultin a decorrelation of outputs
(Foldiak 1989). This decorrelation results in a high
entropy. A high entropy is characteristic of “func-
tional segregators.” Each millimeter of V1 contains
all the visual information from a particular retinal
point that is destined for the cortex. Since it is difficult
to imagine that the same signals are relayed in the
divergent and parallel projections, V1 was proposed
to act as a functional segregator (Zeki, 1975). Both a
convergence of correlated activity and a divergence
of uncorrelated activity are implicit. Correlated visual
motion information converges on V5 from widely dis-
tributed V1 efferents. Conversely, uncorrelated sub-
modality information (e.g., motion, color, depth) is
divergently redistributed to functionally specialized
areas from V1. Within a grossly homogeneous func-
tional area (e.g., V5), the divergent outputs should
be uncorrelated and correspond to a finer but still
orthogonal segregation of submodality information,
for example, a segregation into the direction and mag-
nitude components of the velocity vector. There is
evidence for speed- and direction-invariant cells in
V5 (Zeki, 1990).

Mechanisms

Principal component transformation has been used
to estimate the theoretical limit on entropy over m
outputs given »n inputs and their covariance matrix.
This does not imply that intrinsic connectivity per-
forms a principal component transformation. How-
ever, there are specific proposals that finding the prin-
cipal component space is an important theme in
feature detection (Linsker, 1988; Oja, 1989; Foldiak,
1990; Rubner and Schulten, 1990). Foldiak has de-
scribed a (anti-)Hebbian mechanism that effects a
transformation of a high (n)-dimensional input into
a lower (m)-dimensional output that spans the same
subspace as the m-largest principal components of
the input (Foldiak, 1989, 1990). In addition to Heb-
bian feedforward connections, Foldiak’s model de-
pends on anti-Hebbian feedback connections be-
tween the output ‘“neuron-like units” to keep the
outputs uncorrelated (orthogonal). Durbin and
Mitchison (1990) have used cortical wiring length
constraints to model connectivity in the primary visual
cortex (V1). They present simulations that are re-
markably reminiscent of empirically determined con-
figurations. One of the basic tenets of their approach
is the requirement that contiguous regions of an ex-
ternal parameter space (e.g., position in the visual
field) should be represented close together in the
cortical sheet The spatiotemporal contiguity of real

288 Cortical Organization « Friston et al.

events would confer coherence (minimize the entro-
py of discharge rates measured in afferent fibers im-
pinging on contiguous regions in V1) in retinotopic
maps if and only if there is a topographic preservation
of real space-time contiguity relationships of the sort
they suggest.

From the point of view of the theory of neuronal
group selection (Edelman, 1978, 1987), the organi-
zational tendencies discussed above may be relevant
at the level of the selective expression of the second-
ary repertoire. The convergence of temporally cor-
related inputs onto the same dendritic tree can be
envisioned in terms of synaptic consolidation, which
depends on synaptic discharge and changes in trans-
membrane potential. This is because the behavior of
each axonal input is accessible to the remaining in-
puts by (electrotonic) communication through the
dendritic processes they all share. We have, however,
discussed coherence in terms of spatial domains,
which are far more extensive than a single dendritic
tree. In this case, a different mechanism must be pos-
tulated that does not depend on convergence onto
one neuron. Such a mechanism (based on nitric ox-
ide) has been proposed (Gally et al., 1990; Montague
et al., 1991). The effects of a short-lived, rapidly dif-
fusible signal on local synaptic plasticity have been
simulated and shown to be able to link the activity in
a local volume of tissue, regardless of whether the
neurons are directly connected by synapses.
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