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Abstract

We study properties of popular near–uniform (Dirichlet) priors for learning undersampled proba-
bility distributions on discrete nonmetric spaces and show that they lead to disastrous results. However,
an Occam–style phase space argument expands the priors into their infinite mixture and resolves most
of the observed problems. This leads to a surprisingly good estimator of entropies of discrete distribu-
tions.

Learning a probability distribution from examples is one of the basic problems in data analysis.
Common practical approaches introduce a family of parametric models, leading to questions about model
selection. In Bayesian inference, computing the total probabilityof the data arising from a model involves
an integration over parameter space, and the resulting “phase space volume” automatically discriminates
against models with larger numbers of parameters—hence the description of these volume terms as
Occam factors [1, 2]. As we move from finite parameterizations to models that are described by smooth
functions, the integrals over parameter space become functional integrals and methods from quantum
field theory allow us to do these integrals asymptotically; again the volume in model space consistent
with the data is larger for models that are smoother and hence less complex [3]. Further, at least under
some conditions the relevant degree of smoothness can be determined self–consistently from the data, so
that we approach something like a model independent method for learning a distribution [4].

The results emphasizing the importance of phase space factors in learning prompt us to look back at
a seemingly much simpler problem, namely learning a distribution on a discrete, nonmetric space. Here
the probability distribution is just a list of numbers {qi}, i = 1, 2, · · · ,K , where K is the number of
bins or possibilities. We do not assume any metric on the space, so that a priori there is no reason to
believe that any qi and qj should be similar. The task is to learn this distribution from a set of examples,
which we can describe as the number of times ni each possibility is observed in a set of N =

∑K
i=1 ni

samples. This problem arises in the context of language, where the index i might label words or phrases,
so that there is no natural way to place a metric on the space, nor is it even clear that our intuitions about
similarity are consistent with the constraints of a metric space. Similarly, in bioinformatics the index i
might label n–mers of the the DNA or amino acid sequence, and although most work in the field is based
on metrics for sequence comparison one might like an alternative approach that does not rest on such
assumptions. In the analysis of neural responses, once we fix our time resolution the response becomes
a set of discrete “words,” and estimates of the information content in the response are determined by the
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probability distribution on this discrete space. What all of these examples have in common is that we
often need to draw some conclusions with data sets that are not in the asymptotic limit N � K . Thus,
while we might use a large corpus to sample the distribution of words in English by brute force (reaching
N � K withK the size of the vocabulary), we can hardly do the same for three or four word phrases.

In models described by continuous functions, the infinite number of “possibilities” can never be
overwhelmed by examples; one is saved by the notion of smoothness. Is there some nonmetric analog of
this notion that we can apply in the discrete case? Our intuition is that information theoretic quantities
may play this role. If we have a joint distribution of two variables, the analog of a smooth distribution
would be one which does not have too much mutual information between these variables. Even more
simply, we might say that smooth distributions have large entropy. While the idea of “maximum entropy
inference” is common [5], the interplay between constraints on the entropy and the volume in the space
of models seems not to have been considered. As we shall explain, phase space factors alone imply
that seemingly sensible, more or less uniform priors on the space of discrete probability distributions
correspond to disastrously singular prior hypotheses about the entropy of the underlying distribution.
We argue that reliable inference outside the asymptotic regime N � K requires a more uniform prior
on the entropy, and we offer one way of doing this. While many distributions are consistent with the data
when N ≤ K , we provide empirical evidence that this flattening of the entropic prior allows us to make
surprisingly reliable statements about the entropy itself in this regime.

At the risk of being pedantic, we state very explicitly what we mean by uniform or nearly uniform
priors on the space of distributions. The natural “uniform” prior is given by

Pu({qi}) =
1

Zu
δ

(
1−

K∑

i=1

qi

)
, Zu =

∫

A
dq1dq2 · · ·dqK δ

(
1−

K∑

i=1

qi

)
(1)

where the delta function imposes the normalization, Zu is the total volume in the space of models, and
the integration domain A is such that each qi varies in the range [0, 1]. Note that, because of the normal-
ization constraint, an individual qi chosen from this distribution in fact is not uniformly distributed—this
is also an example of phase space effects, since in choosing one qi we constrain all the other {qj 6=i}.
What we mean by uniformity is that all distributions that obey the normalization constraint are equally
likely a priori.

Inference with this uniform prior is straightforward. If our examples come independently from {qi},
then we calculate the probability of the model {qi} with the usual Bayes rule: 1

P ({qi}|{ni}) =
P ({ni}|{qi})Pu({qi})

Pu({ni})
, P ({ni}|{qi}) =

K∏

i=1

(qi)
ni . (2)

If we want the best estimate of the probability qi in the least squares sense, then we should compute the
conditional mean, and this can be done exactly, so that [6, 7]

〈qi〉 =
ni + 1

N +K
. (3)

Thus we can think of inference with this uniform prior as setting probabilities equal to the observed
frequencies, but with an “extra count” in every bin. This sensible procedure was first introduced by
Laplace [8]. It has the desirable property that events which have not been observed are not automatically
assigned probability zero.

1If the data are unordered,extra combinatorial factors have to be included inP ({ni}|{qi}). However, these cancel immediately
in later expressions.
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A natural generalization of these ideas is to consider priors that have a power–law dependence on the
probabilities, the so called Dirichlet family of priors:

Pβ({qi}) =
1

Z(β)
δ

(
1−

K∑

i=1

qi

)
K∏

i=1

qβ−1
i , (4)

It is interesting to see what typical distributions from these priors look like. Even though different
qi’s are not independent random variables due to the normalizing δ–function, generation of random
distributions is still easy: one can show that if qi’s are generated successively (starting from i = 1 and
proceeding up to i = K) from the Beta–distribution

P (qi) = B

(
qi

1−∑j<i qj
; β, (K − i)β

)
, B (x; a, b) =

xa−1(1− x)b−1

B(a, b)
, (5)

  0

0.8

q

β = 0.0007,  S = 1.05 bits

  0

0.2
q

β = 0.02, S = 5.16 bits

0 200 400 600 800 1000
   0

0.01

q

β = 1, S = 9.35 bits

bin number

Figure 1: Typical distributions,K = 1000.

then the probability of the whole sequence {qi} is
Pβ({qi}). Fig. 1 shows some typical distributions gen-
erated this way. They represent different regions of the
range of possible entropies: low entropy (∼ 1 bit, where
only a few bins have observable probabilities), entropy
in the middle of the possible range, and entropy in the
vicinity of the maximum, log2K . When learning an un-
known distribution, we usually have no a priori reason to
expect it to look like only one of these possibilities, but
choosing β pretty much fixes allowed “shapes.” This will
be a focal point of our discussion.

Even though distributions look different, inference
with all priors Eq. (4) is similar [6, 7]:

〈qi〉β =
ni + β

N + κ
, κ = Kβ. (6)

This simple modification of the Laplace’s rule, Eq. (3), which allows us to vary probabilityassigned to the
outcomes not yet seen, was first examined by Hardy and Lidstone [9, 10]. Together with the Laplace’s
formula, β = 1, this family includes the usual maximum likelihood estimator (MLE), β → 0, that
identifies probabilities with frequencies, as well as the Jeffreys’ or Krichevsky–Trofimov (KT) estimator,
β = 1/2 [11, 12, 13], the Schurmann–Grassberger (SG) estimator, β = 1/K [14], and other popular
choices.

To understand why inference in the family of priors defined by Eq. (4) is unreliable, consider the
entropy of a distribution drawn at random from this ensemble. Ideally we would like to compute this
whole a priori distribution of entropies,

Pβ(S) =

∫
dq1dq2 · · ·dqK Pβ({qi}) δ

[
S +

K∑

i=1

qi log2 qi

]
, (7)

but this is quite difficult. However, as noted by Wolpert and Wolf [6], one can compute the moments of
Pβ(S) rather easily. Transcribing their results to the present notation (and correcting some small errors),
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we find:

ξ(β) ≡ 〈S[ni = 0] 〉β = ψ0(κ+ 1)− ψ0(β + 1) , (8)

σ2(β) ≡ 〈 (δS)2[ni = 0]〉β =
β + 1

κ+ 1
ψ1(β + 1)− ψ1(κ+ 1) , (9)

where ψm(x) = (d/dx)m+1 log2 Γ(x) are the polygamma functions.
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Figure 2: ξ(β)/ log2K and σ(β) as func-
tions of β and K; gray bands are the region
of ±σ(β) around the mean. Note the transi-
tion from the logarithmic to the linear scale
at β = 0.25 in the insert.

This behavior of the moments is shown on Fig. 2.
We are faced with a striking observation: a priori dis-
tributions of entropies in the power–law priors are ex-
tremely peaked for even moderately large K . Indeed, as
a simple analysis shows, their maximum standard devia-
tion of approximately 0.61 bits is attained at β ≈ 1/K ,
where ξ(β) ≈ 1/ ln 2 bits. This has to be compared
with the possible range of entropies, [0, log2K], which is
asymptotically large with K . Even worse, for any fixed
β and sufficiently large K , ξ(β) = log2K − O(K0),
and σ(β) ∝ 1/

√
κ. Similarly, if K is large, but κ is

small, then ξ(β) ∝ κ, and σ(β) ∝ √κ. This paints a
lively picture: varying β between 0 and ∞ results in a
smooth variation of ξ, the a priori expectation of the en-
tropy, from 0 to Smax = log2K . Moreover, for large
K , the standard deviation of Pβ(S) is always negligible
relative to the possible range of entropies, and it is neg-
ligible even absolutely for ξ � 1 (β � 1/K). Thus a

seemingly innocent choice of the prior, Eq. (4), leads to a disaster: fixing β specifies the entropy almost
uniquely. Furthermore, the situation persists even after we observe some data: until the distribution is
well sampled, our estimate of the entropy is dominated by the prior!

Thus it is clear that all commonly used estimators mentioned above have a problem. While they may
or may not provide a reliable estimate of the distribution {qi}2, they are definitely a poor tool to learn
entropies. Unfortunately, often we are interested precisely in these entropies or similar information–
theoretic quantities, as in the examples (neural code, language, and bioinformatics) we briefly mentioned
earlier.

Are the usual estimators really this bad? Consider this: for the MLE (β = 0), Eqs. (8, 9) are formally
wrong since it is impossible to normalize P0({qi}). However, the prediction that P0(S) = δ(S) still
holds. Indeed, SML, the entropy of the ML distribution, is zero even for N = 1, let alone for N = 0.
In general, it is well known that SML always underestimates the actual value of the entropy, and the
correction

S = SML +
K∗

2N
+ O

(
1

N2

)
(10)

is usually used (cf. [14]). Here we must set K∗ = K − 1 to have an asymptotically correct result.
Unfortunately in an undersampled regime, N � K , this is a disaster. To alleviate the problem, different
authors suggested to determine the dependence K∗ = K∗(K) by various (rather ad hoc) empirical [15]

2In any case, the answer to this question depends mostly on the “metric” chosen to measure reliability. Minimization of bias,
variance, or information cost (Kullback–Leibler divergence between the target distribution and the estimate) leads to very different
“best” estimators.
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or pseudo–Bayesian techniques [16]. However, then there is no principled way to estimate both the
residual bias and the error of the estimator.

The situation is even worse for the Laplace’s rule, β = 1. We were unable to find any results in the
literature that would show a clear understanding of the effects of the prior on the entropy estimate, SL.
And these effects are enormous: the a priori distribution of the entropy has σ(1) ∼ 1/

√
K and is almost

δ-like. This translates into a very certain, but nonetheless possibly wrong, estimate of the entropy. We
believe that this type of error (cf. Fig. 3) has been overlooked in some previous literature.

The Schurmann–Grassberger estimator, β = 1/K , deserves a special attention. The variance of
Pβ(S) is maximized near this value of β (cf. Fig. 2). Thus the SG estimator results in the most uniform a
priori expectation of S possible for the power–law priors, and consequently in the least bias. We suspect
that this feature is responsible for a remark in Ref. [14] that this β was empirically the best for studying
printed texts. But even the SG estimator is flawed: it is biased towards (roughly) 1/ ln 2, and it is still a
priori rather narrow.
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Figure 3: Learning the β = 0.02 distribution
from Fig. 1 with β = 0.001, 0.02, 1. The
actual error of the estimators is plotted; the
error bars are the standard deviations of the
posteriors. The “wrong” estimators are very
certain but nonetheless incorrect.

Summarizing, we conclude that simple power–law
priors, Eq. (4), must not be used to learn entropies
when there is no strong a priori knowledge to back
them up. On the other hand, they are the only pri-
ors we know of that allow to calculate 〈qi〉, 〈S〉, 〈χ2〉,
. . . exactly [6]. Is there a way to resolve the prob-
lem of peakedness of Pβ(S) without throwing away
their analytical ease? One approach would be to use
Pflat
β ({qi}) =

Pβ({qi})
Pβ(S[qi])

Pactual(S[qi]) as a prior on

{qi}. This has a feature that the a priori distribution of S
deviates from uniformity only due to our actual knowl-
edge Pactual(S[qi]), but not in the way Pβ(S) does.
However, as we already mentioned, Pβ(S[qi]) is yet to
be calculated.

Another way to a flat prior is to write P(S) =
1 =

∫
δ(S − ξ)dξ. If we find a family of priors

P({qi}, parameters) that result in a δ-function over S,
and if changing the parameters moves the peak across the
whole range of entropies uniformly, we may be able to use this. Luckily, Pβ(S) is almost a δ-function! 3

In addition, changing β results in changing ξ(β) = 〈S[ni = 0] 〉β across the whole range [0, log2K].
So we may hope that the prior 4

P({qi}; β) =
1

Z
δ

(
1−

K∑

i=1

qi

)
K∏

i=1

qβ−1
i

dξ(β)

dβ
P(β) (11)

may do the trick and estimate entropy reliably even for small N , and even for distributions that are
atypical for any one β. We have less reason, however, to expect that this will give an equally reliable

3The approximation becomes not so good as β → 0 since σ(β) becomesO(1) before dropping to zero. Even worse, Pβ(S)
is skewed at small β. This accumulates an extra weight at S = 0. Our approach to dealing with these problems is to ignore them
while the posterior integrals are dominated by β’s that are far away from zero. This was always the case in our simulations, but is
an open question for the analysis of real data.

4Priors that are formed as weighted sums of the different members of the Dirichlet family are usually called Dirichlet mixture
priors. They have been used to estimate probability distributions of, for example, protein sequences [17]. Equation (11), an infinite
mixture, is a further generalization, and, to our knowledge, it has not been studied before.
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estimator of the atypical distributions themselves.2 Note the term dξ/dβ in Eq. (11). It is there because
ξ, not β, measures the position of the entropy density peak.

Inference with the prior, Eq. (11), involves additional averaging over β (or, equivalently, ξ), but is
nevertheless straightforward. The a posteriori moments of the entropy are

Ŝm =

∫
dξ ρ(ξ, {ni})〈Sm[ni] 〉β(ξ)∫

dξ ρ(ξ, [ni])
, where (12)

ρ(ξ, [ni]) = P (β (ξ))
Γ(κ(ξ))

Γ(N + κ(ξ))

K∏

i=1

Γ(ni + β(ξ))

Γ(β(ξ))
. (13)

Here the moments 〈Sm [ni] 〉β(ξ) are calculated at fixed β according to the (corrected) formulas of
Wolpert and Wolf [6]. We can view this inference scheme as follows: first, one sets the value of β
and calculates the expectation value (or other moments) of the entropy at this β. For small N , the ex-
pectations will be very close to their a priori values due to the peakedness of Pβ(S). Afterwards, one
integrates over β(ξ) with the density ρ(ξ), which includes our a priori expectations about the entropy of
the distribution we are studying [P (β (ξ))], as well as the evidence for a particular value of β [Γ-terms
in Eq. (13)].

The crucial point is the behavior of the evidence. If it has a pronounced peak at some βcl , then the
integrals over β are dominated by the vicinity of the peak, Ŝ is close to ξ(βcl), and the variance of the
estimator is small. In other words, data “selects” some value of β, much in the spirit of Refs. [1] – [4].
However, this scenario may fail in two ways. First, there may be no peak in the evidence; this will result
in a very wide posterior and poor inference. Second, the posterior density may be dominated by β → 0,
which corresponds to MLE, the best possible fit to the data, and is a discrete analog of overfitting. While
all these situations are possible, we claim that generically the evidence is well–behaved. Indeed, while
small β increases the fit to the data, it also increases the phase space volume of all allowed distributions
and thus decreases probability of each particular one [remember that 〈qi〉β has an extra β counts in each
bin, thus distributions with qi < β/(N + κ) are strongly suppressed]. The fight between the “goodness
of fit” and the phase space volume should then result in some non–trivial βcl , set by factors ∝ N in the
exponent of the integrand.

Figure 4 shows how the prior, Eq. (11), performs on some of the many distributions we tested. The
left panel describes learning of distributions that are typical in the prior Pβ({qi}) and, therefore, are
also likely in P({qi}; β). Thus we may expect a reasonable performance, but the real results exceed all
expectations: for all three cases, the actual relative error drops to the 10% level at N as low as 30 (recall
that K = 1000, so we only have ∼ 0.03 data points per bin on average)! To put this in perspective,
simple estimates like fixed β ones, MLE, and MLE corrected as in Eq. (10) withK∗ equal to the number
of nonzero ni’s produce an error so big that it puts them off the axes untilN > 100. 5 Our results have
two more nice features: the estimator seems to know its error pretty well, and it is almost completely
unbiased.

One might be puzzled at how it is possible to estimate anything in a 1000–bin distribution with just a
few samples: the distribution is completely unspecified for lowN ! The point is that we are not trying to
learn the distribution — in the absence of additional prior information this would, indeed, take N � K
— but to estimate just one of its characteristics. It is less surprising that one number can be learned well
with only a handful of measurements. In practice the algorithm builds its estimate based on the number

5More work is needed to compare our estimator to more complex techniques, like in Ref. [15, 16].
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Figure 4: Learning entropies with the prior Eq. (11) and P(β) = 1. The actual relative errors of the
estimator are plotted; the error bars are the relative widths of the posteriors. (a) Distributions from
Fig. 1. (b) Distributions atypical in the prior. Note that while Ŝ may be safely calculated as just 〈S〉βcl ,

one has to do an honest integration over β to get Ŝ2 and the error bars. Indeed, since Pβ(S) is almost a
δ-function, the uncertainty at any fixed β is very small (see Fig. 3).

of coinciding samples (multiple coincidences are likely only for small β), as in the Ma’s approach to
entropy estimation from simulations of physical systems [18].

What will happen if the algorithm is fed with data from a distribution{q̃i} that is strongly atypical in
P({qi}; β)? Since there is no {q̃i} in our prior, its estimate may suffer. Nonetheless, for any {q̃i}, there is
some β which produces distributions with the same mean entropy as S[q̃i]. Such β should be determined
in the usual fight between the “goodness of fit” and the Occam factors, and the correct value of entropy
will follow. However, there will be an important distinction from the “correct prior” cases. The value of β
indexes available phase space volumes, and thus the smoothness (complexity) of the model class [19]. In
the case of discrete distributions, smoothness is the absence of high peaks. Thus data with faster decaying
Zipf plots (plots of bins’ occupancy vs. occupancy rank i) are rougher. The priors Pβ({qi}) cannot
account for all possible roughnesses. Indeed, they only generate distributions for which the expected
number of bins ν with the probability mass less than some q is given by ν(q) = KB(q, β, κ− β), where
B is the familiar incomplete Beta function, as in Eq. (5). This means that the expected rank ordering for
small and large ranks is

qi ≈ 1−
[
βB(β, κ − β)(K − 1) i

K

]1/(κ−β)

, i� K , (14)

qi ≈
[
βB(β, κ − β)(K − i + 1)

K

]1/β

, K − i + 1� K . (15)

In an undersampled regime we can observe only the first of the behaviors. Therefore, any distribution
with qi decaying faster (rougher) or slower (smoother) than Eq. (14) for some β cannot be explained well
with fixed βcl for different N . So, unlike in the cases of learning data that are typical in Pβ({qi}), we
should expect to see βcl growing (falling) for qualitatively smoother (rougher) cases as N grows.

Figure 4(b) and Tbl. 1 illustrate these points. First, we study the β = 0.02 distribution from Fig. 1.
However, we added a 1000 extra bins, each with qi = 0. Our estimator performs remarkably well,
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and βcl does not drift because the ranking law remains the same. Then we turn to the famous Zipf’s
distribution, so common in Nature. It has ni ∝ 1/i, which is qualitatively smoother than our prior
allows. Correspondingly, we get an upwards drift in βcl . Finally, we analyze a “rough” distribution,
which has qi ∝ 50− 4(ln i)2, and βcl drifts downwards. Clearly, one would want to predict the depen-
dence βcl(N ) analytically, but this requires calculation of the predictive information (complexity) for the
involved distributions [19] and is a work for the future. Notice that, the entropy estimator for atypical

N 1/2 full Zipf rough
units ·10−2 ·10−1 ·10−3

10 1.7 1907 16.8
30 2.2 0.99 11.5

100 2.4 0.86 12.9
300 2.2 1.36 8.3
1000 2.1 2.24 6.4
3000 1.9 3.36 5.4
10000 2.0 4.89 4.5
Table 1: βcl for solutions
shown on Fig. 4(b).

cases is almost as good as for typical ones. A possible exception is the
100–1000 points for the Zipf distribution—they are about two standard
deviations off. We saw similar effects in some other “smooth” cases also.
This may be another manifestation of an observation made in Ref. [4]:
smooth priors can easily adapt to rough distribution, but there is a limit
to the smoothness beyond which rough priors become inaccurate.

To summarize, an analysis of a priori entropy statistics in common
power–law Bayesian estimators revealed some very undesirable features.
We are fortunate, however, that these minuses can be easily turned into
pluses, and the resulting estimator of entropy is precise, knows its own
error, and gives amazing results for a very large class of distributions.
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