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We propose a new nonlinear equation of  motion for a single isolated two-level 
quan tum system. The resulting generalized two-level quan tum dynamical  theory 
entails a new alternative resolution of  the long-standing di lemma on the nature 
of  entropy and irreversibility. Even for a single isolated degree of  freedom, in 
addition to the individual mechanical  states for which all the results of  conven- 
tional quan tum mechanics remain valid, our theory implies the existence of  new 
nonmechanical  individual quantum states. These states have nonzero individual 
entropy and, by virtue of  a constant-energy, internal redistribution mechanism,  
relax irreversibly toward stable equilibrium. We discuss the possibility of  an 
experimental  verification of these conclusions by means  of a high-resolution, 
essentially single-particle, magnetic-resonance experiment. 

1. I N T R O D U C T I O N  

The long-standing dilemma on the nature of entropy and irreversibility 
still lacks a universally accepted resolution, 2 in spite of a century of scientific 
efforts. As stated in a recent review by Wehrl (1978): "There are many 
opinions and proposals for a solution to this problem; however, none of 
them seems to be completely satisfactory." The purpose of this paper is to 
present a novel nonlinear equation of motion for a single two-level quantum 
system that was proposed by the author 3 in an effort to attempt a satisfactory 
resolution of the irreversibility dilemma. 

1Massachusetts Institute of  Technology, Cambridge, Massachuset ts  02139. 
2For a recent critical review of the different schools of  thought,  see Park and Simmons (1983). 
3See Beretta (1981). The general form of the new equation of motion for a single constituent 
of  matter is presented in Beretta et al. (1984) and in Beretta (i985). 
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Our approach differs essentially from the traditional where entropy, 
irreversibility, and the laws of thermodynamics are invariably regarded as 
statistical, macroscopic, or phenomenological concepts with no fundamental 
counterpart in the microscopic reality. Indeed, our underlying premise is 
that the gap between mechanics and thermodynamics can be conceivably 
bridged without resorting to any statistical or information-theoretic reason- 
ing, without hinging on the distinction between microscopic and macro- 
scopic reality, and without regarding the laws of thermodynamics as simply 
"phenomenological ."  

For definiteness, we discuss only the simplest case of a single two-level 
quantum system. Our proposal, based on the two fundamental hypotheses 
presented in Section 2, provides a quite unconventional, but logically 
coherent, new resolution of the irreversibility dilemma consistent with the 
declared premise. Irreversibility emerges as a manifestation of an inherent 
energy-conserving relaxation mechanism implied by the postulated new 
equation of motion, even in the absence of any form of interaction of the 
system with any other system, lattice or "heat  bath," i.e., even for a strictly 
isolated two-level system. 

In addition to all the results of conventional quantum mechanics which 
hold as special cases of  our theory, the new equation of motion implies the 
existence of inherent relaxation effects that should be in principle experi- 
mentally verifiable. For this purpose, we study the dynamics of a single 
spin-l /2 system in an external time-dependent magnetic field and propose 
that the predicted single-particle relaxation effect may be verified with a 
high-resolution magnetic-resonance experiment on a beam of spin- l /2  
particles of very low intensity (essentially single particle). 

The paper is organized as follows. Section 2 presents the two new 
fundamental postulates of our theory. Section 3 discusses the general proper- 
ties of the new nonlinear equation of motion that we propose for a single 
isolated two-level system. Section 4 presents special classes of exact and 
approximate solutions of the equation of motion. Section 5 proposes one 
method to verify experimentally the validity of our two postulates and 
Section 6 gives conclusions. 

2. NONI DEMP OTENT QUANTUM STATES AND NONLINEAR 
EQUATION OF MOTION 

Our first fundamental hypothesis is due to Hatsopoulos and 
Gyftopoulos (1976). They proposed that, in addition to the individual 
quantum states conceived of within conventional quantum mechanics and 
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r ep resen ted  m a t h e m a t i c a l l y  in terms of  i d e m p o t e n t  state opera to r s ,  4 a single 

strictly i so la ted  (i.e., non in te rac t ing  and uncor re l a t ed )  system admi ts  also 
o f  i nd iv idua l  q u a n t u m  states that  must  be r ep resen ted  by n o n i d e m p o t e n t  
state opera to r s .  State ope ra to r s  p have the same ma thema t i ca l  p roper t i e s  4 
as the s ta t is t ical  or  dens i ty  opera to rs  cons ide red  in t r ad i t iona l  (yon 
N e u m a n n )  q u a n t u m  stat is t ical  mechanics ,  5 but  acqui re  in our  theory  an 
ent i re ly  different  phys ica l  meaning .  A state o p e r a t o r  p represents  an 
ind iv idua l  q u a n t u m  state o f  the  single str ict ly i so la ted  system. It does  not  
represen t  the  index  o f  stat ist ics f rom a genera l ly  he te rogeneous  ensemble  
o f  ident ica l  systems.  

As shown by H a t s o p o u l o s  and  G y f t o p o u l o s  (1976), the only  t race  
func t iona l  o f  the state o p e r a t o r  p that  can represen t  the  phys ica l  obse rvab le  
en t ropy  is s (p)  = - k  Tr p In p. The non l inea r  state func t iona l  s(p)  is def ined 
for  all s tate opera to r s ,  i d e m p o t e n t  and  non idempo ten t .  I t  represents  the 
ind iv idua l  en t ropy  o f  the  single strictly i so la ted  and  uncor re l a t ed  system. 
It d o e s  not  r epresen t  a measure  o f  s tat is t ical  or  i n fo rma t ion - theo re t i c  uncer-  
tainty.  

In  s u m m a r y ,  wi th  the  H a t s o p o u l o s - G y f t o p o u l o s  f u n d a m e n t a l  
hypothes i s ,  we conceive  o f  a larger  set of  i nd iv idua l  qua n tum states o f  
unco r r e l a t ed  systems than  in conven t iona l  q u a n t u m  mechanics .  A single 
i so la ted  sys tem may  be found  not  only  in a q u a n t u m  mechan ica l  state 
[p2 = P, s (p )  = 0] bu t  also in a n o n m e c h a n i c a l  qua n tum state desc r ibed  by  
a n o n i d e m p o t e n t  state o p e r a t o r  p for which  the en t ropy  func t iona l  is 
nonzero .  

Our  next  s tep is to descr ibe  the t ime evolu t ion  o f  all the ind iv idua l  
quan tum states o f  a single i so la ted  two- level  system. Fo r  qua n tum 
mechan ica l  ind iv idua l  states,  the dynamica l  law is the Schr6d inger  equa t ion  
o f  mot ion  or, in terms o f  s tate opera tors ,  the  yon N e u m a n n  equa t ion  o f  
mot ion.  But, for  the add i t i ona l  nonmechan i ca l  ind iv idua l  q u a n t u m  states 
that  we have  pos tu la ted ,  the dynamica l  law canno t  be " d e r i v e d "  f rom 
conven t iona l  q u a n t u m  mechanics ,  s imply  because  that  theory  canno t  even 
conceive o f  such ind iv idua l  states. We must  therefore  augmen t  the dynami -  

4A state operator p is a linear, self-adjoint, nonnegative-definite, unit-trace operator on the 
Hilbert space of the system, i.e., p?=p, p>-O, Trp=  1. Every idempotent state operator 
(p2~ p) is a projector onto the one-dimensional span of a vector ~ called the quantum 
mechanical state vector of the system. For a single strictly isolated (i.e., noninteracting and 
uncorrelated) system, conventional quantum mechanics conceives only of individual quantum 
states that can be represented by a state vector or, equivalently, by an idempotent state operator. 

5On the conceptual problems arising from the traditional use of the statistical operator, see 
Park (1968). 
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cal postulate with a new equation of motion, consistent with the Schr6dinger 
equation for idempotent  state operators. 

Our second fundamental  hypothesis is the following equation of motion 
(Beretta, 1981; Beretta et al., 1984; Beretta, 1985) that we propose for a 
single isolated two-level system 

p In p p �89 p} 
Tr p In p 1 Tr p H  

1 T r p H l n p  T r p H  T r p H  2 
- -  i f  p2 ~ p ( la)  

dp + i Tr p H  2 -  (Tr p H )  2 ~- ~ [H, p] : r 

0, i f p 2 = p  ( lb)  

where H is the Hamiltonian operator and r is an inherent internal-redistribu- 
tion time constant of the system. For the same reason why the dynamical  
law for nonmechanical  states cannot be "der ived" from mechanics, the 
value of the time constant r cannot be obtaihed other than by analysis of  
experimental data. Equation (1) has been "invented," not "derived." Its 
adoption is justified only insofar as its consequences are consistent with 
our declared premises, in particular, with th~ laws of mechanics for idem- 
potent individual states and with the laws of thermodynamics for all 
individual states. 

F o r  example,  we will see that a consequence of  equation (1) is a 
statement that the entropy of the strictly isolated two-level system is constant 
for all the mechanical states I s (p ) - -0 ]  and for all the equilibrium states 
(there is one equilibrium state for each initial value of the mean energy), 
but it is strictly increasing in time for all other nonmechanical  states. Again, 
consistently with the fact that it describes the time evolution of an isolated 
system, equation (1) conserves the mean energy. 

3. PROPERTIES  OF T H E  NEW EQUATION 

On the two-dimensional Hilbert space of the two-level system, we 
introduce the 3-vector R = (R1, R2, R3) of  spin operators which obey the 
commutat ion rule [Ri, Rm] = ieim,R, and may be expressed in terms of the 
lowering and raising operators b = R ~ - i R 2  and b t = R l + i R 2 .  A state 
operator p( t )  may then be represented as 

p ( t ) = � 8 9 1 8 9  �9 R (2a) 

= �89 + t~*(t)b* + a ( t ) b  + ra(t)R 3 (2b) 

where the 3-vector r = (rl, r2, r3) of real scalars and the complex scalar a 
satisfy the condition 

r= l r l  ( r  2 . 2 .  2,~1/2 = + r2-r "3J = (4~*a  + r2) ' /2< - 1 (2c) 
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Geometrically, the set of state operators is isomorphic with a closed spherical 
domain of unit radius (the Bloch sphere) in an auxiliary three-dimensional 
space with orthogonal coordinates r~, r2, and r 3. Each point r in the Bloch 
sphere represents, via relation (2a), a state operator. A state operator is 
idempotent ( p2=p)  if and only if r =  1. Thus, all the state operators 
conceived of  within conventional quantum mechanics (for a single strictly 
isolated two-level system) lie on the surface of the Bloch sphere. The 
Hatsopoulos-Gyftopoulos hypothesis extends the domain of conceivable 
individual states of uncorrelated two-level systems to the whole volume 
inside the Bloch sphere, including state operators for which p # p2 and r < 1. 

A general Hamilton• operator corresponding to the energy relative 
to a point midway between the two energy levels of the isolated two-level 
system may be represented as 

H = h~Qo(A l Rl + A2R2 + A3R3) = hDoA �9 R (3a) 

= -�89 + e'b) + ho)0R 3 (3b) 

where h is the reduced Planck constant, A = (A~, A2, A3) is a unit-norm 
3-vector of  real scalars (IAI = A �9 A = 1), e is a complex scalar with e*e = 1, 
to0=f~oA3 is the transition frequency between the two levels and ~o 2= 

If r---• then p~ = p~ = P4,~ where 0• are the eigenvectors of the 
Hamilton• operator /4 .  According to equation (1), and consistently with 
conventional quantum mechanics, the two pure mechanical states p:~ are 
equilibrium states. Assuming from now on that r # +A, after lengthy but 
straightforward manipulations (outlined in Appendix A), using relations 
(2) and (3) for operators p and H in equation (1) with r #  • we find the 
following forms of the new equation of motion: 

dr  1 
~-~- D.oA x r =  - -  K ( r ) [ r -  (A" r)A] (4a) 

q- 

1 
= - -  K(r)[A x r  xA]  (4b) 

T 

o r  

__d~dt + itooa + . . . .  i~-~er32 K ~ r 3 )  [ topOi + to0~er3 - ~ 2 1 2 2 e ( e * ~  - e a * ) ] 2  (5a) 

K(a, r3) dr3 ~- i~(e*ct  - ect*) = - [f~2r3 + tooFt(e*~ + ec~*)] 
dt "r~ ~ 

(5b) 
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where 

f (r)  f (r)  
K(r)  - l - (A.  r) 2 - K(a ,  r3) = 1 - [wor3- f~(ea + e*a*)]2/f~ 2 (6) 

r = [rL, and 

I 11_~2 if r = 0  

l + r  i f 0 < r < l  (7) f ( r ) =  2r l n l _ r ,  

0, if r =  1 

As shown in Appendix B, for every initial state ro in the Bloch sphere 
( r 0 -  < 1), the new equation of  motion admits of one and only one solution 
r(t) with r(0) = ro which lies entirely in the Bloch sphere for -oo < t < +c~. 
Thus, let r(t)  be a solution with r(0) in the Bloch sphere, i.e., with r(0)-< 1. 
From equation (4), we find that 

d Tr lip d l h f ~ o A .  1 d r  =0  - -  = r = ~ t ~ 9 ~ o h  �9 ( 8 )  
dt dt 2 dt 

and, therefore, we conclude that the mean energy Tr Hp is a constant of 
the motion for the isolated two-level system, consistently with the first law 
of.thermodynamics. Every solution liesentirely on a constant mean energy 
plane orthogonal to A and at distance [A �9 r I from the origin. 

Again from equations (4), (6), and (7), we find that 

l + r l  =0'  i f l r e l < r =  1 

dr . . . . .  1 r2-r21-r21n_l_~_r]<O, iflr~[< r <  1 (9) 
dt r 1 -  r~ 2r 2 - 

I 
~=0, i f l r e l = r <  1 

where re = A �9 r. As shown in Appendix B, a consequence of relation (9) is 
that the solution r(t) remains within the Bloch sphere at all times. In terms 
of state operators, this implies that the solution p(t) remains at all times 
within the set of state operators and, therefore, equation (1) is a valid 
evolution equation. 

A special class of solutions of equation (4) is such that r(t) = 1 at all 
times. In this case, the right-hand side of equation (4) vanishes for every t 
[f(1) = 0, equation (7)] and thus r(t) satisfies the differential equation 

dr 
dt ~oA •  (10) 
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For this class of  solutions, the vector r remains on the unit-radius surface 
of the Bloch sphere and precesses around A at the Larmor angular frequency 
~o. In terms of state operators, p(t) remains idempotent  at all times and 
satisfies the operator  form of the Schr6dinger equation of motion [equation 
(lb)].  We conclude that all the motions contemplated by conventional 
quantum dynamics are special solutions of  equation (1). 

Next we consider the entropy functional 

s ( p ) = - k T r p l n p =  - �89  l n ( l + r ) + ( 1 - r ) l n ( I - r ) - l n 4 ]  (11) 

which is a monotonic decreasing function of r ranging from k In 2 to 0 as 
r ranges from 0 to 1. In the Bloch sphere, concentric spherical surfaces 
centered at the origin are constant entropy. A direct consequence of relation 
(9) is that ds(p)/dt>-O. More explicitly, 

ds k_ 2 2 - r 2 (  l+r~ ~ 
- - =  r - r  Z 1  In ->0 (12) 
dt r 1 -  r 2 4 r  \ l - r /  

with strict inequality for Irel < r <  1. We conclude that the entropy of an 
isolated two-level system is a nondecreasing function of time, consistently 
with the second law of thermodynamics.  Moreover, for solutions with 
r (0 )<  1 the entropy is strictly increasing, i.e., equation (1) implies the 
existence of irreversible, but energy-conserving relaxation even for a single 
isolated system. This nonconventional consequence of the proposed 
equation of  motion should be in principle experimentally verifiable (cf. 
Section 5). 

The equilibrium states, for which dr/dt  = 0, are only those with r = re, 
i.e., with r parallel to A. It readily follows from relation (9) that these 
equilibrium states are stable. Only two equilibrium states are "mechanical"  
(i.e., idempotent) ,  namely, those with r = +A. All the others, with r = tea 
and - 1 < re < 1, are nonidempotent  individual equilibrium states not con- 
templated by conventional mechanics that, in terms of state operators, have 
the form 

with 

exp(-/3H) 
(13) 

Pe - Tr e x p ( - f l H )  

~ o  1 - r  e (14) 
13= In l + r e  

and, according to the Hatsopoulos-Gyf topoulos  hypothesis, represent the 
thermodynamic equilibrium states of  a single isolated two-level system with 
individual thermodynamic temperature T = 1/k~ (positive if re < 0). 
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To summarize, in the Bloch sphere the solutions of equation (1) describe 
constant mean energy trajectories of the state point r with velocity given 
by two orthogonal components. The first component causes a precession 
of r around the vector A and is due to the Hamiltonian, or Schr6dinger, 
term in the equation of motion. The second component, whose intensity is 
a nonlinear function of r vanishing for r =  1, causes an attraction, or 
relaxation, of r towards the stable equilibrium vector re = reA and is due 
to the non-Hamiltonian nonlinear term in the equation of motion. The 
resulting motion is a simple precession at the Larmor frequency ~o if 
r(0) = 1, whereas it is a spiraling relaxation towards the equilibrium vector 
if r(0) < 1. 

By contrast with the phenomenological descriptions based on the Bloch 
relaxation equation (Pake, 1973; Schumacher, 1970; Poole and Farach, 
1972; Rabi, Ramsey, and Schwinger, 1954; Weger, 1960), the relaxation 
mechanism that we postulate by adopting equation (1) is not due to any 
form of coupling between the two-level system and other external degrees 
of freedom. It is a nonlinear, mean-energy conserving, redistribution 
mechanism strictly internal and individual to the single strictly isolated 
system. 

4. SOLUTIONS OF THE EQUATION OF MOTION 

Equation (4) reduces to the scalar equation 

d]r-re[ l f ( r  ) Jr-re] (15) 
d t  "r 1 - r2~ 

The nonlinearity of this equation does not allow a general explicit solution. 
However, for re = 0, it becomes 

d r  1 
. . . .  f ( r ) r  (16) 
d t  .r 

or, equivalently, 
d l + r  1 l + r  

- - I n  = In (17) 
d t  1 - r  .r 1 - r  

which integrated from 0 to t yields, 

1 + r ( t )  [1 +r (0) ]  exp~-t/~) 
- L l---s~O~ j ( 1 8 )  l - r ( t )  

or, equivalently, 

1 + r(O)-]  
r ( t )  = tanh[~ e x p ( - t )  ln l _  r(O)J/ (t9) 
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Thus, we found a class of special solutions of the new equation of  motion 
which satisfy initial conditions with r(0) < 1 and re = 0, i.e., initial nonidem- 
potent state operators with zero mean energy. 

Next, we consider the limit as r(0) tends to re. Then, we can use the 
approximation f ( r )~ f ( r e )  and linearize equation (15) to yield 

Jr(t) -rel ~ Jr(0) --re] exp(--  t /TR) (20) 

where, using equation (14), the approximate relaxation time TR is given by 

1 -re2 re tanh (�89 
TR ='Of(re ) - Zlhl~ofl r �89 (21) 

and, for �89 sufficiently small (sufficiently high temperature of the stable 
equilibrium state re), 

TR = r[1 - x(shf~0/3~' ) 2 + T~.(~haoj~21 ) 4 __. " "] (22) 

It is interesting to note that our intrinsic relaxation or redistribution 
mechanism shows in this approximation an explicit temperature dependence 
which in principle should be experimentally verifiable, for example as 
discussed in the next section. 

5. A S I N G L E - P A R T I C L E  M A G N E T I C  R E S O N A N C E  E X P E R I M E N T  

As a first attempt to search for an experimental  verification of our 
hypotheses and, in particular, of the implications of equation (1), we 
consider a very-low-intensity (essentially single-particle) beam of  spin- l /2  
particles entering a suitable magnetic resonance apparatus. During its resi- 
dence time in the apparatus, each single particle experiences a time-depen- 
dent spatially uniform applied magnetic field. 

In the laboratory reference frame, we assume that inside the magnetic 
resonance apparatus the external magnetic field has components given by 

H~4(t) = (HM1 COS wt, HMI sin tot, HM3) (23) 

while outside the apparatus, HM~ = 0. With respect to a reference frame 
rotating about the third laboratory axis k3 at the angular frequency to, the 
magnetic field has constant components 

HM(t) = ( HM,, O, HM3)' (24) 

The magnetic moment operator vector of the spin-1/2 particle with gyromag- 
netic ratio 3' is given by 

M = yhR (25) 
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and the Hamiltonian operator by 

H =HM( t )  �9 M = h~(R~ cos tOt + R2 sin tOt)+htOoR3 (26) 

By comparison with equation (3), we find 

f~oh = (f~ cos tot, [1 sin tO, tOo) = (~t, 0, tOo)' (27) 

where f~ = 7HMI, Wo = THM3 and f ~  = f/2+ to~. 
If d ' / d t  denotes differentiation with respect to the rotating frame, then 

d r / d t  = d ' r / d t  + tok3 x r and equation (4) becomes 

d'__r = ( ~ o h -  tOk3) x r  _ l  K ( r ) [ r -  r~h] (28) 
dt z 

Owing to the time dependence of the Hamiltonian, the mean energy, 
Tr l i p  = hf~ore/2,  changes at a rate given by 

d~ d dA d' d 'r  tO~ 
dt dt  A r = - ~ - . r = ~ t t A  r = A  dt ~ o  r~ (29) 

where /1, r~, r~ denote the components of r with respect to the rotating 
frame, i.e., r = (r], r~, r~)'. 

To find an approximate solution of equation (28) we will make the 
following assumptions, which are similar to the so-called "slow-passage" 
or "steady-state" conditions (see e.g., Pake, 1973) of standard magnetic- 
resonance configurations: 

(1) The relative change in mean energy during the residence time tr~ 
in the apparatus is small, i.e., [tresi'~/re[<< 1, SO that we can consider vector 
re as slowly varying in the rotating frame. 

(2) The spin-1/2 system enters the apparatus in a nonidempotent stable 
equilibrium state with respect to the outside external magnetic field and 
f~<< tOo, so that the vector r remains close to re and we can consider 
K(r )  ~ 1/TR ~ const, as done in equation (20). 

(3) The inherent relaxation mechanism maintains an approximately 
constant magnetization in the rotating frame, so that we can consider 
d ' r / d t  -~ O. 

Under these assumptions, the solution of homogeneous equation (28) 
can be approximated by a slowly varying quasisteady solution. Setting 
d ' r / d t  = 0 and considering re as constant, equation (28) yields 

- ( t O o  - t O ) r ' 2  - r l / T R  = - - a r ~ / T R a O  

( too -- to ) r~ -- ~ r; -- r~/ TR =0 

(30a) 

(30b) 
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l)r'9 - r~/ TR = -Wore/TR12o (30C) 

(Wo - w )~ r ~ ]  + (wo - w ) a  ~ r ~  

(31) 

Defining the effective relaxation time 

TR 
TE - (1 +12ZT~)'/2 (32) 

and the complex susceptibility 

we obtain 

Tr p( MI - iM2) y2h 
X =X '+  i x " -  - - -  ( r ' l -  ir~) (33) 

HMI 212 

X" - 212o[1 + (Wo- w) 2 T~] - w T ~ / T R  J (34) 

and, from equations (29) and (31), 

1 dre wZOaT~/Tn 
re dt 12o[1 + (Wo- w)2T~] (35) 

At the frequency w = Wo+ 1/woT~,  the right-hand side of equation (35) 
achieves a maximum value f~2(1 2 2 2 + woT~) / f~oTR which must be much smaller 
than 1/tres for consistency with our assumption (1). 

Compared to the typical dispersion and absorption curves observed in 
conventional magnetic-resonance experiments under slow-passage or 
steady-state conditions (see e.g., Pake, 1973); the real and imaginary parts 
of the complex susceptibility as given by equation (34) present asymmetries 
with respect to the resonance condition to = Wo. Their shape is determined 
by the parameter Te which is in turn related to the unknown internal time 
constant ~- and the individual inverse temperature/3 via relation (21). 

As already discussed, the single-particle relaxation effect predicted here 
is entirely different from the spin-lattice and spin-spin relaxation effects 
that dominate in standard magnetic resonance experiments where each 
single spin- l /2  system is coupled to external degrees of freedom. However, 
the effect predicted here should be experimentally verifiable with high 
resolution measurements made on a very diluted beam of spin-1/2 particles 
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so that the only external interactions felt by each single particle are those 
with the applied magnetic fields. 

An experiment on these lines would verify the validity of our two 
hypothesis, namely, the existence of nonmechanical individual states 
described by nonidempotent state operators and the new equation of motion 
describing their irreversible time evolution. The experiment would determine 
the value of the unknown time constant z for the spin-l /2 particle or, at 
least, a lower bound to that value. 

6. CONCLUSIONS 

We have proposed a new approach towards a satisfactory resolution 
of the so-called irreversibility dilemma or paradox. Instead of statistical, 
information-theoretic, macroscopic, phenomenological, or anthropomor- 
phic concepts, we submit that entropy and irreversibility are microscopic 
physical concepts, in the same sense as energy is a microscopic physical 
concept, and are defined for each individual physical system, even if 
composed of a single strictly isolated degree of freedom. To show that a 
logically consistent approach based on this unconventional premise is 
feasible, we proposed a generalized quantum dynamical theory for the 
simplest quantum system, namely, a single isolated two-level system. 

In conventional quantum mechanics, the entropy of a single individual 
strictly isolated system is an undefined concept (entropylike concepts are 
defined only for the statistical description of ensembles of such systems). 
In our generalized quantum dynamics, instead, entropy emerges as a 
physical observable of every single isolated two-level system, and is 
defined for each of its individual states. We achieve this by adopting the 
Hatsopoulos-Gyftopoulos postulate that, in addition to all the traditional 
individual quantum mechanical states (with individual entropy now defined 
and equal to zero), there exists a broad class of nonmechanical individual 
quantum states (inconceivable within conventional mechanics and with 
nonzero entropy). 

In conventional quantum mechanics, individual states of a single 
isolated system evolve in time only along reversible paths (Schrgdinger 
equation of motion). Irreversibility has no place within mechanics. To 
explain a physical reality dominated by irreversible processes, mechanics 
is invariably complemented by additional postulates (such as those of the 
statistical, information-theoretic, macroscopic, or phenomenological 
approaches reviewed by Park and Simmons, 1983). In our generalized 
(nonstatistical) quantum dynamics, the additional postulates are the 
Hatsopoulos-Gyftopoulos hypothesis and the new nonlinear equation of 
motion proposed by the author. Irreversibility emerges as a microscopic 
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physical phenomenon occurring within the single isolated system in most 
of  its nonmechanical individual states. 

The proposed two-level quantum dynamics broadens the quantum 
mechanical treatment without contradicting any of its successful results. 
But the generalized theory implies new additional results that are inconceiv- 
able within conventional mechanics, such as the single-particle, energy- 
conserving, internal-redistribution relaxation mechanism discussed in detail 
in the paper. 

We believe that our proposal for a resolution of the irreversibility 
dilemma is logically coherent and consistent with all the successful results 
of quantum mechanics, it provides a new perspective to the description of 
nonequilibrium phenomena, and it is definite and explicit enough to imply 
new detailed predictions that, at least in principle, should be experimentally 
verifiable. 

APPENDIX A: FROM EQUATION (1) TO EQUATION (4) 

In terms of the representation of state operators given by relation (2a), 
the eigenvalues of p are p+ = (1 + r)/2 and p_ = (1 - r)/2 where r = ]rl = 
p§ and r -  < 1. If F(x) is a function of the real variable x, then operator 
F(p) may be written as 

F(p):I[p+F(p_)-p_F(p+)]I+I-[F(p+)-F(p_~]p (Ala) 
r r 

=! 2 [F(P+)+F(P-)]I+I[F(P+)-F(P-)]r'r R (Alb) 

and, in particular, 

1 ( 1 - - r  2 l + r \  1 [  1 - - r 2 + l  l + r \  
p l n p = ~  In 4 +rln~-r)I+-2~ln 4 rln-~-~_r) r ' R  (A2) 

1 ( 1 -r  2 l+r~ 
T r 0 1 n p = ~  In 4 + r l n i - ~ - r ]  (A3) 

Using relation (3a) and the commutation rules obeyed by the spin operators, 
we find 

I { H ,  jo} 1 1 = ~h~o[~(A �9 r ) I  + A .  R] (A4) 

Tr pH = �89 �9 r (AS) 

Tr pH 2 = ( l h a o )  2 (A6) 

+ -  In A �9 r (A7) 
4 r 1 -  

i[H, p] = - h a o ( A  •  R (A8) 
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The right-hand side of  equation ( la)  becomes 

1 1 - r  2 l + r  r ' R - r e A . R  
- -  2 ( A 9 )  ~- 2r l n l _ r  1 - r e  

Combining equation (1) with relations (A8) and (A9) and the fact that 

dp dr 
- - =  �9 R (AIO) 
dt dt 

Equation (4) follows immediately. 

A P P E N D I X  B:  E X I S T E N C E  A N D  UNIQUENESS OF S O L U T I O N S  

As shown in Appendix A, for p in the set of  state operators (p* = p 
0, Tr p = 1), equation (1) is equivalent to equation (4) that we rewrite here 
a s  

I - r  2 l + r  r - r e A  1 - r  
dr  ,~, , ~ o A x r -  In 2, i f r < l  
- d ~ = r t r ) = ]  zr  1 - r  1 - r e  

LOoA • if r =  1 (B1) 

where r =  Ir[, re = A  �9 r and r ~  +A. We have seen that if r(t) is a solution 
of equation (B1) then re is a constant with - 1  < re < 1 and equation (9) is 
satisfied, i .e . ,  

1 2 2 2r 2 In r--r_.__~l-r 2 l + r  i f[rel<r<l 
dr=G(r)= ~" 1-r~ - -  I ~ '  
dt 0, if r = 1 (B2) 

Here we will show that, for each initial condition in the Bloch sphere, 
Equation (B1) admits of  a unique solution defined for - c e <  t < + c c  and 
lying entirely in the Bloch sphere. 

In the open region D = { r l r < l } ,  the functions ~(rl ,  r2, r3) I F =  
(FI, F2,/=3), equation (B1)] and the partial derivatives OFj/Ork are defined 
and continuous. Therefore, for each ro with ro< 1 there exists a unique 
complete solution r(t) of  equation (B1), defined for a < t<b,  such that 
r(0) = to. 

Because G(r )  < 0 in D, equation (B2) implies that r(t) < ro < 1 for every 
0<_ t <  b. Thus, the complete solution remains internal to D and bounded 
for every 0-< t < b, and it must therefore extend to b = +oo. 

The solution remains on the plane orthogonal to A defined by the 
constant re = A �9 r and spirals toward the equilibrium point re = reA without 
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ever reaching it at any finite time. This can be seen, for example, by 
integrating Equation (B2) to obtain 

io , ~ f r dr' te = dt  = lim G(r ' )  - +oo (B3) 
r ~  r e r o 

because in re the function 1 /G( r )  is infinite of  the same order as 1 / ( r e -  r). 
The complete solution, defined for a < t < +oo, either extends to a = - ~  

or else it approaches the boundary F D  = {rlr= 1} of domain D as t tends 
to some finite a < 0. But the latter case is impossible because integration 
of equation (B2) yields 

Io ~ f r dr' a = dt  = lim ~ t  )"~'r" ~ (B4) 
r ~ I  , r o 

where ro< 1. Relation (B4) may be verified by observing that in r = 1 the 
function - 1 / G ( r )  is infinite of  the same order as the function 1 / g ( r )  where 

g(r)  = 1 -  r 2 1 + r  
In (B5) 

2 1 - r  

and 

lira r dr' d ln ln l + r' _ = + c e  ( B 6 )  
~ 1  . ~o g ( r ' )  ~ ro l - -  r'  

We conclude that for each ro in D equation (B1) admits of  a unique 
solution entirely contained in D for every - ~  < t < +ce. As t tends to +o0, 
the solution approaches a stable equilibrium point. As t tends to - ~ ,  the 
solution approaches the boundary FD.  On the boundary F D  of its domain 
of definition, equation (B1) admits of  periodic solutions, the conventional 
quantum mechanical solutions, which precess around A at the angular 
frequency ~o and lie entirely on FD. These periodic boundary solutions 
could fail to be unique only by leaving the boundary F D  in finite time. But 
this is impossible because of  relation (B4). It  is also readily seen that, except 
for the fixed points r = +A, all boundary solutions are unstable. 
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