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Abstract Density functional theory (DFT) calculations are performed to determine
the mechanism and origin of the intensively debated (4×1)–(8×2) phase transition
of the Si(111)-In nanowire array. The calculations (i) show the existence of soft
phonon modes that transform the nanowire structure between the metallic In zigzag
chains of the room-temperature phase and the insulating In hexagons formed at
low temperature and (ii) demonstrate that the subtle balance between the energy
lowering due to the hexagon formation and the larger vibrational entropy of the
zigzag chains causes the phase transition.

1 Introduction

Quasi-one-dimensional (1D) electronic systems attract considerable interest, related
on the one hand to the search for fascinating collective phenomena such as spin-
charge separation. On the other hand, modulation and controlled tuning of the elec-
trical characteristics of nanoscale structures are essential for their future use in na-
noelectronics. The ordered array of In nanowires that self-assembles at the Si(111)
surface is one of the most fascinating and most intensively studied model systems
in this context. It provides a robust testbed for studying electron transport at the
atomic scale [1, 2]. In addition, the experimentally observed phase transition from
the metallic Si(111)-(4× 1)-In structure (Fig. 1a) stable at room temperature (RT)
to an insulating (8× 2) reconstruction below 120 K [3] has provoked many fun-
damental questions and intensive research. While the atomic structure of the low-
temperature (LT) (8 × 2) phase has recently been explained [4, 5] in terms of a
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Fig. 1 Schematic top views of a room temperature (4 × 1) and b the low-temperature (8 × 2)
hexagon structure of the Si(111)-In nanowire array. Red balls indicate In atoms

hexagon structure (Fig. 1b), the nature and driving force of the metal-insulator tran-
sition remained an open question.

Originally, it was explained as a charge-density wave (CDW) formation due to
the Peierls instability [3]. However, only one of the metallic bands nests properly.
Therefore, a triple-band Peierls instability has been proposed, where an interband
charge transfer modifies the Fermi surface to improve nesting [6, 7]. A periodic
lattice distortion that lowers the energy has also been suggested [8–11]. On the other
hand, many-body interactions were made responsible for the low-temperature phase
[12]. Several theoretical studies proposed the phase transition to be of order-disorder
type [4, 9, 13] and explained the RT phase in terms of dynamic fluctuations between
degenerate ground state structures. However, photoemission [14, 15] and Raman
spectroscopy [16] results have cast doubt on this model.

Using computer grants of the HLRS, we studied the (4×1)–(8×2) phase transi-
tion on the basis of DFT calculations [17]. In contrast to earlier work, the vibrational
and electronic entropy of the In nanowire array is included in the calculations.

2 Computational Method

For a fixed stoichiometry, the ground state of the surface-supported nanowires is
characterized by the minimum of the free energy F as a function of the substrate
crystal volume V and the temperature T . It can be obtained using atomistic ther-
modynamics, see, e.g. Ref. [18]. Within the adiabatic approximation, F is given by

F(V,T ) = Fel(V,T )+Fvib(V,T ), (1)
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with Fel = Etot − T Sel , where we approximate the total energy Etot by the zero-
temperature DFT value and calculate the electronic entropy Sel from

Sel = kB

∫
dE nF [ f ln f +(1− f ) ln(1− f )]. (2)

Here nF and f denote the density of electronic states and the Fermi distribution
function, respectively. The vibrational free energy of the supercell with volume Ω
is calculated in harmonic approximation

Fvib =
Ω

8π3

∫
d3k∑

i

(
1
2

h̄ωi(k)+ kBT ln(1− e
− h̄ωi(k)

kBT )
)

. (3)

The wave-vector dependent phonon frequencies ωi(k), as well as the corresponding
eigenvectors are obtained from the force constant matrix calculated by assuming
Fel(V,T ) ∼ Etot(T = 0), i.e., neglecting the explicit temperature and volume depen-
dence.

The DFT calculations are performed within the local density approximation
(LDA) for exchange and correlation as implemented in VASP [19]. Thereby the
system of Kohn-Sham equations

{
− h̄2

2m
�+Vext(r)+

∫
n(r′)
|r− r′|dr′ +Vxc(r)

}
ψnk(r) = εnkψnk (4)

n(r) = ∑
n,k

fnk|ψnk|2 (5)

is solved iteratively for the external potential Vext(r) until self-consistency in the
total electron density n(r) is reached. Plane waves serve as basis set for the Kohn-
Sham orbitals ψnk(r). The ground-state DFT calculations were parallelized for dif-
ferent bands and sampling points in the Brillouin zone using the message passing
interface (MPI). Parallelization over bands and plane wave coefficients at the same
time reduces the communication overhead significantly.

Concerning numerical details, we follow Stekolnikov et al. [2]. The Brillouin
zone (BZ) integrations in the electronic structure calculations are performed using
uniform meshes equivalent to 64 points for the (4× 1) unit cell. This number was
increased to 3200 points for the electronic entropy calculations. Frozen-phonon cal-
culations have been performed using a (8×4) translational symmetry that yields the
Γ - and X-point modes of the (8×2) unit cell.

Figure 2 shows benchmark calculations to determine the electronic ground
state of the 200 atom cell used for surface modeling in our project. The calcu-
lations within this project were performed on the NEC SX-8 and SX-9 of the
Höchstleistungsrechenzentrum Stuttgart. As can be seen, a reasonable scaling is
achieved for using up to 32 CPUs.
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Fig. 2 CPU time and speedup for DFT calculations for the hexagon model of the Si(111)-In
nanowire array containing around 200 atoms. The calculations were performed with the Stuttgart
optimized VASP version on the HLRS NEC SX-8 and SX-9 machines. In comparison, we show
data for the HLRS Cray XE6, a local Linux cluster (Intel Core i7, 24 Twin-nodes with 4 CPUs 2.5
GHz Quad Core Xeon each) and Mac Pro workstations (Intel Core i7)

3 Results

The calculated Γ -point frequencies for strongly surface-localized vibrational modes
of the Si(111)-In nanowire array are compiled in Table 1. The table contains the
present results for the (4× 1) phase as well as their assignment to the frequencies
of geometrically similar eigenvectors of the (8× 2) phase in comparison with the
Raman data from Fleischer et al. [16]. The overall very good description of the
distinct, but similar, sets of vibrational modes measured for the LT and RT phase
by calculations for (8× 2) and (4× 1) geometries is a strong argument against the
dynamical fluctuation model [4, 9, 13]. Also, if at elevated temperatures the system
were frequently visiting configurations associated with (8×2) structures, significant
contributions from the LT structure should be present in the RT spectra, in contrast
to the actual experimental findings [16].

Interestingly, the calculations confirm the existence of a low-frequency shear
mode of A” symmetry for the Si(111)-(4 × 1)-In phase at 28 cm−1. This mode,
which was also detected by Raman spectroscopy [16], is energetically below the
phase transition temperature of about kBT ∼ 83 cm−1 and has been suggested to
correspond to the lattice deformation characteristic for the (4×1) −→ (8×2) phase
transition [4, 7, 13]. The calculated eigenvector of this mode (Fig. 3a) shows the
two In atom zigzag chains oscillating against each other. We find that the structural
transformation from the In zigzag-chain structure with (4× 1) symmetry (Fig. 1a)
to the In hexagons with (8×2) translational symmetry (Fig. 1b) can in fact be per-
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Table 1 Calculated Γ -point frequencies for strongly surface localized A’ (upper part) and A”
phonon modes (lower part) of the Si(111)-(4× 1)/(8× 2)-In phases in comparison with experi-
mental data [16]. The symmetry assignment of the (8× 2) modes is only approximate, due to the
reduced surface symmetry

THEORY ω0 [cm−1] EXPERIMENT ω0 [cm−1]
(4×1) → (8×2) (4×1) → (8×2)

22 → 20 31 ± 1 → 21 ± 1.6
27 28 ± 1.3

hexagon rotary mode

44 → 47 36 ± 2 → 41 ± 2
51 → 53 52 ± 0.6 → 57 ± 0.7
62 → 58, 69 61 ± 1.3 → 62, 69 ± 1.5

65, 68 → 70, 69, 78, 82 2·72 ± 3.3 → 83 ± 2.3
100, 104 → 97, 106, 113, 142 105 ± 1 → 100–130
129, 131 → 137, 142 118 ± 1 → 139 ± 1.2
143, 145 → 139, 145, 146, 147 2·148 ± 7 → 139, 2·154±2

28 → 18, 19 28 ± 0.9 → 2·23.5 ± 0.8
shear mode

→ antisym./sym. shear mode

35 3·42 ± 3.5
51 2·59 ± 3
75 69 ± 1.5
82 85 ± 1.7

fectly described by superimposing the calculated eigenvector of the 28 cm−1 mode
with the two degenerate low-frequency X point modes at 17 cm−1 (one of the sym-
metrically equivalent modes is shown in Fig. 3b). Similarly, the combination of
the corresponding shear mode of the Si(111)-(8× 2)-In phase at 18 cm−1 with the
hexagon rotary mode at 27 cm−1 (Fig. 3c) transforms the In hexagons back to paral-
lel zigzag chains. The calculated phonon modes support the geometrical path for the
phase transition proposed in Refs. [4, 7, 13]. They give an atomistic interpretation
of the triple-band Peierls model [7, 20, 21]: The soft shear mode lifts one metallic
band above the Fermi energy, while the rotary modes lead to a band-gap opening
for the remaining two metallic In surface bands.

What, however, is causing the phase transition? Before we discuss the differ-
ence in the free energies calculated for the two phases of the Si(111)-In surface
(cf. Fig. 4), a word of caution is in order. The weak corrugation of the In atom
potential-energy surface leading to small and error-prone force constants as well
as the harmonic approximation impair the accuracy of the calculated phonon fre-
quencies. In order to minimize systematic errors, we compare results obtained for
supercells of identical size and use identical numerical parameters. The calculations
are performed at the equilibrium lattice constant. From calculations where the mea-
sured lattice expansion has been taken into account, we estimate the corresponding
error to be of the order of 0.1 meV per surface In atom. The sampling of the phonon
dispersion curves is another crucial point. It is performed here by using only the
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Fig. 3 Calculated eigenvectors for three prominent phonons modes (notation as in Table 1) of the
Si(111)-(4× 1)-In (a), (b) and Si(111)-(8× 2)-In phase (c). The mode shown in b—occurring at
the X point of the (4×1) BZ—is twofold degenerate due to the existence of an equivalent mode at
the neighboring In chain

Γ and the X point of the (8 × 2) BZ. However, as shown in the inset of Fig. 4,
further restricting of the sampling to the Γ point results in an energy shift of less
than 0.3 meV, indicating that the unit cell is large enough to compensate for poor
BZ sampling. Stekolnikov and co-workers [2] have shown that the energetics of the
In nanowires depends sensitively on the functional used to model the electron ex-
change and correlation energy and the treatment of the In 4d electrons. We find the
inclusion of the In 4d states and/or the usage of the generalized gradient rather than
the local density approximation to result in typical (maximum) frequency shifts of
±2(4) cm−1. This affects the vibrational free energy by at most 1 meV per surface
In atom at 130 K.

In Fig. 4 we present the free energy difference between the Si(111)-(4× 1)-In
and Si(111)-(8×2)-In phases. It vanishes at 128.5 K if only the vibrational entropy
is taken into account. Additional consideration of the electronic entropy lowers the
calculated phase transition temperature to 125 K. At this temperature, the vibrational
and electronic entropy is large enough to compensate for the lower total energy of
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Fig. 4 Difference of the free energy F(T ) calculated for the (4× 1) and (8× 2) phase of the
Si(111)-In nanowire array. The stable phase is indicated. The inset shows enlarged the entropy
difference calculated by neglecting the electronic contributions and by restricting the BZ sampling
to the Γ point

the insulating (8×2) phase compared to the metallic (4×1) phase. The calculated
phase transition temperature is slightly above the experimental value of about 120 K.
However, given the approximations and uncertainties discussed above, the agree-
ment between theory and experiment should be considered to be fortuitously close.

The present calculations show that the phase transition is caused by the gain in
(mainly vibrational) entropy that overcompensates for higher temperatures the gain
in band-structure energy realized upon transforming the metallic In zigzag chains
into semiconducting In hexagons. Is it possible to trace the change in vibrational
entropy to the frequency shift of a few illustrative modes? Due to the reduced
symmetry of the hexagon structure, the phase transformation results in modified
phonon eigenvectors. This complicates the one-to-one comparison of the vibrational
frequencies. However, a general trend to higher surface phonon frequencies upon
hexagon formation is clearly observed. This can be seen from most values in Ta-
ble 1—with the shear mode as a notable exception—as well as from the comparison
of the respective phonon densities of states shown in Fig. 5. The present calculations
essentially confirm earlier experimental work that states “all major modes of the
(4×1) surface are found in the (8×2) spectra, though blueshifted” [16]. A typical
example is shown as inset in Fig. 5. The eigenvector corresponding to the alternating
up and down movements of the In atoms hardly changes upon the (4× 1)–(8× 2)
phase transition. The according frequency, however, goes up from 63 to 67 cm−1.
This shift in frequency is easily understood from the formation of additional In-In
bonds upon hexagon formation, resulting in larger force constants.
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Fig. 5 Phonon density of states calculated for the (4× 1) and (8× 2) phase of the Si(111)-In
nanowire array (4 cm−1 broadening). The inset shows a specific displacement pattern that hardly
changes upon the phase transition but shifts in frequency. Arrows (feathers/heads) indicate down/up
movements

4 Summary

In summary, free energy calculations based on density functional theory are per-
formed that explain the (4×1)–(8×2) phase transition of the Si(111)-In nanowire
array in terms of a subtle interplay between the lower total energy of the insulating
In hexagon structure and the larger vibrational and electronic entropy of the less
tightly bound and metallic In zigzag chain structure at finite temperatures. Both the
(4× 1) and (8× 2) phases are stable and well-defined structural phases. Soft shear
and rotary vibrations transform between the In zigzag chains stable at room temper-
ature and the hexagons formed at low temperatures. The present work resolves the
discrepancies arising from the interpretation of the (4× 1) reconstruction as time-
averaged superposition of (8×2) structures given by the dynamic fluctuation model.
It clarifies the long-standing issue of the temperature-induced metal-insulator tran-
sition in one of the most intensively investigated quasi-1D electronic systems. We
expect the mechanism revealed here to apply to many more quasi-1D systems with
intriguing phase transitions, e.g., Au nanowires on high-index silicon surfaces.
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