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Abstract: In this article, the concept (i.e., the mathematical model and methods) of computational
phonetic analysis of speech with an analytical description of the phenomenon of phonetic fusion
is proposed. In this concept, in contrast to the existing methods, the problem of multicriteria of
the process of cognitive perception of speech by a person is strictly formally presented using the
theoretical and analytical apparatus of information (entropy) theory, pattern recognition theory
and acoustic theory of speech formation. The obtained concept allows for determining reliably the
individual phonetic alphabet inherent in a person, taking into account their inherent dialect of speech
and individual features of phonation, as well as detecting and correcting errors in the recognition
of language units. The experiments prove the superiority of the proposed scientific result over
such common Bayesian concepts of decision making using the Euclidean-type mismatch metric as a
method of maximum likelihood and a method of an ideal observer. The analysis of the speech signal
carried out in the metric based on the proposed concept allows, in particular, for establishing reliably
the phonetic saturation of speech, which objectively characterizes the environment of speech signal
propagation and its source.

Keywords: relative entropy; computational linguistics; computational phonetic analysis of speech;
phonetic fusion; recognition of language units; individual phonetic alphabet

1. Introduction

Computational phonetic analysis is a fundamental component of most information
technologies for natural language recognition, cognitive speech analysis, automated speech
transcription, and so on. The high reliability of phonetic analysis is a guarantee of a
qualitative result of the functioning of all of these types of systems. The primary phonetic-
morphological analysis of inflected languages and speech is especially relevant. The
main source of errors in this process is a fusion [1–4]. This phenomenon characterizes
the high variability of the individual sounding of phonemes, especially at the junction of
morphemes. The phenomenon of fusion is objectively determined by the phonological evo-
lution of natural language and cannot be ignored in the creation of precision technologies
for computational phonetic analysis of speech.

The task of computational phonetic-morphological analysis of language or speech
is objectively complicated, firstly, by the peculiarities of language itself as a process of
physiologic-cognitive human activity, and, secondly, by the peculiarities of the profile
information technologies involved.
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We note the main integral factors of the first source of complications [5–9].
Homonymy of inflections. Inflexions can be homonymous if they belong to a single world-

changing paradigm or characterize a single lexical and grammatical category, but belong to
different world-changing paradigms, and they are sometimes found in the paradigms of
different parts of language. This factor is a source of ambiguity in phonetic-morphological
analysis. The negative impact of this factor can be reduced by using information technolo-
gies of linguistic context analysis and computational phonetic analysis.

Internal flexion. This type of inflexion is manifested when using the basic collection of
language units, the representativeness of which depends on the content of word forms. If
the collection is not used, it is necessary to formulate the rules of linguistic polymorphism
inherent in the studied language.

Complex lexemes. Lexemes, the phonation (inscription) of which includes specific
articulation techniques (special symbols), require the definition of declension for each
component in the word form.

Analytical word forms. Analytical word forms are found in many languages and can
cause significant complications in phonetic-morphological analysis because the components
of the word form can be separated and even be located in different positions in the sentence.

Large lexical fund of language. Despite the rapid positive dynamics of computing
power characteristics and the large memory capacity of modern computer technology,
working with a basic collection of language units of the studied language (especially with a
basic collection of word forms) in the implementation of phonetic-morphological analysis
remains a task of high computing.

Variability of the lexical level of language. Updating the collections of language units for
the appropriate type of phonetic-morphological analysis system does not keep up with the
polymorphism of natural language (especially if we take into account dialects), which is
manifested in the everyday phenomenon of new lexemes (specifically, terms) and word
forms. Systems of computational phonetic-morphological analysis of a no collection type
suffer less from the influence of this complicating factor.

We have mentioned only the most common factors of natural linguistic origin which
negatively affect the effectiveness of computational phonetic-morphological analysis of
speech. Depending on the information technology involved, this list is expanding.

We investigate the current state of the theoretical and analytical basis of current infor-
mation technologies of computational phonetic-morphological analysis. Based on the re-
sults of information retrieval [10,11], we distinguish two relevant approaches—rationalistic
and empirical. The first approach uses linguistic knowledge to analyze and synthesize
language units. The second approach is based on the generalization of empirical data,
for example, in the form of a statistical model of language (speech) [12,13]. However, in
modern computational linguistics, technologies that integrate both of these approaches
in a certain proportion are the most productive. According to the content of the used
collection of language units, as a system-forming element for the implementation of compu-
tational phonetic-morphological analysis, technology-analyzers can be divided into [14–17]:
(1) systems with a collection of phonemes and morphemes; (2) systems with a collection of
lexemes and word forms; and (3) systems without basic collections.

The central element of the systems of the first type is a collection of relatively phoneti-
cally and linguistically stable language units (morphemes, phonemes, selected allophones)
of the studied language. The corresponding technology analyzer decomposes the speech
signal (text) into a certain sequence of indivisible portions, carrying out a recognition
procedure for each of them. Such an elementary combinatorial model is most often used
for the analysis of inflectional and agglutinative languages. The order of parts of lexemes is
defined as the concatenation of the corresponding classes of morphemes in the collection.
To determine the order of transition between classes of morphemes, the mathematical appa-
ratus of finite state machines or Markov chains are usually used [18]. The number of classes
of morphemes in the collection is determined by the result of the previous morphological
classification of the studied language. In addition to declarative information on the composi-
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tion of morphemes, the collection may also store procedural information. Such information
determines the allowable range of variation of the patterns of morphemes and is most often
designed as a system of production rules [10,11,14,19]. Empirical probabilistic-statistical
methods are most often used for recognition in systems of this type [4,12,20].

Systems of the second type are focused on computational morphological analysis.
Accordingly, the content of collections of etalons of language units in such systems is
formed by morphemes and short lexemes. Systems of this type consider word forms as a
sequence of such language units formed according to compositional and(or) production
rules. When studying word forms, the system generates a lemma for it according to certain
rules [21,22]. If such a lemma is present in the basic collection, then the word form is
considered recognized. If we take into account the resource intensity, the effectiveness of
such systems is determined mainly by the representativeness of the content of the basic
collection. Collections of morphemes or lexemes are used in phonetic-morphological
analysis to normalize the studied word forms. In the presence of a collection of morphemes,
normalization is realized in the form of stemming. In the presence of a collection of lexemes,
normalization is realized in the form of lemmas. We separately mention the subclass of
systems of the second type, which uses a collection of word forms. The purpose of such
systems is grammatical and morphological analysis, in which the collection presents a set
of combinations of word forms, which is matched by a set of grammatical labels [11,19,23].
With a sufficiently rich collection, the source of analysis errors in these systems is only the
homonymy of the complete word form.

The disadvantage of all systems of phonetic-morphological analysis of the first and
second types is the use of large collections of language units. However, according to this
criterion, systems focused on the use of phonetic and morphological collections look better
if the efficiency of the recognition process is acceptable.

Systems of the third type perform phonetic-morphological analysis exclusively based
on mathematical methods of machine learning (support vector machines, EM-method,
genetic algorithms, Kohonen networks, etc.) [24–34]. Any methods capable of graphemic
analysis [24], the result of which is the automatic or automated formation of phonetic-
morphological collections, are acceptable. The advantage of the third type of system is the
methodologically determined high heuristics and adaptability, which potentially allow for
recognizing language units in speech material with a clear uncertainty. The disadvantage of
such systems is the complexity and instability of learning these pseudo-intelligent methods,
as well as the need for initial data and computing resources, the volume of which exceeds
that required for systems of the first and second type, not in times, but orders.

Below we formulate the main provisions of our study.
The object of study is the fusion of the process of merged speech.
Considering the mentioned advantages and disadvantages of systems of phonetic-

linguistic analysis, we formulate the purpose of the study as formalization in the paradigm
of information theory of a statistically adequate analytically rigorous concept of phonetic
analysis of speech, the variability of which will be taken into account.

The subject of research will be methods of probability theory and mathematical statistics,
information theory, pattern recognition theory and acoustic theory of language formation.

In this context, the objectives of the study are: to create a concept of the process of
computational phonetic analysis of speech, taking into account dialects and the specifics
of phonation introduced by the speaker; to formulate a criterion for the estimation of
the phonetic saturation of speech based on the proposed model, taking into account the
distorting effect of the channel of propagation of speech signals in the phonation process;
and to prove the adequacy and functionality of the obtained theoretical results.

The main contribution of the research is the concept of computational phonetic anal-
ysis of speech. In the concept, in contrast to the existing methods, the task of addressing
the multicriteria of the process of cognitive perception of speech by a person is strictly
formally presented in the theoretical and analytical apparatus of information theory, pattern
recognition theory and acoustic theory of speech formation. The obtained concept allows
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for determining accurately the phonetic alphabet of a person, taking into account their
inherent dialect of speech and individual features of phonation, as well as detecting and
correcting errors in the recognition of language units and reliably assessing the phonetic
saturation of speech.

The highlights of this research are:

- The entropy-argumentative concept (i.e., the mathematical model and methods) of
computational phonetic analysis of speech, taking into account dialect and individual-
ity of phonation;

- The entropy-argumentative concept of detection and correction of errors of computa-
tional phonetic analysis of speech.

2. Materials and Methods
2.1. Statement of Research

The functional purpose of typical modern information technology of computational
analysis of speech patterns is realized by comparing the parameterized representation
of the studied language unit and its corresponding etalon in a certain parametric space.
The main source of uncertainty in the comparison process is the biological origin of the
speech signal and its distortion during transmission and processing. However, the acoustic
variability of phonation of language units (primarily, phonemes), due to the existence of
dialects, is relatively stable. Based on this fact, we assume a simultaneous comparison of the
studied pattern of the phonogram with the pronounced phoneme x with each element xr,j

of the set of etalons Xr =
{

xr,j
}

, where j = 1, Jr is the index of the etalon that characterizes
the corresponding dialect of the phoneme r = 1, R, where R is the capacity of the phonetic
alphabet and Jr is the capacity of the set of recognized dialects for the phoneme r. Then,
if the distance ρ

(
x/xr,j

)
, r = 1, Jr, between the studied pattern x and at least one of the

elements xr,j of the cluster of the r-th phoneme does not exceed the specified threshold value

1
Jr

Jr

∑
j=1

ρ

(
x

xr,j

)
≤ ρ0, (1)

then we can recognize the pattern x as the phoneme r ∈ Xr. Such a process of recognizing
language units will be objective (in particular, insensitive to the dialects of phonation of
language units), as the clusters

{
xr,j
}

for the phonetic alphabet Xr are representatively
defined. Depending on the value of the threshold ρ0, the result of the analysis of the
studied pattern x according to Rule (1) will be: its recognition as one of the phonemes:
x = r; its identification with several phonemes: x = {ri}, ri ∈ Xr, i ≤ Jr; or its recognition
as marginal regarding the studied phonetic alphabet: x 6= ∀r ∈ Xr. To simplify the
calculations, we convert Rule (1) into the form

ρr(x) = x∗r = xr,v :
1
Jr

Jr

∑
j=1

ρ

( xr,j

xr,v

)
= min

i≤Jr

1
Jr

Jr

∑
j=1

ρ

( xr,j

xr,i

)
, ρ∗r ≤ ρ0, (2)

where in the process of recognizing the pattern x within the cluster Xr one distance
ρr(x) , ρ(x/x∗r ) from it to the center of the cluster x∗r is calculated, the coordinates of
which determine the dialect-averaged phoneme etalon r ∈ Xr.

Based on Rule (2), we define the procedure of computational phonetic analysis of
speech as a comparison of empirical (spoken by the person) {x∗v} and etalon {x∗r } sets of
equal capacity, the pairwise elements of which generalize the corresponding phonemes
of the studied language both on the speaker’s side v ∈ V and on the side of the etalon
phonetic collection r ∈ R.
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2.2. Entropy-Argumentative Concept of Computational Phonetic Analysis of Speech Taking into
Account Dialect and Individuality of Phonation

Based on the provisions of information theory, we argue the solution rule (2) in the
context of the relative entropy functional [35–37] (3):

ρ(x) ,
∫

. . .
∫

ln
dP(x)
dPr(x)

P(dx), (3)

where P(x) is the selective probability distribution of the studied (empirical) speech signal
x relative to the etalon probability distribution Pr(x), r = 1, R. Assume that the distribution
law P(x) is normal: P(x) = N(KX), where KX is a sample matrix of autocorrelation
of the speech signal x of dimension n × n. Consider this in Expression (3): ρr(x) =
1
2

(
tr
(

Kx
Kr

)
− ln

(
Kx
Kr

)
− n

)
, where tr(A) is the operation of finding a trace of the matrix

A. If we assume that the studied speech signal is normalized to its entropy, then the last
expression can be further simplified to the form

ρr(x) =
1
2

(
tr
(

Kx

Kr

)
− n

)
.

We present Function (3) in frequency space as the optimal solving statistics [35]. For
one sample of the studied speech signal, we obtain (4):

ρr(x) =
1
F

∣∣∣∣∣∣∣∣
1−

p
∑

m=1
ar(m)e−jπm f

F

1−
p
∑

m=1
ax(m)e−jπm f

F

∣∣∣∣∣∣∣∣
2

, (4)

where f is the discrete frequency value for the analyzed sample of the speech signal, F is
the upper limit value of the speech signal frequency equal to half of its sampling frequency,
and {ar(m)} and {ax(m)} are the vectors of linear autoregression coefficients of order p for
etalon signal x∗r and empirical signal x, respectively. The expression in the numerator of
(4) is an amplitude-frequency characteristic of the bleaching filter tuned to highlight the
features of the r-th phoneme x∗r , r = 1, R.

Expressions (2) and (4) allow us to calculate quantitative characteristics, based on
which it is possible to reasonably decide whether the studied pattern x belongs to the cluster
x∗r of the corresponding phoneme r ∈ Xr. It is possible to vary the errors of this recognition
process by changing the value of the threshold ρ0. Given the Gaussian approximation of
the speech signal, the probability of error of the first kind α for the process of phoneme
recognition taking into account the dialects of the studied language is proposed to be
defined in terms of χ2-criterion with M degrees of freedom:

α , P
{

ρr(x) ≥ ρ0|x∈Xr

}
= P

{
χ2

M > M(1 + ρ0)
}

, (5)

where P{.} is the probability of a random event, M = const.
In the general case, the value of the constant M is calculated by the expression

M ≈ L− p, where p is the order of the bleaching filter, and L = 2Fτ is a parameter
whose value depends on the number of stationary intervals τ allocated in the studied
speech signal x. The value of error α determined by Expression (5) is inversely proportional
to the value of the threshold ρ0. For example, for a given value of α = 0.1 at τ = 5 ms,
F = 8 kHz, p = 20, we obtain L = 80 and, accordingly, M = 60. Using the χ2-distribution
tables for the significance level β = 1− α = 1− 0.99 = 0.01, we find the value of the
quantile χ2

M;β = χ2
60;0.01 = 88.38, using which we calculate the value of the threshold ρ0:

ρ0 = χ2
M;β/M− 1 = 0.473.
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The error of the second kind β in the context of the task of computational phonetic
analysis of speech when taking into account dialects represents the probability of the
confusion of phonemes r and v, r, v ∈ Xr, the centers of clusters x∗r and x∗v of which are
close enough in the parametric space ρrv , ρr(x)|x=x∗v . Therefore, the value of error β is
inversely proportional to the value of distance ρrv. Analysis of the results of a statistically
representative number of experiments showed that the minimum value of ρrv the phonetic
alphabets of the English language {x∗r } is in the range [0.2; 0.3]. Accordingly, in analogy
with (5), we formalize the expression for calculating the error of the second kind β of the
phoneme recognition process taking into account the dialects of the studied language:

β , P
{

ρr(x) ≥ ρ0|x∈Xv

}
= P

{
χ2

M <
M(1 + ρ0)

1 + ρrv

}
. (6)

Summarizing the considerations embodied in Expressions (5) and (6), for practical use
we choose the value of the threshold ρ0 in the decision rule (2) based on the expression

p0 = (1, . . . , 2)minρrv
r,v

. (7)

The value of the threshold ρ0, calculated by Expression (7), provides a balance between
the values of errors of the first and second kind of the process of phoneme recognition from
the phonetic alphabet Xr, taking into account the dialects of the studied language and the
variability of the phonation process. However, the question of the influence of individual
features of speakers’ articulation on the result of phonetic analysis of speech requires more
detailed analytical formalization.

In the context of the provisions of information theory, we consider the speaker as a
source of discrete messages X, defined on the set of etalons of language units {x∗r }. Such a
source can be comprehensively characterized by the amount of information per language
unit generated by it.

If we ignore the influence of individual features of the speaker’s articulatory apparatus
on the phonation process and assume that the speech message is transmitted in the absence
of acoustic ambient noise, the required amount of information is defined as Shannon
entropy for a discrete message source [35]:

H(X) , −
R

∑
r=1

P(X = x∗r ) log P(X = x∗r ) = −
R

∑
r=1

pr log pr. (8)

If we mention the normalization
R
∑

r=1
pr = 1, then, considering the equally probable

appearance of language units ∀r ≤ R: pr = 1/R, we obtain a simplified form of Expres-
sion (8): H(X) = log R. However, in real conditions, it is impossible to ignore articulatory
conditioned variability of phonation. The speech signal at the output of the articulatory
tract of the speaker X′ may differ significantly from the etalon X: X′ 6= X.

This axiom is true even for individual phonemes, not to mention more massive
language units. Under such conditions, an adequate mathematical model of a discrete
source of speech messages should be created based on phonemes defined by Expression (5),
clearly clustered in the parametric space: qr , P(X′ 6= x∗r ), r = 1, R, and taking into account
the probability of an abstract, R+1-th, language unit, which includes cases of the unreliable
recognition of a signal X′: qR+1 , P(X′ 6= x∗r , ∀r ≤ R). We summarize these considerations
for the decision rule (2):
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qr =
R
∑

v=1
qrv =

R
∑

v=1
P(X′ = x∗r ; X = x∗v) =

R
∑

v=1
P(X = x∗v)P(X′ = x∗r |X = x∗v )

= P(X = x∗r )P(X′ = x∗r |X = x∗r ) = (1− α)pr,

qR+1 =
R
∑

v=1
P(X′ = x∗v ; X = x∗v) =

R
∑

v=1
P(X = x∗v)P(X′ 6= x∗v |X = x∗v ) =

R
∑

v=1
αpv = α,

R+1
∑

r=1
qr = (1− α)

R
∑

r=1
pr + α ≡ 1,

(9)

where P(X′ = x∗r |X = x∗r ) = 1 − α is the conditional probability of recognizing the r-
th phoneme, provided that the variability of its phonation introduced by the speaker
is ignored.

Note that Expression (8) characterizes a discrete source of speech messages without
taking into account the disturbing effect of the channel of their distribution on the final
result of phonation. Consider this information using as a basic expression [35]:

I
(
X, X′

)
, H(X)− H

(
X
∣∣X′ ), (10)

where X is a specimen of the phonation of the etalon x∗r of the phoneme r ∈ Xr, X′ is
a specimen of the phonation of this phoneme by the speaker (empirical specimen), and
H(X|X′ ) is a posteriori entropy, which characterizes the scattering of useful information
of a phonation process due to disturbing effects in its distribution channel. Taking into
account Expression (9), we formulate the equivalent representation of Expression (10):

I(X, X′) = H(X) + H(X′)− H(XX′) = H(X)−
R+1
∑

r=1
qr log qr +

R
∑

v=1

R+1
∑

r=1
qrv log qrv = H(X)

−(1− α)
R
∑

r=1
pr log(pr(1− α))− α log α +

R
∑

r=1
qrr log qrr + α

R
∑

v=1
pv log(pvα) = H(X)

+(1− α)H(X)− (1− α)

(
(1− α)− α log α + (1− α)

R
∑

r=1
pr log(pr(1− α))

)
− αH(X)

+α log α = (1− α)H(X).

(11)

Based on Expression (11), we can say that the a posteriori entropy of information
scattering in the phonation of the speech message H(X|X′ ) is in direct proportion to the
entropy of the discrete speech message source (8):

H
(
X
∣∣X′ ) = αH(X). (12)

Based on Expression (12), we can say that with an equally probable distribution of
phonemes in the phonetic alphabet of the speaker, the upper limit of scattering of useful
information in the phonation process can be described by the expression

supH
(
X
∣∣X′ ) = α log R. (13)

The obtained result correlates with the known Fano inequality [38] for arbitrary
solution rules:

H
(
X
∣∣X′ ) ≤ −α log α− β log β + α log(R− 1). (14)

The last statement can be proved empirically by comparing the calculated values of
the right-hand sides of Expressions (13) and (14) for the experimental data for 0 ≤ α ≤ 1
and 1 < R < ∞.

Thus, the decision rule (2), the decision statistic (4) and Expressions (7)–(9) together
form the desired concept of the process of computational phonetic analysis of speech,
taking into account dialects and the specifics of phonation introduced by the speaker. The
central element of the concept is the matrix of information mismatch ‖ρr,v‖ of dimensions
R× R. The data from the matrix ‖ρr,v‖ are the basis for calculating the threshold ρ0 using
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Expression (7). With a known value of ρ0 based on Expressions (2) and (5), the procedure
of segmentation of the phonetic alphabet Xr =

{
xr,j
}

into a set of phonemes, which
with probability β = 1− α are reliably recognized despite the above-described disturbing
factors, and another set of phonemes, which with probability α are not reliably recognized.
A significant factor for such segmentation is the probability of error of the first kind, which
is calculated by Expression (5). The probability of error of the second kind (6) in this
procedure is taken into account indirectly as a limitation in determining the threshold ρ0
by Expression (7). The use of Expressions (9) and (10) allows for clarifying the result of
the segmentation procedure, taking into account the variability of the phonation of the
studied language units caused by the individual features of the articulation of a particular
speaker. Note that although the presented concept was formulated based on phonemes, the
provisions underlying it are consistent and for the analysis of speech about the content of
such language units as morphemes and lexemes. Based on the proposed concept (8)–(10),
Rule (11) allows us to estimate the error of the first kind (5) and the personalized entropy
of the phonetic dictionary (8) as a result of the analysis of empirical data, the sample size
of which is N = 2FT. The statistically representative volume N = 106 in the study of the
phonetic alphabet of R = 102 elements by Rule (11) as a result of analysis of phonograms of
speech signals with a sampling frequency of 16 kHz is achieved with a censored duration.

2.3. Entropy-Argumentative Concept of Detection and Correction of Errors of Computational
Phonetic Analysis of Speech

Let Xr =
{

xr,j
}

, r = 1, R, j = 1, M be a set of independent classified samples of

type xr,j =
[

xr,j(1) , xr,j(2) , . . . , xr,j(n)

]T
with a capacity n of R ≥ 2 Gaussian distributions

Pr = N(Kr) with zero mathematical expectation and unknown autocorrelation matrix
Kr = EX

(
xr,jxT

r,j

)
of dimension n× n, where j is the identifier of the cycle of observations

of the r-th distribution, T is the transposition operation, EX is the mathematical expectation
of the sample of sets X. Denote by X0 a sample of the form Xr with capacity M0 for
the studied signal with an unknown distribution P(X) ⊂ {Pr}. The task of recognizing
the signal X0 involves R-alternative testing of statistical hypotheses Wr regarding the
distribution law of this signal:

Wr : P(X) = Pr, r = 1, R. (15)

Let R = 2, i.e., two competing hypotheses, W1 : P(X) = P1 and W2 : P(X) = P2, are
tested for a priori unknown autocorrelation matrices K1 and K2. The verification will be
performed using the asymptotic minimax criterion of the likelihood ratio [35–37] based
on data from a sample X{Xi}, i = 0, 2. Under such conditions, the hypothesis W1 will be
considered true if the condition

W1 : λ1(X) ,

sup
K1

sup
K2

(p(X|W1 ))

sup
K1

sup
K2

(p(X|W2 ))
≡

sup
K1

(p(X0|W1 )p(X1))sup
K2

(p(X2))

sup
K1

(p(X0|W2 )p(X1))sup
K2

(p(X1))
> 1, (16)

is satisfied, where p(X0|Wr ) is the plausibility function of the signal X0 provided that
hypothesis Wr is confirmed, and p(Xr) is the plausibility function of the signal Xr.

Using the known computational algorithm [38] under the condition of independence
of observations Xr =

{
xr,j
}

, we write a system of equations of the form ln(p(X0|Wr )) = −M0
2

(
ln|Kr|+ tr

(
S0
Kr

)
+ n ln(2π)

)
,

ln(p(Xr)) = −Mr
2

(
ln|Kr|+ tr

(
Sr
Kr

)
+ n ln(2π)

)
,

(17)
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where |Kr| is the determinant of the matrix Kr, and Sr , 1
Mr

Mr
∑

j=1
xr,jxT

r,j is the estimate of the

maximum likelihood for the matrix Kr determined on the sample Xr, r = 0, 2. We describe
based on Rxpression (17) the fact that the upper limits ln(p(Xr)) are reached at Kr = Sr:

sup
Kr

(p(Xr)) = −
M
2
(ln|Sr|+ nc), (18)

where r = {1, 2}, c = ln(2π) + 1.
Similarly, we obtain the expression for determining the upper limits for ln(p(X0|Wr )p(Xr)):

sup
Kr

(ln p(X0|Wr )p(Xr))

= − 1
2

(
(M0 + M)(ln|S0r + n ln(2π)|) + M0tr

(
S0
S0r

)
+ Mtr

(
S0
S0r

))
= −M0+M

2 (ln|S0r|+ nc),

(19)

where r = {1, 2}, and S0r =
M0

M0+M (S0 + Sr) is the estimate of the maximum likelihood for
the matrix Kr determined on the combined sample X0r + {X0, Xr} with capacity M0 + M.

Substitute Expressions (18) and (19) into Expression (16) and obtain the condition
under which the hypothesis W1 will be considered correct:

W1(X) : λ1(X) = 1
2 ((M0 + M) ln|S01| − (M0 −M) ln|S02| −M ln|S1|+ M ln|S2|) < 0
≡ M0γ1,01 + Mγ1,01 < M0γ2,02 + Mγ2,02,

(20)

where γk,0r = 1
2

(
tr
(

Sk
S0r

)
− ln|Sk|+ ln|S0r| − n

)
≥ 0 is the value of the relative entropy

functional between two hypothetical probability distributions with autocorrelation matrices
Sk and S0r.

We scale rule (20) for the task of recognizing signals of the form in (15) with an arbitrary
number of hypotheses R ≥ 2:

Wv(X) : (M0γ0,0r + Mγr,0r)|r=v = min, r = 1, R. (21)

Assuming the homogeneity of the pair of signals X0 and Xr in the sample X0r and
considering that γ0,0r ≤ γ0,r, γr,0r ≤ γr,0 and M = M0, we present Rule (21) in the form

Wv(X) : λv(X) , (M0γ0,r + Mγr,0)|r=v , γ0,r + γr,0|r = v = min, r = 1, R. (22)

where the solving statistics of the relative entropy functional

γ0,r =
1
2

(
tr
(

S0

Sr

)
− ln|S0|+ ln|Sr| − n

)
, (23)

γr,0 =
1
2

(
tr
(

Sr

S0

)
− ln|Sr|+ ln|S0| − n

)
(24)

are determined on the R-set of pairs of sample distributions N(S0), N(Sr), r = 1, R.
An alternative to Expressions (23) and (24) may be to take into account the principle

of the minimum value of information non-directional mismatch J(X0, Xr) , 1
2 (γ0,r + γr,0)

between stochastic signals X0 and Xr, r = 1, R, in the rule (22):

W̃v(X) : λ̃v(X) , γ0,r|r=v = min, r = 1, R, (25)

where the decision statistics γ0,r are determined by Expression (23).
Expression (25) is a particular case of Criterion (22), provided that with an unlimited

increase in the volume of training samples M, the second term in Expression (21) asymptot-
ically reduces to zero: γr,0r → γr,r = 0∀r ≤ R . Thus, the transition from Rule (22) to (25) is
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appropriate provided that there is a significant asymmetry in the values of the decision
statistics (23), (24).

The probability αv→r , P(Wr(X)|Wr) of confusion of the v-th and r-th signals,
v 6= r ≤ R, from the user database of a priori data {Xr} in the formalism of Rule (22)
can be described by the expression

αv→r = P{γ0,v + γv,0 > γ0,r + γr,0|Wv } = P{2γv,v > γv,r + γr,v}. (26)

If we take into account that the empirical signal before recognition is normalized
to the value of its specific entropy, then the system of asymptotic equations ∀r ≤ R :
1
n ln|Sr| = 1

n ln|S0| =
n→∞

ln σ2
0 = const is satisfied. We take this fact into account by

presenting the solving statistics γv,r in the χ2-distribution formalism with K ≤ M degrees

of freedom: γv,r = 1
2 n
(

σ2
r,vσ2

0 χ2
r,v(K)

M − 1
)

, where σ2
r,v ,

σ2
0

n lim
n→∞

(
Mtr

(
Sv
Sr

))
is an auxiliary

variable. Substitute the obtained expression for statistics γv,r into Expression (26):

αv→r = P
{

σ2
0 χ2

v,v >
1
2

σ2
r,vχ2

r,v +
1
2

σ2
v,rχ2

v,r

}
= P

{
2χ2

v,v > (1 + ρr,v)χ
2
r,v + (1 + ρv,r)χ

2
v,r

}
, (27)

where ρr,v ,
σ2

r,v
σ2

0
− 1 and ρv,r ,

σ2
v,r

σ2
0
− 1 are the specific values of the information

discrepancy for the studied pair of distributions N(S0) and N(Sr) at n→ ∞ , and

σ2
v,r ,

σ2
0

n lim
n→∞

(
Mtr

(
Sr
Sv

))
is an auxiliary variable of the same type as σ2

r,v. If we assume

the mutual noncorrelation of the three χ2-distributions in Expression (27), then Expres-
sion (26) for calculating the probability of confusion αv→r can be represented as αv→r =

P
{

1
2 ((1 + ρr,v)Fr,v(1, K) + (1 + ρv,r)Fv,r(1, K)) < 1

}
, where Fr,v(1, K) = χ2

r,v
χ2

v,v
and Fv,r(1, K) =

χ2
v,r

χ2
v,v

are statistics of the F-distribution with (1, K) degrees of freedom. Accordingly, the

upper limit of the probability of confusion αv→r can be estimated by the expression

αv→r ≤ P
{

1
2 max[(1 + ρv.r)Fv,r(1, K); (1 + ρr.v)Fr,v(1, K)]

}
= P

{
F(1, K) < 2

max[(1+ρv.r);(1+ρr.v)]

}
=

P
{

F(K, 1) ≥ 1
2 max[(1 + ρv.r); (1 + ρr.v)]

}
= 1−ΦK,1{max[(1 + ρv.r); (1 + ρr.v)]},

(28)

where F(1, K) = max[Fr,v(1, K); Fv,r(1, K)] and F(K, 1) = 1
F(1,K) are statistics of the F-

distribution with (1, K) and (K, 1) degrees of freedom, respectively; ΦK,1 is the integral
function of the F-distribution with (K, 1) degrees of freedom.

From Expression (28), it follows that there are essentially unequal distributions of
statistics χ2

v,v and a pair of statistics χ2
r,v, χ2

v,r provided that r 6= v. Thus, Expression (28)
theoretically proves the correctness of Expressions (23) and (24) concerning the asymmetry
of the value of information discrepancy, which is taken into account in the decision rule
(22). This means that when the condition ∃v, r ≤ R : ρv,r >> ρr,v is satisfied, it is more
appropriate to apply the decision rule (22) rather than (25) to make decisions about the
recognition of language units in the speech signal parameterized in the paradigm of concept
(8)–(10). This thesis will be tested in the experimental part of this article.

Assume that when recognizing the signal under study using the decision rule (25),
the verdict was erroneously in favor of the hypothesis Wµ(X), not the hypothesis Wv(X).
Suppose also that when recognizing the same signal using decision rule (22), the verdict
was made in favor of the hypothesis Wv(X). The stated assumptions assume that according
to Expressions (25) and (26), inequalities γv,v ≥ γv,µ and 2γv,v ≥ γv,µ + γµ,v were fulfilled
simultaneously, which is possible only if the condition γµ,v >> γv,µ is satisfied. Thus, an
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analytical indication of the erroneousness of the decision made under Rule (25) concerning
the analyzed sample X0 may be inequality of the form Wµ(X) : γµ,0 >> γ0,µ or

Wµ(X) :
1 + γ̃µ,0

1 + γ̃0,µ
≥ c0, (29)

where γ̃0,µ =
2γ0,µ

n , γ̃0,µ =
2γ0,µ

n are the specific values of the solving statistics (23), (24),
respectively; c0 is the threshold value (minimum value of the asymmetry coefficient of the
values (23) and (24) in Rule (22)), set depending on the maximum permissible error

β , P
{

1 + γ̃µ,0

1 + γ̃0,µ
≥ c0

∣∣Wµ

}
≤ β0.

Repeating the considerations that accompanied the transition from Expressions (26)
to (28), we rewrite the defined expression to determine the probability β in terms of
the F-distribution:

πv→µ , P
{

1+γ̃µ,0
1+γ̃0,µ

≥ c0|Wv

}
= P

{
1+γ̃v,µ
1+γ̃µ,v

≥ 1
c0

}
= P

{
1+γ̃µ,µ
1+γ̃0,0

≥ c0

}
= P

{
χ2

µ,µ(K)
χ2

0,0(K)
≥ c0

}
= 1−ΦK,K(c0) ≤ β0.

(30)

Analyzing Expression (30), we obtain an equation minc0 = fK,K(1− β0), where
fK,K(1− β0) is the quantile of the F-distribution with (K, K) degrees of freedom and the
level of significance 1− β0. For example, for K = 100 and β0 = 0.01 from the tables for
F-distribution, we have: c0 ≥ f100,100(0, 99) = 1.59.

Thus, Rule (29) allows us to estimate the probability of the event of marginal recogni-
tion of the correct result of the phoneme recognition procedure, employing the decision
rule (25). The stochastic estimate of such an event is characterized by the expression

πv→µ = P

{
χ2

v,µ(1)

χ2
µ,v(1)

≥
1 + ρv,µ

c0
(
1 + ρµ,v

)} = 1−Φ1,1

(
1 + ρv,µ

c0
(
1 + ρµ,v

)) (31)

and is determined by the result of comparing the opposing elements ρr,v and ρv,r in the
matrix ‖ρr,v‖.

3. Results

We use Rule (11) based on the concept (8)–(10) to estimate the phonetic saturation
of speech of persons in a team of 30 people. The personnel composition of this team was
formed in a balanced way. It took into account such criteria as age (three age groups:
20–29, 30–39, 40–49 years), gender (male, female), higher education (university), native
language (Ukrainian), and level of English language proficiency according to CEFR-B2.
Each person listened to a phonogram of an 1800-character English-language journalistic text
pronounced by a Google Translate service once. Subsequently, each person recounted the
heard text for recording on a personalized digital phonogram lasting 3 min. The phonation
of the retelling took place at the same tempo and timbre and with a clear fixation on
language units. The phonograms were recorded using an AKG P420 microphone without
an amplifier connected to a Creative Audigy Rx sound card integrated into a personal
computer with a sampling frequency of 16 kHz. Each phonogram was saved in a .wav
format file. For further analysis, the phonograms were split into segments of duration
τ = 5 ms (L = 80 samples). Based on the analysis of the corresponding phonograms of
retellings, individual phonetic alphabets {Xr} were formed for each person, for which the
centers of clusters of phonemes {x∗r } were determined by Expression (2). Two variants of
the individual phonetic alphabet were formed for each person with hard and soft conditions
of formation. These conditions were caused by the level of a mismatch ∆ρ = {0, 5; 1, 0} for
phonemes of the same name and their minimum duration ∆L = {8L; 4L}, τ = {40; 20}.
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The values of the autoregression coefficients {ar(m)}, {av(m)} required for the calculation
of the information mismatch matrix ‖ρr,v‖ were determined using the Berg–Levinson
recurrent procedure with an unambiguously determined order of models p = 20.

Figure 1 visualizes fragments of the resulting matrices for person №1, calculated with
the selected hard (Figure 1a) and soft (Figure 1b) sets of formation conditions. The capacities
of the phonetic alphabets were R1

hard = 32 and R1
so f t = 87 language units, respectively. The

minimum value of information discrepancy between phonemes was ∆ρ
R1

hard
rv = 0.324.

Entropy 2022, 24, x FOR PEER REVIEW 14 of 21 
 

 

{ }8 ;4L L L∆ = , { }40;20τ = . The values of the autoregression coefficients ( ){ }ra m , 

( ){ }va m  required for the calculation of the information mismatch matrix ,r vρ  were 
determined using the Berg–Levinson recurrent procedure with an unambiguously deter-
mined order of models 20р = . 

Figure 1 visualizes fragments of the resulting matrices for person №1, calculated with 
the selected hard (Figure 1a) and soft (Figure 1b) sets of formation conditions. The capac-
ities of the phonetic alphabets were 1 32hardR =  and 1 87softR =  language units, respec-
tively. The minimum value of information discrepancy between phonemes was 

1

0.324hardR
rvρ∆ = . 

 
(a) 

 
(b) 

Figure 1. Visualization of fragments of information mismatch matrices ,r vρ  for person №1, cal-

culated with the selected hard (a) and soft (b) sets of formation conditions. 

Respectively, according to the decision rule (2), taking into account Expression (7), 
the value of the threshold 0 0,324ρ =  is determined. Using the tables of the 2χ -distri-
bution for the number of degrees of freedom 60М = , the probability of error of the first 
kind 0,047α =  is determined. Then, according to Expression (13), the upper limit of the 

Figure 1. Visualization of fragments of information mismatch matrices ‖ρr,v‖ for person №1, calcu-
lated with the selected hard (a) and soft (b) sets of formation conditions.

Respectively, according to the decision rule (2), taking into account Expression (7), the
value of the threshold ρ0 = 0.324 is determined. Using the tables of the χ2-distribution
for the number of degrees of freedom M = 60, the probability of error of the first
kind α = 0.047 is determined. Then, according to Expression (13), the upper limit of
the scattering of useful information of the phonation process for person №1 is equal to
supH(X|X′ ) = α log R = 0.235, and the upper limit of phonetic saturation of speech for
person №1, according to Expression (11), is equal to supI(X|X′ ) = (1− α) log R = 4.765.
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Similar calculations were made for the rest of the persons in the team. For clarity of
presentation, these results were averaged for each of the three age groups and visualized in
Figure 2. In addition, for comparison, for persons from the first age group, the mismatch
matrices were calculated with the selected soft set of formation conditions, and we per-
formed all other computational operations described above. These results, referred to as
«1AG

so f t», are also shown in Figure 2.

Figure 2. Estimation of phonetic saturation of personified speech (the format of the numbers is
determined by the computing software used).

We investigate empirically the functionality of decision-making concepts generalized
by solving Rules (22) and (25) in the task of the computational phonetic analysis of speech
(statistical classification without a teacher in the concept (8)–(10) paradigm). The empirical
material for the research was two phonograms with a recording of the same content of
language material spoken by person №1. Phonograms were represented by samples X0, Xr
of equal capacity M = 120. First, the information mismatch matrix ‖ρr,v‖ was calculated
for four vowel phonemes of the person №1. The content of the matrix is visually presented
in Figure 3. Allophones [u :]1 and [u :]2 represent person-specific dialects of pronunciation
of the phoneme [u :].
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Further use of the data presented in Figure 3 will be demonstrated by the example.
Consider the data from the matrix ‖ρr,v‖ for a pair of phonemes ([a :], [u :]1). These data
characterize the situation when the phoneme [a :] is recognized as a phoneme [u :]1. Figure 3
shows that ρ([a :], [u :]1) = 5, 76. The number of degrees of freedom for the F-distribution
in expression (28) is assumed to be equal to K = M− p = 100. If the decision on the result
of phoneme recognition is made according to the solution rule (25), then (K, 1) = (100, 1),
and we have α̃v→r = 1−ΦK,1{1 + ρr,v} = 1−Φ100,1{5.76} ≈ 0.3. If the decision on the
result of phoneme recognition is made according to the decision rule (22), then we have
max[(1 + ρvr); (1 + ρrv)] = max[87.2; 6.76] = 6.76. According to Expression (28), we have
αv→r ≤ 1−Φ100,1(5.76) ≈ 0.12. Thus, the probability of confusion when deciding on the
result of phonetic analysis on the example of phonemes [a :] and [u :]1 using the solution
rule (22) in comparison with Rule (25) is almost three times less. Calculations similar to
the above were performed for all pairs of phonemes of different names in Figure 3. For
all implementations, Rule (22) allowed us to obtain a lower estimate of the probability of
confusion compared to Rule (25).

Let us complete this stage of research by calculating by means of Expression (31)
the probability of the event of marginal recognition of the correct result of the phoneme
recognition procedure using the decision rule (25): πr→v = 1−Φ1,1

{
1+86.2

1.59(1+5.76)

}
= 1−

Φ1,1(8, 11) ≈ 0.21. It can be stated that the greater the asymmetry between the opposing
elements of the matrix ‖ρrv‖, the greater the value of probability πr→v.

We generalize the experimental section by verifying the models proposed in Section 2
in the paradigm of practical planning theory. We form certain sets of input influences
(speech synals): Xk =

{
xk

1, xk
2, . . . , xk

n

}
and Xk =

{
xk

1, xk
2, . . . , xk

m

}
. The system’s response

to input effects from the set Xk is predicted in the consept. Input influences from the set
Xk are structurally identical to the generalized set Xk but differ in values that may exceed
the limits set up in the system’s design stage (extraneous noises, significant problems
with diction, etc.) The system’s reaction to the input influence from the set Xk can be
incorrect speech unit recognition. The numbers of elements in the sets Xk and Xk are
n = 3000 and m = 7000, respectively. Experiments were performed with fixation on
the reaction of the system to the input influences from the sets Xk and Xk (in the matrix
form Bk

e =
(

Bk
ij

)
, i = 1, n, and Bk

e =
(

Bk
ij

)
, i = 1, m, respectively). We calculate for the

ith input influence the variance of the implementation of the situation of the incorrect

speech unit recognition: s2
i = M−1

M
∑

j=1

(
Bij − B′ ij

)2, where Bij is the state defined in the

model; B′ ij is the actual state. We calculate the average value of the variance for all input

influences: s2 = N−1
N
∑

i=1
s2

i . Evaluation of the substantial deviations s2
i from s2 Fisher’s

criterion showed that all deviations do not exceed the tabular values, which confirms the
adequacy of the proposed mathematical apparatus.

4. Discussion

The task of computational phonetic analysis of speech in the general case is reduced
to a cyclically repeated procedure for estimating the deviation of the current segment
of the studied speech signal from the etalons defined within a finite list of language
units. The duration of the segments, by the sequence of which the output speech signal
is presented, is selected based on the average duration of the studied language units; for
example, for phonemes it is τ ∈

{
5, 10

}
ms. In the paradigm of the Bayesian theory

of pattern recognition, such a task is solved by testing stochastic hypotheses about the
homogeneity of the distribution law of the speech signal. If the empirical distribution law
can be reliably estimated by Gaussian approximation, then the above-mentioned task has
an optimal solution. If the procedure of comparing the empirical segment with the etalon
is trivial, then the question of determining the etalon for the language unit is a cornerstone.
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There is no generally accepted definition of the etalon of a language unit in the context of
computational phonetic analysis of speech. A typical approach is to determine the desired
etalon based on one of the variations of the method of expert assessments. However, this
approach examines not so much the phonation of the language unit as the environment of
distribution of signal and format of its presentation. In this context, the derivation of the
task of computational phonetic analysis in the subject area of information theory allows
us to consider the definition of the etalon in the absolute metric of the criterion of relative
entropy, rather than in the relative metric, as implemented in analogues.

From the empirical results shown in Figure 2, we can draw conclusions about the
representativeness of the proposed metric {H(X|X′ ); I(X|X′ )} for estimating the personi-
fied phonetic saturation of speech. It turned out that the highest phonetic saturation (11)
is characterized by the speech of persons from the second age group. Of particular note
are the data characterizing the phonetic saturation of speech of persons from the first age
group, whose phonetic alphabets were determined by choosing a hard and soft set of
formation conditions-1AG

hard and 1AG
so f t, respectively. It is seen that the phonetic saturation

of speech of persons from the first age group jI1AG
hard = 4.765, estimated based on phonetic

alphabets R1AG
hard = 32, determined by choosing a hard set of formation conditions, was

higher than the same indicator for the same group of persons I1AG
so f t = 4.304, estimated

based on phonetic alphabets R1AG
so f t = 87, determined by choosing a soft set of formation

conditions. This is without assuming that the capacity of the phonetic alphabet of the
second variant R1AG

so f t = 87 exceeds the capacity of the phonetic alphabet of the first variant

R1AG
hard = 32 more than twice. This fact allows us to outline a promising direction for the in-

vestigation of the function I(X, X′) = f (R, ∆ρ, ∆L), the extremum of which can potentially
indicate the elements of the personalized phonetic alphabet, in which the individuality and
informativeness of speech are most pronounced.

Based on the relative entropy function, Section 2.3 theoretically substantiates two error-
detectable approaches to decision-making Wv(X) in the task of computational phonetic
analysis of speech (15) based on decision rules (22) or (25). The results of the computational
experiment presented in Figure 3 convincingly prove the functionality of both of these
approaches. Of particular importance is Expression (31) to estimate the reliability of a
decision made based on Rule (25). Indeed, if the solution Wµ(X) is found to be erroneous
according to Expression (29), then this fact, according to the provisions of the theory of
experimental planning, will oblige the researcher to repeat the experiment according to
Scheme (15) with all already rejected distribution alternatives, because the decision on their
marginality is compromised. The result of such a re-experiment

˜̃Wv(X) : ˜̃λv(X) , γ0,r|r=v 6=µ = min, (32)

determined on a reduced sample of alternatives with capacity R− 1, together with the
solution rules (25), (29), defines the entropy-based concept of detecting and correcting
errors in the computational phonetic analysis of speech. The potential inherent in the
proposed concept and the demonstrated results prove its superiority over such Bayesian
concepts of decision-making using Euclidean-type mismatch metrics as the method of
maximum likelihood and the method of the ideal observer.

Finally, it should be noted that the mathematical apparatus proposed in this article
is proved to be adequate because it is based on the verified mathematical apparatus
of information theory. This fact, as well as the rigor and reversibility of the analytical
transformations carried out in the formalization of the corresponding metric, substantiate
the adequacy of the mathematical apparatus presented in the article.

5. Conclusions

The study of a cornerstone object for modern linguistics, the process of speech and
textual interpersonal communication, considering the size of the infosphere of the twenty-
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first century, is impossible without a thorough and purposeful involvement of information
technology from other fields of knowledge, including computer science. Created as a
result of relatively young science, computational linguistics aims to automatically analyze
natural languages in all spectra of their implementation. From the long list of current tasks
actively studied in the paradigm of computational linguistics, we mention the automation
of compilation and linguistic processing of language corpora, the automated classification
and abstracting of documents, the creation of accurate linguistic models of natural lan-
guages, ad the extraction of factual information from informal linguistic data. An effective,
strictly formalized technology of computational phonetic analysis of linguistic information,
especially speech information, is potentially the driving force behind the improvement of
the results of solving these research tasks. This thesis is fully consistent with the content of
the article, which proves the relevance of the presented scientific and applied results.

The proposed concept in this article (i.e., the mathematical model and methods) of
computational phonetic analysis of speech defines the scientific novelty of the research. In
the concept, in contrast with the existing methods, the task of addressing the multicriteria
of the process of cognitive perception of speech by a person is strictly formally presented in
the theoretical and analytical apparatus of information theory, pattern recognition theory
and acoustic theory of speech formation. The obtained concept allows for determining
accurately the phonetic alphabet of a person, taking into account their inherent dialect of
speech and individual features of phonation, as well as detecting and correcting errors in
the recognition of language units and reliably assessing the phonetic saturation of speech.

The proposed concept is represented by the decision rule (2), the decision statistics (4)
and Expressions (7)–(9). The central element of the concept is the matrix of information
mismatch ‖ρr,v‖ of language units of the personalized phonetic alphabet of the speaker.
The matrix ‖ρr,v‖ is the basis for calculating the threshold ρ0 for the implementation of
computational phonetic analysis by Expression (7). With a known value of ρ0, based on
Expressions (2) and (5), the procedure of segmentation of the studied phonetic alphabet of
a speaker into a set of phonemes, which with probability β = 1− α are reliably recognized
despite disturbing factors, and another set of phonemes, which with probability α are not
reliably recognized. The use of Expressions (9) and (10) allows for clarifying the result
of the segmentation procedure, taking into account the variability of the phonation of
the studied language units, introduced by the individual features of the articulation of a
particular speaker.

The study of the results of computational phonetic analysis based on the function
of relative entropy allowed for substantiating theoretically two detectable errors of the
process of recognition of language units (15) based on solving Rules (22) and (25). Note the
possibility, formalized by Expression (31), to estimate the reliability of the decision made
based on Rule (25). If the solution is found to be compromised according to Expression (29),
then with the help of a computational procedure with Scheme (15), it is possible to find
erroneously recognized unreliable results of phonetic analysis and rehabilitate them. Thus,
the practical significance of the proposed concept of computational phonetic analysis of
speech lies in the fact that with its help, it is possible not only to single out phonetic units
in speech signals, taking into account the individual features of speech formation, but also
to detect and correct errors in the results of such an analysis.

The potential inherent in the proposed concept and the experimental results pre-
sented after Figure 3 prove its superiority over such Bayesian decision-making concepts
using Euclidean-type mismatch metrics as the maximum likelihood method and the ideal
observer method. The analysis of the studied speech signal carried out in the metric
{H(X|X′ ); I(X|X′ )} based on the proposed concept allows for establishing reliably the
phonetic saturation of speech, which objectively characterizes the environment of speech
signal propagation and its source.

Further research is planned to analyze the function I(X, X′) = f (R, ∆ρ, ∆L), the ex-
tremum of which can potentially indicate the elements of the personalized phonetic al-
phabet, in which the individuality and informativeness of the speech of the person are
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most apparent. The authors hope that the results of such an investigation will increase the
practical value of the proposed system of models for the precision phonetic analysis of
speech [39].
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