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Abstract

Ray tracing usually needs supersampling to reduce aliasing or noise in the nal image. Not all the pixels in the

image require the same quantity of rays, thus adaptive supersampling is implemented by adaptive subdivision of

the sampling region, resulting in a renement tree. We present here a theoretically sound adaptive supersampling

method based on entropy, an information theory approach with strong analogies to the decision tree problem

where entropy is frequently used as a decision criterion. Our adaptive supersampling algorithm is implemented

within a path tracing method and we show that our results compare well to the ones obtained by a classic strategy.

Categories and Subject Descriptors (according to ACM CCS): I.3.3; I.3.7 [Picture/Image Generation; Three–

Dimensional Graphics and Realism]: Display algorithms; Colour, shading, shadowing, and texture / Raytracing.

1. Introduction

In stochastic ray tracing, the integral that gives the flux

through a given pixel is computed by Monte Carlo. Rays are

traced in a stochastic way through the pixel and the radiance

of the hit point on the scene is returned (radiance usually be-

ing computed by a random walk method as in path-tracing
24). Many rays per pixel are frequently required to eliminate

aliasing or noise in the final image. However, not all the pix-

els in a ray-traced image need the same quantity of rays. In

order to account for reliable data, the edge of an object, the

contour of a shadow, and a high illumination gradient de-

mands a much better treatment than a region with almost

uniform illumination . This way of sampling is called adap-

tive supersampling8 9.

Stochastic adaptive supersampling is implemented by

adaptive subdivision of the sampling region. This subdivi-

sion generally corresponds to a binary tree or a quadtree
11 15. Subdivision is triggered by the result of a refinement

test based on a given measure. New samples are then added

into the newly created subregions.

Several supersampling refinement measures have been de-

fined. These measures are based on colour intensities and/or
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geometry 23 12 17. Other supersampling approaches use also

quasi-Monte Carlo 14, signal theory 6, characteristics of the

human eye (contrast) 13, human perception and limitations

of display devices (tone–operator) 25, and important charac-

teristics (irregular and importance sampling, uncorrelation

between the dimensions to sample, complete stratification at

each refinement level, efficient reconstruction) 20.

In this paper we introduce a new refinement criterion,

complementary to the one defined in 19, with the very im-

portant feature that it is based on the recursive expression of

the entropy, i.e. its grouping property 3. The idea behind the

new criterion is to obtain sufficient information in the refine-

ment tree which results from the recursive decomposition of

a pixel in subpixels. The natural way to represent informa-

tion is by entropy, which in our case can be interpreted as a

measure of the degree of homogeneity of a pixel or subpixel.

Thus, using the entropy criterion means to obtain enough in-

formation or homogeneity on a pixel or subpixel.

The fundamental novelty of this approach compared to

others classic techniques is that it uses a sound theoretical

framework, namely information theory, to obtain the refine-

ment process. Also, although we use path tracing in our tests

as the ray tracing technique, our approach can be applied to

any other stochastic or quasi-MC gathering algorithm.

The organization of this paper is as follows: in section 2

we present some previous work, in section 3 we introduce

the setting for an adaptive supersampling algorithm based
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on entropy and present the new algorithm. In section 4 we

discuss our results, comparing them with the ones obtained

with a classic contrast measures and uniform sampling, and

finally we present our conclusions in section 5.

2. Previous Work

In this section we present previous work on the areas of su-

persampling refinement criteria, entropy and entropy based

contrast measures, and decision tree.

2.1. Supersampling Refinement Criteria

The refinement measures used in adaptive supersampling are

based on intensities and geometry. They are also useful for

an adaptive subdivision of image space for progressive re-

finement 15. Some of them have been recently applied in the

image based rendering field for weighting pixel colour for

reconstruction 16 and adaptive sampling strategies 4 5, and

creating a priority schema for sampling in interactive ren-

dering 23.

For the purpose of this paper we review here two widely

used measures: contrast and depth difference. In 13, Mitchell

presents one the most used intensity measures 2, the contrast,

defined by

C
Imax Imin

Imax Imin
(1)

where Imin and Imax are the minimum and maximum light in-

tensities respectively. As each sample value consists of three

separate intensities for red, green, and blue, Mitchell com-

putes a separate contrast for each one and supersampling is

done if any contrast is higher than a given threshold. Red,

green, and blue thresholds are set to 0.4, 0.3 and 0.6 respec-

tively, based on the relative sensitivity of the visual system.

In 23, Simmons uses a priority value pc based on the above

concepts (contrast and perception) 13 9 defined by

pc 4
rmax rmin

rmax rmin
r 3

gmax gmin

gmax gmin
g 6

bmax bmin

bmax bmin
b

(2)

where max, min, and the overline represent the maximum,

minimum, and average values respectively for r, g, and b

colour channels.

On the other hand, a useful and simple geometric mea-

sure for refinement is depth difference, used recently in im-

age based rendering 4 5 16 and interactive rendering 23. Depth

difference is given by

pd 1
dmin

dmax
(3)

where dmax and dmin represent maximum and minimum dis-

tance. In 23, pc and pd measures are combined with weights

of 90% and 10% respectively.

2.2. Entropy

In 22, Shannon defined the entropy H X of a discrete ran-

dom variable X with values in the non empty set

x1 xn as

H X
n

i 1

pi log pi (4)

where n , pi Pr X xi for i 1 n , and the con-

vention that 0 log0 0 is used by continuity 22. As log pi
represents the information associated with the result xi, the

entropy gives the average information or the uncertainty of a

random variable. Entropy is the most basic information the-

ory measure. As we take the logarithms in base 2, the en-

tropy is expressed in bits.

Some relevant properties 22 3 of the entropy are:

1. 0 H X logn

H 0 if and only if all the probabilities except one

are zero, this one having the value unity, i.e., when

we are certain of the outcome: p j 1 and pi 0 for

i 1 j 1 j 1 n .

H X logn when all the probabilities are equal.

This is the most uncertain situation: pi
1
n
for i

1 n .

2. If we equalize the probabilities, entropy increases.

3. Recursivity (grouping): if a choice is broken down into

two successive choices, the original H should be the

weighted sum of the individual values of H (see figure

1).

1/21/2

1/3

1/2 1/3 1/6

1/2
2/3 1/3

1/6

Figure 1: Recursive or grouping property of the entropy:
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It is worth mentioning the case n 2 with x1 x2 :

X
x1 with probability p

x2 with probability 1 p
(5)

The entropy of this probability distribution is called binary

entropy, H2. Then H2 X p log p 1 p log 1 p .

The behaviour of this binary entropy H2 is shown in figure

2.
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Figure 2: Binary entropy corresponding to the probability

distribution p 1 p of random variable X. The maximum

H2 X log2 1 is obtained when p 1
2 and two mini-

mums H2 X 0 are obtained when p 0 and p 1.

2.3. Entropy-based Contrast Measures

In 19, the pixel channel entropy was introduced. This mea-

sure is defined by

H
c

ns

i 1

pi log pi (6)

where pi represents the channel colour fraction of ray i with

respect to the sum of the colours of the same channel of all

the rays passing through a pixel, and ns is the number of

rays traversing a pixel. Pixel channel entropy can be inter-

preted as the channel colour homogeneity of the rays pass-

ing through the pixel. It can also be considered as the pixel

quality.

In order to give a pixel contrast measure between 0 and

1, the pixel channel entropy is normalized with logns. Thus,

the pixel channel contrast can be defined by

C
c

1
Hc

logns
(7)

and represents the channel colour unhomogeneity or contrast

of a pixel. Considering all the colour channels, we introduce

the global pixel colour contrast19 as

C
c

nc
i 1wiC

c
i ci

nc
i 1wi

(8)

where the channel contrasts are weighted by perception co-

efficients wi and by ci, the colour average of channel i of

all the pixel rays, which expresses the “importance” for each

channel. In an RGB system, accordingly to 18, we can take

wr 0 299, wg 0 587 and wb 0 114. These weights try

to capture the sensitivity of human colour perception.

A similar measure for the “geometry” of a pixel, the pixel

geometric entropy19, is defined by

H
g

ns

i 1

pi log pi (9)

where pi represents the geometric fraction of ray i,
cos i

d2i
,

with respect to the sum of the geometric factors of all the

rays traversing a pixel. The geometric information of each

ray is given by the angle i which the normal forms at the

hit point with the ray, and also by the distance di between

this point and the eye. Similarly to the colour case, the ge-

ometric entropy represents the pixel geometric homogeneity

or quality.

From this measure, the pixel geometric contrast is defined

by

C
g

1
Hg

logns
(10)

which represents the geometric unhomogeneity of a pixel.

Alternative colour and geometric contrast measures can

be obtained by substituting the pixel entropy by the binary

pixel entropy, which is computed by only considering the

maximum and minimum values captured by the pixel.

A combination of colour and geometric contrasts can be

considered. This combination enables us to graduate, with a

coefficient between 0 and 1, the influence of both measures

and is given by

C
c

1 C
g

(11)

2.4. Decision Tree

A decision tree is a representation of a decision procedure

for determining a class label to associate with a given exam-

ple, this is, a classifying decision. At each internal node of

the tree, there is a test (question), and a branch correspond-

ing to each of the possible outcomes of the test. At each leaf

node there is a class label (answer).

The need to partition a data space into subsets arises fre-

quently in machine learning schemes. This task appears both

as a preprocessing step preceding the learning phase and as a

step integrated into the induction algorithms. An area where

the partioning task is heavily applied is the induction of sym-

bolic classifiers, such as decision trees or classification rules.

Typically, the required partitions are binary, but multi-way

partitions are used in so-called multisplitting decision trees.

Given a series of examples, a learning algorithm can build

a decision tree that will be able to classify new examples.

If the new examples are handled correctly, nothing is done.

Otherwise, the structure of the tree is modified until the cor-

rect results are displayed. The challenge is getting the algo-

rithm to perform well on very large sets of data, handling

errors in values (noise), and determining the optimal fit of

the tree to the training and test data. Information theory has

long been used in decision tree problems 21 26.

Classification is, in essence, a partioning task: the ob-

jective is to find a function that divides the instance space

cleanly into class uniform regions by decision boundaries.

c The Eurographics Association 2002.



Rigau, Feixas and Sbert / Entropy-based Adaptive Supersampling

The class–coherence of partitions is typically measured by

impurity functions 7 1. They evaluate both the internal class–

coherence of the subsets and the overall complexity of the

partition, for example, the number of subsets in the partition

or the simplicity of the splitting function. The intent is to

find coherent subsets with a low complexity partition. The

design of evaluation functions that keep these two effects in

good balance is a delicate and still not very well understood

issue. One of the most widely utilized impurity measures is

the class entropy.

3. Adaptive Supersampling Algorithm Based on

Entropy

We present in this section an adaptive supersampling algo-

rithm based on the entropy of the refinement tree. The ap-

proach to be used in refinement “will be to make sure that all

the samples in a given region are similar in some specified

way, so we can feel that we have captured what is happening

in a region of the signal. If a region is non uniform, or het-

erogeneous, then we will typically want to refine our regions

until each subregion is uniform”9. This process is by nature

a recursive process, giving rise to a refinement tree.

3.1. Recursive Entropy Tree

As we have seen in the previous section entropy gives us

the information content of a random variable, and this in-

formation can be recursively expressed. In this section, the

recursive property of the entropy (section 2.2) is generalized

in the following way:

Consider X a discrete random variable with distribution

p p1 pn , G G1 Gm an m-partition of p

with 1 m n,Gi pi1 , pini , Gi ni, qi
ni
j 1 pi j

and ri j
pi j
qi
( i 1 m and j 1 ni ).

If Y Y1 Ym are the random variables associated to

G G1 Gm with probability distributions q r1 rm re-

spectively, then

H X
m

i 1

qiH Yi

m

i 1

qi logqi

m

i 1

qiH Yi H Y

(12)

This formula can be written as H X Hin Hout where

Hin
m
i 1 qiH Yi and Hout H Y represent respectively

the hidden information (pending to be discovered) and the

information already acquired in the descent of the recursion

tree. An example of an entropy quadtree is shown in figure 3.

The total entropy of the tree is written within the root node.

In our case, formula (12) can be interpreted (for one

colour channel) as

H X represents the entropy of all the image.

H Yi represents the entropy of each root pixel.

Probability qi is the colour of pixel i divided by the sum

of the colours of all the pixels. It can be considered as the

“importance” of pixel i.

This interpretation can be recursively extended to the sub-

pixel levels. Similarly, this framework can be applied to ge-

ometric entropy.

3.2. Algorithm

In this section we show how a practical adaptive supersam-

pling algorithm can be obtained from the entropy tree. Al-

though the full algorithm will take into account both colour

and geometry, in the following analysis we only consider the

colour information of a channel.

The adaptive supersampling algorithm is as follows: On

an image plane of np pixels we cast first ns rays per pixel

to capture the colour of the hit points and so evaluate the

information content (entropy) of each pixel from the colour

probability distribution. If the information of a pixel is high

enough, i.e. the rays give us sufficient colour homogeneity

on that pixel, refinement is not made, and the colour of this

pixel is given by the average of all the colours returned by the

rays cast. In the contrary case (the contrast is high enough),

this pixel is subdivided into nr regions and we proceed in

the same way for each region (subpixel). Finally we obtain a

nr-tree (see figure 3 for nr 4).

For each root pixel, the algorithm consists of two phases:

Refinement of a pixel (tree descent)

Final colour computation of a pixel (tree ascent)

The refinement process is represented in figure 4 where

we show a fixed path R r0 rN 1 with length N 0

arriving at a determined node, which represents the suc-

cessive subregions (subpixels) selected at each level, where

rn 1 nr for 0 n N. Level n 0 corresponds to

the pixel root. The weight or importance of a node at level n

in this path is qn and can be expressed by

q
n

c
0

np

k 1 c
0
k

if n 0

qn 1pn 1 if 0 n N
(13)

where cn is the colour of n-level subpixel obtained from the

rays cast over it and pn
cnrn
nr
j 1 c

n
j

is the probability of rn-

subregion. cn can also be expressed by the average of the

colours of its respective subregions
nr
j 1 c

n
j

nr
.

This qn value will weight our colour contrasts. In our al-

gorithm, cn and qn do not have to be necessarily normalized,

thus we drop
np
k 1 c

0
k . Equivalently, we have

q
n

c
0

n

1

p
1

(14)

Its accuracy can be improved by taking more accurate colour
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Figure 3: Entropy of a quadtree. Each internal node (white) stores the entropy of its respective subtree (Hin Hout ). The total

entropy is written within the root node. Each leaf (yellow) stores its probability.

values, cn cn 1
rn 1

, and thus we obtain an optimal and less

costly expression to compute qn:

q
n cn

nrn
(15)

Proof:We proceed by induction. When n 0,

q
n

c
0 cn

nrn
(16)

Hypothesis: n q c
nr
. Then, for n

q
n

q
n 1

p
n 1 cn 1

nrn 1

cn 1
rn 1

nr
j 1 c

n 1
j

nr
j 1 c

n 1
j cn 1

rn 1
cn

nr

nrn 1

cn

nr
j 1 c

n 1
j cn 1

rn 1
cn

cn

nrn
(17)

The contrast measure we use is obtained from (8) and

(11), but now the “importances” q weighting the different

channels come from the entropy of the refinement tree. Thus

the contrast at the n-level is given by

C
cn

nc
i 1wiC

cn

i q
n
i

nc
i 1wi

(18)

and the colour and geometric combination is

n
C
cn

1 C
gn

(19)

After this computation, we decide to subdivide whether the

contrast or unhomogeneity of a pixel or subpixel, is greater

than a given threshold . In the refinement test, two different

n=1

n=0

n=2

c0

c1

c2

q1

q2

image

Figure 4: A path in the renement tree.

contrasts are possible: normalized and binary. The latter is a

bit cheaper than the first because it uses only two values for

its computation.

The descent in the refinement tree can be interpreted as

a progressive information gain. The information acquired at

each level is additively combined so that, at the end of the

refinement process, the total information of the tree is the

sum of the information obtained over all the branches.

Importance sampling is also naturally integrated in the

process. Following importance sampling criterion a function

should be sampled proportional to its value which is what

we get with our adaptive descent.

If the test fails, the final colour computation process (as-
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cent) starts. The value of cn is recursively obtained from the

final colours returned by each subpixel which are already

weighted by their respective areas (included in q).

Finally, in figure 5 we show the algorithm. Some informa-

tions about it are

i is the pixel, s is the set of samples of this subpixel already

sampled at the parent level ( for the root), is the depth

level (0 for the root).

We sample the pixel to obtain the colours of each channel

and geometric data using S (s is reused for efficiency).

Any sampling procedure can be used, stochastic or quasi-

MC. We use here a stratified stochastic sampling.

A is the average of colour and geometric information.

Q Q1 Q2 are the unnormalized probabilities for the

colour and geometric respectively. Q2 is used in contrast

combination.

In the refinement test, either a maximum depth level or a

minimum division area is included.

is the colour addition (colour already arrives correctly

weighted).

Adaptive(i s )

1. S Sample(i s)

2. A Average(S)

3. Q A
nr

4. if Contrast(Q S) then

a. J Partition(i)

b. c Clear()

c. For each pixel j J do

i. c c Adaptive( j S j 1)

5. else
a. c Q1

6. return(c)

Figure 5: Entropy-based adaptive supersampling division

algorithm.

4. Results

We present here results for the Cornell box scene. In figure

6 our approach is compared with a classic contrast, similarly

to 23, which is a combination of colour contrast (2) and ge-

ometric contrast (3). Perceptual coefficients in (2) are taken

equal to 0.299, 0.587, and 0.114 (see section 2.3). In both

cases we use a combination as in (11), where 0 9, and

the tree depth level bound is set to 4.

Four rays are cast stratifiedly at each tree node (pixel and

subpixel) to compute the contrast measures for the refine-

ment decision. These rays are reused at the next levels in

the tree, whenever necessary. An implementation of classic

path-tracing with next event estimator 10 has been used to

compute all images. In all the tests we compare with the

same average number of rays per pixel as the cost of both

our algorithm and the classic adaptive approach is similar.

All presented images are unfiltered.

The average number of rays per pixel is the same (60)

for all the images, with a minimum of 4 rays per pixel. We

show in figures 6(a,b) the results for our approach ((a) en-

tropy contrast and (b) binary–entropy contrast), and in figure

6(c) the result obtained with the classic approach. Supersam-

pling temperature maps of figures 6(I) are shown in figures

6(II) (the red colour corresponds to the highest supersam-

pling, the blue colour to the lowest).

We see from comparing the images in figures 6(a,b) and

figures 6(c) that the entropy contrast is much better than the

classic contrast used here. Observe for instance the ceiling,

the shadows and the mirroring wall. A drawback of our ap-

proach are the peaks of high radiance that we observe at

the right wall because this region is undersampled in our

method. However, this effect can be easily eliminated by a

filtering technique. Finally, the comparison of the supersam-

pling temperature maps in figures 6(II) shows a better dis-

crimination of complex regions of the scene in the entropy

case, figures 6(a,b)(II), against the classic contrast case, fig-

ure 6(c)(II). This explains the better results obtained with our

approach.

5. Conclusions

We have presented a new adaptive supersampling algorithm

for stochastic raytracing based on the recursive expression of

the entropy of a pixel, computed from the sampled intensity

and the distance and orientation of the first hit object in the

scene. Thus, in contrast to previous heuristic techniques, our

approach uses a sound theoretical framework (information

theory) in order to establish the refinement criterion.

Our method, demonstrated here for path tracing, can be

used in all raytracing algorithms. The results obtained show

that the new refinement algorithm improves substantially

over a classic adaptive refinement technique. Future work

will be addressed towards finding automatic criteria for the

threshold used in the refinement test.
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