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 Abstract 

Entropy-based metrics, such as the dilution index, have been proposed to quantify dilution and 

reactive mixing in solute transport problems. In this work, we derive the transient advection 

dispersion equation for the entropy density of a reactive plume. We restrict our analysis to the case 

where the concentration distribution of the transported species is Gaussian and we observe that, 

even in case of an instantaneous complete bimolecular reaction, dilution caused by dispersive 

processes dominates the entropy balance at early times and results in the net increase of the entropy 

density of a reactive species. Successively, the entropy of the reactant decreases until it vanishes. 

We show the existence of a unique critical value of dilution, which corresponds to the complete 

consumption of one of the reactants. This critical dilution index is independent of advective and 

dispersive processes, and depends only on the dimensionality of the problem, on the stoichiometry 

of the reaction and on the initial concentrations of the reactants. Furthermore, we provide simple 

analytical expressions to compute the critical reaction time, i.e., the time at which the critical 

dilution index is reached, for selected flow configurations. Our results show that, differently from 

the critical dilution index, the critical reaction time depends on solute transport processes such as 

advection and hydrodynamic dispersion.  
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Highlights  

- Derivation of the transient transport equation for the entropy of a reactive solute  

- Definition of the concepts of critical reaction time and dilution index, and analytical  

solutions are proposed for their calculations   

- The critical reaction time depends on mixing processes, whereas the critical dilution index  

does not  

  

1. Introduction  

The Shannon entropy has been successfully applied to describe dilution during transport of  

conservative tracers and it is generally expressed in terms of dilution index, which essentially  

quantifies the effective volume of a solute slug [Kitanidis, 1994; Cao and Kitanidis, 1998;  

Tartakovsky et al., 2009; Dentz et al., 2011; Rolle et al., 2013; Schneider et al., 2013; Rolle and  

Kitanidis, 2014; Porta et al., 2015; Ben Neriah and Paster, 2016; Boon, 2016]. A modified version  

of the dilution index, the flux-related dilution index, has been proposed to quantify dilution as  

volumetric flux carrying the solute mass flux, and has been mostly used to quantify plume dilution  

in the case of continuous injection [Rolle et al., 2009; Chiogna et al., 2011; Muniruzzaman et al.,  

2014; Cirpka et al., 2015; Ye et al., 2015a and b].   

Linking the concept of dilution index with reactive mixing has been attempted by Chiogna et al.,  

[2011 and 2012] considering steady-state flow and transport conditions; however, the entropy  

dynamics of conservative and reactive species has not been explored, yet, for transient transport  

problems. Transport and mixing exert an important control for a wide variety of subsurface reactive  

processes, including mineral precipitation and dissolution reactions [Molins et al. 2012; Yoon et al.,  

2012; Li et al., 2014], redox processes [Rolle et al., 2008, Bjerg et al., 2011] and degradation of  

organic contaminants at the fringe of groundwater plumes [Bauer et al., 2009; Prommer et al., 2009,  

Essaid et al., 2015]. For some notable cases of mixing-controlled reactions (e.g., acid-base  
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reactions, aerobic degradation of some organic compounds), the reactive transport problem can be  

solved starting from the concentration distribution of a fictitious conservative species [e.g., De  

Simoni et al., 2005; Luo et al., 2008; Sanchez-Villa et al., 2007; Engdahl et al., 2013]. Such species,  

can be defined as the mixing ratio, representing the volumetric fraction of the source water in the  

mixture with the ambient solution. A procedure, based on simple algebraic equations, allows  

computing the reactants and products concentrations based on the distribution of the conservative  

mixing ratio [e.g., Cirpka and Valocchi, 2007; Cirpka et al., 2012; Chiogna and Bellin, 2013;  

Avesani et al., 2016].   

In this work, we investigate the entropy evolution during reactive transport in porous media and we  

derive the transient transport equation for the entropy of a reactive solute. We focus on the case of  

an instantaneous complete bimolecular reaction and we show that, if the mixing ratio has a  

Gaussian distribution, there is a unique critical value of the dilution index, quantifying a critical  

amount of mixing, necessary to completely consume a reactive species. This quantity, defined as  

the critical dilution index, is independent of mixing processes, but depends only on the  

stoichiometric coefficients of the reaction, on the initial concentration of the reactants and on the  

dimensionality of the problem. We consider cases where the solution of the advection dispersion  

equation for the mixing ratio leads to a Gaussian concentration distribution, since such cases have  

been thoroughly examined in recent literature studies focusing on mixing [Bolster et al., 2011; de  

Barros et al., 2012; de Barros et al., 2015], and allow quantifying the dilution index with simple  

analytical solutions [Kitanidis, 1994]. We analyze three cases of mixing-controlled reactive  

transport in: (i) uniform flow, (ii) shear flow, (iii) complex flow including shearing, vorticity and  

stretching, and we derive simple analytical expressions to compute the critical reaction time, i.e.,  

the time required to reach the critical dilution index.  
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2. Entropy transport equation  

Reactive solute transport in geophysical flows depends on the complex interplay between reaction  

kinetics and physical transport processes [e.g. Steefel and Lichtner, 2005; Hester et al., 2017; Li et  

al., 2017]. For solute transport in such systems an entropy balance equation can be derived. Here we  

exemplify the methodology for solute transport in saturated porous media, for which the governing  

advection-dispersion-reaction equation reads as [Bear, 1972]:  

ݐ௜߲ܥ߲  + ∇ ∙ (௜ܥܞ) − ∇ ∙ (௜ܥ∇۲) = ௜ (1)ݎ

where Ci [ML-3] is the concentration of a reactive species i, t is time, ܞ [LT-1] is the velocity vector,  

D [L2T-1] is the dispersion tensor and ri [ML-3T-1] is the reaction term.  

In order to derive the transport equation for the entropy of a reactive solute under transient  

conditions we follow an approach similar to the one proposed by Chiogna et al. [2012] for steady- 

state transport.    

We start by defining the operator L as:  

 L = ݐ߲߲ + ܞ∇ − ∇ ∙ (۲∇) 
(2)

and the quantity s as:  

ݏ  = ݂൫݌௜(ܠ, ൯(ݐ = ,ܠ)௜݌− ,ܠ)௜݌൫݈݊(ݐ ൯(ݐ
= − ,ܠ)௜ܥ ׬(ݐ ,ܠ)௜ܥ ௏ܸ݀(ݐ ݈݊ ቆ ,ܠ)௜ܥ ׬(ݐ ,ܠ)௜ܥ ௏ܸ݀(ݐ ቇ 

(3)

where pi(x,t) [L-3] is the concentration normalized by the total mass of the solute i, i.e., the  

probability distribution of the location of a tagged particle of the solute i at time t [Kitanidis, 1994].  

For simplicity, and following the terminology used in other literature studies [e.g., Liu, 2007;  

Tehseen and Broadbridge, 2012], in this manuscript we denote s as Shannon entropy density.   
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Notice that for a reactive transport problem, Ci satisfies the transport equation (Equation 1), and 

considering a non-zero reaction term, the integral 
i

V

C dV
is not constant in time. This term will 

decrease if Ci is the concentration of a reactant that is consumed upon reaction and will increase if 

Ci is the concentration of a reaction product.  

Applying the operator L to the function f, assuming divergence free flow, and then using the chain 

rule of differentiation for the different terms, we obtain: 

 ߲݂൫݌௜(ܠ, ݐ൯߲(ݐ = ߲݂൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ ,ܠ)௜݌߲ ݐ߲(ݐ  

ܞ ∙ ∇݂൫݌௜(ܠ, ൯(ݐ = ߲݂൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ ܞ ∙ ,ܠ)௜݌∇  (ݐ

સ ∙ ൬۲સ ቀ݂൫݌௜(ܠ, ൯ቁ൰(ݐ = સ ∙ ቌ۲ ߲݂൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ સ݌௜(ܠ, ቍ(ݐ =
= ߲݂൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ સ ∙ ൫۲સ݌௜(ܠ, ൯(ݐ
+ ߲ଶ݂൫݌௜(ܠ, ,ܠ)௜݌൯߲൫(ݐ ൯ଶ(ݐ ∇൫݌௜(ܠ, ,ܠ)௜݌∇൯்۲(ݐ  (ݐ

(4)

Grouping the terms with the partial derivative of f with respect to p we obtain: 

ۺ  ቀ݂൫݌௜(ܠ, ൯ቁ(ݐ = ߲݂൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ ቀۺ൫݌௜(ܠ, ൯ቁ(ݐ − ߲ଶ݂൫݌௜(ܠ, ,ܠ)௜݌൯߲൫(ݐ ൯ଶ(ݐ ∇൫݌௜(ܠ, ,ܠ)௜݌∇൯்۲(ݐ (5) (ݐ

Using the definition of f(pi(x,t)) given in Equation 3, then: 

ۺ  ቀ݂൫݌௜(ܠ, ൯ቁ(ݐ = ߲݂൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ ቀۺ൫݌௜(ܠ, ൯ቁ(ݐ + ,ܠ)௜݌1 (ݐ ∇൫݌௜(ܠ, ,ܠ)௜݌∇൯்۲(ݐ (6) (ݐ

in fact: 

߲ଶ݂൫݌௜(ܠ, ,ܠ)௜݌൯߲൫(ݐ ൯ଶ(ݐ = ߲ଶ−݌௜(ܠ, (ݐ ln൫݌௜(ܠ, ,ܠ)௜݌൯߲൫(ݐ ൯ଶ(ݐ = − ߲߲൫݌௜(ܠ, ൯(ݐ ൫ln൫݌௜(ܠ, ൯(ݐ + 1൯ = − ,ܠ)௜݌1 (7) (ݐ

This article is protected by copyright. All rights reserved.
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The first term of the right hand side of the transport equation of the entropy density (Equation 5) 

entails the information about the reaction of Ci, namely: 

,ܠ)௜݌൫ۺ  ൯(ݐ = ,ܠ)௜݌߲ ,ܠ)௜ܥ߲(ݐ (ݐ ቀۺ൫ܥ௜(ܠ, ൯ቁ(ݐ − ߲ଶ݌௜(ܠ, ,ܠ)௜ܥ൫߲(ݐ ൯ଶ(ݐ ∇൫ܥ௜(ܠ, ,ܠ)௜ܥ∇൯்۲(ݐ (ݐ = 

= ,ܠ)௜݌߲ ,ܠ)௜ܥ߲(ݐ (ݐ ௜ݎ − ߲ଶ݌௜(ܠ, ,ܠ)௜ܥ൫߲(ݐ ൯ଶ(ݐ ∇൫ܥ௜(ܠ, ,ܠ)௜ܥ∇൯்۲(ݐ  (ݐ

 

 (8) 

Summarizing, Equation 9 represents the transport equation for the entropy density for a reactive 

transport problem:  

,ܠ)௜݌−൫ۺ  (ݐ ln൫݌௜(ܠ, ൯൯(ݐ
= ,ܠ)௜݌߲ (ݐ ln൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ ቌ߲݌௜(ܠ, ,ܠ)௜ܥ߲(ݐ (ݐ ௜ݎ
− ߲ଶ݌௜(ܠ, ,ܠ)௜ܥ൫߲(ݐ ൯ଶ(ݐ ∇൫ܥ௜(ܠ, ,ܠ)௜ܥ∇൯்۲(ݐ ቍ(ݐ + ,ܠ)௜݌1 (ݐ ∇൫݌௜(ܠ, ,ܠ)௜݌∇൯்۲(ݐ  (ݐ

 

 

 (9) 

where we substituted Equation 8 in Equation 6, and we replaced L(Ci) with ri, based on the 

governing reactive transport equation (Equation 1). 

The second term of the right hand side of Equation 9 depends only on the physical process of 

hydrodynamic dispersion and represents a source term for the entropy density. In fact, p is a 

probability density and therefore ݌௜(ܠ, (ݐ ≥ 0, the elements of D are all positive, and 

hence∇൫݌௜(ܠ, ,ܠ)௜݌∇൯்۲(ݐ (ݐ ≥0 The first term on the right hand side of Equation 9 represents the 

contribution of reactive mixing and can act as the only possible sink term for the entropy. Notice 

also that the asymptotic behavior for 0ir →  is consistent with the conservative case [Kitanidis, 

1994]. In fact, considering the term that is multiplied by the second derivative of ݌௜(ܠ,  with(ݐ

respect to Ci, and given that the probability density p is defined as ݌௜(ܠ, (ݐ = ஼೔(ܠ,௧)׬ ஼೔(ܠ,௧)ௗ௏ೇ , if 0ir →  

This article is protected by copyright. All rights reserved.
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the mass of the reactant tends to a constant (i.e., conservative tracer case) and hence its second 

derivative is zero. Therefore, the reactive mixing term vanishes since: 

 lim௥೔→଴ ൮− ,ܠ)௜݌߲ (ݐ ln൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ ቌ߲݌௜(ܠ, ,ܠ)௜ܥ߲(ݐ (ݐ ௜ݎ − ߲ଶ݌௜(ܠ, ,ܠ)௜ܥ൫߲(ݐ ൯ଶ(ݐ ∇൫ܥ௜(ܠ, ,ܠ)௜ܥ∇൯்۲(ݐ ቍ൲(ݐ
= lim௥೔→଴ ۈۈۉ

−ۇ ,ܠ)௜݌߲ (ݐ ln൫݌௜(ܠ, ,ܠ)௜݌൯߲(ݐ (ݐ ۈۉ
,ܠ)௜݌߲ۇ ,ܠ)௜ܥ߲(ݐ (ݐ ௜ݎ

− ߲ଶ݌௜(ܠ, ,ܠ)௜ܥ൫߲(ݐ ൯ଶᇣᇧᇧᇤᇧᇧᇥ→଴(ݐ
∇൫ܥ௜(ܠ, ,ܠ)௜ܥ∇൯்۲(ݐ ۋی(ݐ

ۊ
ۋۋی
ۊ = 0 

 

(10)

and Equation 9 converges to the entropy transport equation proposed by Kitanidis [1994] for a 

conservative solute: 

,ܠ)௜݌−൫ۺ  ,ܠ)௜݌ln(ݐ ൯(ݐ = ,ܠ)௜݌1 (ݐ ∇൫݌௜(ܠ, ,ܠ)௜݌൯்۲∇൫(ݐ ൯ (11)(ݐ

 

3. Properties of a Gaussian concentration distribution: dilution index and critical dilution 

index 

3.1 Conservative transport  

We consider now the case in which the concentration distribution of a conservative solute is 

Gaussian. This case represents the solution of Equation 1 for an instantaneous point injection 

occurring at t=0 and at x=0 of a conservative quantity X, considering constant velocity and 

dispersion coefficients: 

This article is protected by copyright. All rights reserved.
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,࢞)ܺ  (ݐ = ௡/ଶ(ߨ2)ଵ/ଶ(࢑)ݐ1݀݁ ݌ݔ݁ ቆ− 12 ࢞) − ࢞)૚ି࢑ࢀ(ݐ࢜ − ቇ (12)(ݐ࢜

where k is the covariance matrix and n is the dimension of the domain. 

The peak, i.e. the maximum value, of a Gaussian concentration distribution is given by: 

 ܺ௣௘௔௞ = ௡/ଶ (13)(ߨ2)ଵ/ଶ(࢑)ݐ1݀݁

The peak concentration therefore depends only on the covariance matrix of the concentration 

distribution and all Gaussian plumes with a given peak concentration have the same value of ݀݁(࢑)ݐ.  

The Shannon entropy S [Shannon, 1948] is the spatial integral of the entropy density s (Equation 3) 

and for a Gaussian distribution is [Kitanidis, 1994]: 

 ܵ = −݈݊൫(2݁ߨ)௡/ଶ݀݁(࢑)ݐଵ/ଶ൯ (14)

The dilution index, defined as the exponential of Equation 14, therefore, can be expressed as a 

function of the peak concentration by substituting Equation 13 in Equation 14: 

ܧ  = ௡/ଶ(݁ߨ2) ௡/ଶܺ௣௘௔௞(ߨ2)1 = ݁௡/ଶܺ௣௘௔௞ (15)

The dilution index has units of [Ln] where n is the spatial dimension of the problem (i.e., n= 1, 2 or 

3). Notice that the Gaussian distribution is the maxentropic distribution, i.e., it has the maximum 

entropy (and therefore the maximum dilution) for a given zero, first and second moment of the 

concentration distribution [Kitanidis, 1994]. 

3.2 Reactive transport 

Considering a reactive transport system in which a mixing-controlled chemical reaction aA + bB  

cC occurs, and assuming the same diffusive/dispersive properties of reactants and products, it is 

possible to compute the spatio-temporal distribution of the reacting species from the concentration 

of the conservative mixing ratio. For the case of an instantaneous complete bimolecular reaction 

This article is protected by copyright. All rights reserved.
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(i.e., ܥ஺ܥ஻ = 0), the reactive species A injected in a domain in which only the reactant B is present, 

can exist as long as X<Xcrit, where ܺ௖௥௜௧ = ௔௠௕ܤܽ)/௔௠௕ܤܽ +  ௜௡), a and b are the stoichiometricܣܾ

coefficients of A and B respectively, ܤ௔௠௕ is the ambient concentration of B, and ܣ௜௡ is the inlet 

concentration of A [Cirpka and Valocchi, 2007]. Therefore, when the peak concentration of the 

mixing ratio reaches the critical value, Xpeak= Xcrit, the reactant A is completely consumed and no 

reaction can occur anymore.  

Considering the entropy for this reactive transport problem, we can interpret Equation 15 as the 

amount of dilution required to completely consume reactant A, i.e. what we define as the critical 

dilution index Ecrit. This quantity only depends on the dimensionality of the system, on the 

stoichiometry of the reaction and on the initial concentrations of the reactants A and B. In fact, 

substituting the definition of the critical mixing ratio Xcrit in Equation 15 we obtain: 

௖௥௜௧ܧ  = ݁௡/ଶܺ௖௥௜௧ = ݁௡/ଶ ௜௡ܣܾ + ௔௠௕ܤ௔௠௕ܽܤܽ  
(16)

We can now define a new important quantity, the critical reaction time tcrit, which is the time at 

which the entropy reaches the value of the critical dilution index, E(tcrit)=Ecrit, and the reactant A is 

completely consumed. As will be shown in the following examples, the critical reaction time is 

influenced by the complexity of the flow field and by the matrix variance describing the mixing 

processes.  

Notice that the critical dilution index is computed based on the maxentropic Gaussian distribution. 

Therefore, the critical reaction time tcrit is the time required to reach a given peak concentration for 

an optimally mixed system.  
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4. Illustrative examples for the critical dilution index and the critical reaction time  

In this section we consider three illustrative examples of mixing-controlled reactive transport in two 

dimensional flow fields with increasing complexity, for which we analyze the entropy evolution and 

we derive analytical expressions to compute the critical dilution index and the critical reaction time. 

We consider a uniform flow field, a shear flow field and a complex flow field. The latter two cases 

have been described by Bolster et al. [2011] and de Barros et al. [2012] and the reader is redirected 

to those work for more details. Focusing on the entropy analysis for conservative and mixing-

controlled reactive transport we have computed the concentration distribution of a conservative 

tracer introduced instantaneously (Dirac pulse) in two-dimensional unbounded domains. The 

concentration distribution of the reactive species is computed following the mixing ratio approach 

of Cirpka and Valocchi [2007]. The analytical solutions for the concentration distributions in the 

uniform, shear flow and complex topology cases are provided in the studies of Kitanidis [1994], 

Bolster et al., [2011] and de Barros et al., [2012], respectively. 

4.1 Uniform flow 

As a first case, we consider uniform flow in an infinite homogeneous porous medium. Under these 

conditions, the peak concentration of a Dirac pulse for a conservative tracer decreases with time 

since ࢑ = 2۲t [Kitanidis, 1994]: 

 ܺ௣௘௔௞ = ௡/ଶି(ݐߨ2) ଵ/ଶ (17)ି(2۲)ݐ݁݀

Therefore, considering Xpeak=Xcrit, we can define this critical reaction time as: 

௖௥௜௧ݐ  = ൫(2ߨ)௡/ଶܺ௖௥௜௧݀݁(2۲)ݐଵ/ଶ൯ିଶ/௡ (18)

The dilution index is a correct measure of plume dilution, which “scales as the peak concentration" 

[Kitanidis, 1994]. In the case of a Dirac pulse injection in a uniform flow field, the dilution index 

can be computed as:  

This article is protected by copyright. All rights reserved.
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(ݐ)ܧ  = ௡/ଶ(ݐ݁ߨ2) ଵ/ଶ(2۲)ݐ݁݀ (19)

Substituting now the critical reaction time as defined in Equation (18) into Equation (19), we can 

show that the value of the dilution index at t=tcrit is independent from transport parameters such as 

the flow velocity and the dispersion coefficient, but depends only on the stoichiometry of the 

reaction and on the dimensionality of the problem: 

(௖௥௜௧ݐ)ܧ  = ൫(2ߨ)௡/ଶ݁݌ݔ൫݊ 2ൗ ൯݀݁(2۲)ݐଵ/ଶ൯൫(2ߨ)௡/ଶܺ௖௥௜௧݀݁(2۲)ݐଵ/ଶ൯ିଵ = ൫݊݌ݔ݁ 2ൗ ൯ܺ௖௥௜௧  (20)

This is consistent with the general result shown in the previous section (Equation 16).  

Always considering the case of the instantaneous release of a solute in an infinite homogeneous 

domain, we now analyze the time evolution of the dilution index for both a conservative and a 

reactive species. Figure 1 illustrates the temporal dynamics of the entropy density for a reactive 

solute (Equation 9) and shows the comparison between the dilution index for conservative (black 

lines) and reactive (blue lines) species, considering different values for Xcrit and D (for the sake of 

simplicity the tensor D is considered isotropic). Independently of the values of Xcrit and D used in 

the four examples shown, we can observe that the shapes of the curves describing the time 

evolution of the entropy of the conservative and reactive solutes are the same. The entropy of the 

reactive solute is always framed between the entropy of the conservative species and the line t=tcrit. 

Whereas the entropy of a conservative solute increases linearly with time, the entropy of a reactive 

species shows a non-monotonic temporal behavior, as expected considering the right hand side 

terms in Equation 9. This is due to the opposite contribution of the mixing and reactive terms in the 

entropy balance of a reactant (Equation 9). At early times, the entropy of the reactant increases 

following the trend of the conservative case. This result, obtained for the case of uniform flow, is 

notable since it shows that at such early times, even in the case of instantaneous reaction kinetics, 

physical mixing processes clearly dominate the entropy balance. The dilution index trend for a 

reactant reaches a maximum and then starts decreasing when the reactive processes become 

This article is protected by copyright. All rights reserved.
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effective enough to reduce the entropy of the reactive solute until t=tcrit. At that time the reactant is 

completely consumed, its concentration becomes 0 everywhere in the domain, and its dilution index 

becomes unity. Increasing values of D translates the frame parallel to the time axis to the left. This 

means that for the same value of Ecrit, we obtain smaller critical reaction times as D increases. An 

increase in Xcrit translates the frame along the line of the entropy for a conservative solute towards 

lower values of dilution.   

 

Figure 1. Relation between critical reaction time and critical dilution index in the uniform flow case 

for different Xcrit and D values. The applied values of Xcrit are 1×10-9  and 1×10-4 (top and bottom 

curves, respectively) and of D are 1×10-9m2s-1 and 1×10-6m2s-1 (right and left curves, respectively). 

4.2 Shear flow 

The effects of shear flow on plume deformation, conservative and mixing-controlled reactive 

transport have been investigated in a number of recent contributions [e.g., Bolster et al., 2011; 

Paster et al., 2015, Bandopadhyay et al., 2017]. The work of Bolster et al. [2011] has shown that the 

concentration profile in a two-dimensional (i.e., in this case n=2) shear flow computed in a 

Lagrangian framework is also Gaussian. In this case, however, the variance of the Gaussian 
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distribution does not depend only on the local dispersion properties as in the uniform flow case, but 

also on the shear rate α [T-1]: 

൯(ݐ)ࣄ൫ݐ݁݀  = ൬2ܦଵݐ + 23 ଷ൰ݐଶߙଶܦ (ݐଶܦ2) − ଶ(ଶݐଶܦߙ) = ଶݐଶܦଵܦ4 + 13 ସ (21)ݐଶߙଶଶܦ

where D1 [L2T-1] is the dispersion coefficient in the main flow direction and D2 [L2T-1] is the 

dispersion coefficient in the transverse direction. Considering that the critical dilution index is 

constant and independent of the mixing mechanisms, the critical reaction time can be computed as 

follows: 

(௖௥௜௧ݐ)ܧ  = ݁ܺ௖௥௜௧ = ௖௥௜௧ଶݐଶܦଵܦඨ4݁ߨ2 + 13 ௖௥௜௧ସݐଶߙଶଶܦ → ௖௥௜௧ݐ = ඨ−ܾ + √ܾଶ − 4ܽܿ2ܽ  (22)

where a=1, b=12D1/(D2 α2) and c=3/(2πXpeakD2α)2. 

4.3 Complex flow topology 

The impact of flow topology on plume stretching, folding and mixing has been studied at different 

scales in both 2-D and 3-D domains [e.g., Weeks and Sposito, 1998; Sposito, 2001; De Dreuzy et 

al., 2012; Piscopo et al., 2013; Chiogna et al., 2015; Crevacore et al. 2016; Lester et al., 2016]. Here 

we consider the work of de Barros et al., [2012], who investigated the dependence of the dilution 

index on the topology of the flow field in a Lagrangian framework. Despite the complexity of the 

considered two-dimensional flow field, also in that case it is possible to represent the concentration 

as a Gaussian distribution. Notice that, as discussed in de Barros et al. [2012], the validity of their 

solution for the concentration in a moving coordinate system is obtained assuming times smaller 

than the diffusion time scale, while the results for the covariance matrix κ are valid for times 

smaller than the advection time scale. The covariance of the Gaussian plume is given by: 
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൯(ݐ)ࣄ൫ݐ݁݀  = ଺ߠଶܦ4 ሼሾ(ߛଶ + ଶߦ − (ݐߠ)ℎ݊݅ݏ(߱ߦ + (ݐߠ)ℎݏ݋ܿߛߠ
− ߛ)ߠ − ߦ) − ଶߛ)ሿሾ(ݐ߱(߱ + ଶߦ + (ݐߠ)ℎ݊݅ݏ(߱ߦ − +(ݐߠ)ℎݏ݋ܿߛߠ ߛ)ߠ − ߦ) + ሿ(ݐ߱(߱ − ሾ݊݅ݏ߱ߛℎ(ݐߠ) + (ݐߠ)ℎݏ݋ܿߦߠ − ߦ)ߠ +  ሿଶሽ(ݐ߱ߛ

 

(23)

 

where γ is the stretching deformation, ξ is shear deformation, ω is the vorticity and θ is the square 

root of the Okubo-Weiss parameter [Okubo, 1970; Weiss, 1991]. 

Again, the critical dilution index is constant and independent of the mixing properties of the system, 

and reads as:  

(௖௥௜௧ݐ)ܧ  = ݁ܺ௖௥௜௧ = ൯ଵ/ଶ (24)(௖௥௜௧ݐ)ࣄ൫ݐ݁݀(݁ߨ2)

In this case, it is not possible to provide an explicit solution for tcrit, but Equation 23 can substituted 

into Equation 24, which can be solved iteratively for the critical reaction time. 

 

5. Results and discussion 

Figure 2 shows the concentration distribution and plume dilution for the cases of solute transport in 

uniform flow, shear flow and complex flow topology fields. All cases refer to infinite two-

dimensional domains and the results are visualized for a 35 m × 6 m setup (Figure 2). For the cases 

of shear flow (Figure 2C and 2D) and of flow with complex topology (Figure 2E and 2F), we also 

show the results which would be obtained in the limiting case of uniform flow; this allow 

appreciating the effect of mixing enhancement driven by the advective flow field. Table 1 

summarizes the parameters used for the different examples shown in Figure 2. 
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Table 1. Values of the parameters used for the simulations shown in Figure 2. 

Parameter Symbol Value 

Isotropic dispersion coefficient [m2/s] D 1.0×10-9 

Velocity [m/s] v 1.2×10-7 

Shear rate [1/s] α 5.5×10-8 

Stretching deformation [1/s] γ 5.5×10-8 

Shear deformation [1/s] ξ 5.5×10-8 

Vorticity [1/s] ω 8.0×10-8 
 

Figure 2A shows the concentration distribution for a conservative solute transported in a uniform 

flow field for t=tcrit. We set Xcrit=0.5 and we plot, in Figure 2B, the temporal increase of the plume 

dilution. In particular, we observe that at time t=tcrit (vertical black dashed line) the value of the 

dilution index is equal to the value of the critical dilution index (horizontal red dashed line). This 

means that a reactive plume would be completely consumed after a time equal to tcrit (1.6×108 s).  

We consider now two limiting cases [Bolster et al., 2011] for the shear flow example. The 

concentration distribution is shown in Figure 2C for the base case (i.e., rotated ellipsoid obtained 

with α=5.5×10-8 1/s), as well as for a second case, in which the shear rate is set to a very small 

value (i.e., α=1×10-11 1/s), resulting in the same concentration distribution as in the uniform flow 

field. Figure 2D illustrates the temporal evolution of dilution and shows that, in presence of 

significant shearing (α=5.5×10-8 1/s), plume dilution increases faster than in the uniform case. We 

can also observe how the rotation of the plume leads to a significant reduction of the critical 

reaction time (tcrit=9.4×107 s, blue dotted line) in comparison to the uniform flow field case. In fact, 

if α is very small (i.e., α=1×10-11 1/s), the plume vanishes at the same time as in the uniform flow 

field case (vertical black dashed line in Figure 2D). However, both plumes have the same critical 

dilution index, Ecrit (horizontal red dashed line). 
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Similar findings were obtained in the example with complex flow topology. The tilted and 

elongated ellipsoid in Figure 2E corresponds to the plume undergoing stretching, vorticity and shear 

deformation with the parameters listed in Table 1, whereas the second plume was obtained with 

larger values of vorticity (i.e., ω=5×10-4 1/s), while keeping the same stretching and shear 

deformation and approaches the concentration distribution in the uniform flow field. This is due to 

the fact that rapid rotation of the plume indeed prevents its persistent deformation in a preferential 

direction. We can observe that with the chosen set of parameters the conservative tracer reaches a 

peak concentration equal to Xcrit and the dilution reaches its critical value at an earlier critical 

reaction time (tcrit=8×107 s, magenta dashed line in Figure 2F), which is approximately half the 

value for the uniform flow case. In the case of large vorticity in comparison to shear deformation 

and stretching, the critical reaction time approaches the value of the uniform field (black dashed line 

in Figure 2F).  

 

Figure 2. Concentration distribution of a conservative tracer injected in a uniform flow (A), shear 

flow (C) and complex flow topology (E) fields. All plumes are represented at t=tcrit. Panels B, D 

and F show the dilution index and the value of the critical dilution index (horizontal red dashed 

line) reached at different critical reaction times (vertical dashed lines). 

It is also interesting to examine the dependence of the critical reaction time on the critical mixing 

ratio and, thus, on the stoichiometry and initial concentration of the reactants. Decreasing trends of 
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tcrit with increasing Xcrit have been found for all three illustrative examples as shown in Figure 3A 

and 3C.  

To better appreciate the effect of the advective flow field on mixing enhancement, we compute the 

ratio between the critical reaction time for the shear flow and the complex flow topology, 

respectively, and the critical reaction time for the uniform flow field case. We can observe (Figure 

3B and 3D) that the larger the value of Xcrit, the less effective is mixing enhancement driven by the 

advective properties of the flow field (i.e., the ratio between the critical reaction times approaches 

1). This means that the larger the initial concentration of the injected compound A is (with respect 

to the ambient concentration of B), the more effective is mixing enhancement driven by advection. 

Moreover, the ratio between the critical reaction times depends on the parameters of the flow fields: 

it increases with decreasing shear rate in case of shear flow, while it increases with increasing 

vorticity in case of the complex flow field. In fact, the shear flow converges to a uniform flow by 

reducing the shear rate, while the complex flow field converges to the uniform flow field by 

increasing vorticity. 

 

Figure 3. Relation between the critical reaction time and the critical mixing ratio for uniform flow 

(blue line), shear flow (red line, Panel A) and complex flow topology (black line, Panel C). Ratio 

between the critical reaction time in the shear flow field and in the uniform flow field (Panel B), 

and between the critical reaction time in the complex flow field and in the uniform flow field (Panel 

C), as a function of the critical mixing ratio. 
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6. Concluding remarks 

This work has investigated the entropy evolution for mixing-controlled reactive transport. The 

transient entropy density transport equation derived for a reactive species allowed identifying 

dilution terms that provide a positive contribution and act as entropy sources, as well as reactive 

mixing terms that act as sinks in the entropy balance. Despite this work only considered Gaussian 

plumes and instantaneous complete bimolecular reactions, the proposed approach and the transient 

entropy density transport equation can be used to investigate the temporal evolution of the dilution 

for reactive species in different flow fields and in case of more complex reactions (e.g., biologically 

mediated, reversible bimolecular equilibrium reactions etc.). Moreover, quantities like the critical 

dilution index and the critical reaction time have been computed for maxentropic plumes and 

idealized reaction kinetics. We argue, therefore, that they could both represent lower limits for more 

complex situations (i.e., incomplete mixing and incomplete or slow reactions).  

An interesting outcome of the analysis was that, even in the case of instantaneous complete 

bimolecular reaction, dilution processes dominate over reaction at early time. We focused on cases 

in which the solute concentration is Gaussian. Under these conditions, we have shown that it is 

possible to find simple analytical solutions that relate the entropy of conservative and reactive 

plumes with the peak concentrations. Three examples have been selected to illustrate the concepts 

of critical dilution index and critical reaction time. The critical dilution index quantifies the value of 

conservative dilution at which a transient reactant plume is completely consumed. It does not 

depend on mixing processes but only on the dimensionality of the problem and on the stoichiometry 

and initial concentration of the reactants. The newly introduced concept of the entropy-based 

critical reaction time, represents the time at which the critical value of dilution is reached and the 

reactant plume vanishes. Both the critical reaction time and the critical dilution index have been 

computed analytically only for Gaussian plumes. The applicability of these concepts to non-

Gaussian plumes has still to be tested. Moreover, the effects of incomplete mixing and spatial 
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fluctuations in concentration fields on reactive solute transport [e.g., Tartakovsky et al., 2012; 

Chiogna and Bellin 2013] have not been explicitly considered in this work, but deserve future 

investigation.  

The analysis provided in this study offers interesting insights for the characterization of dilution and 

its interaction with reactive processes in different geophysical flows. Besides the simple analytical 

cases illustrated in this study, the analysis of the critical dilution index and the critical reaction time 

can be applied for mixing-controlled reactive transport in numerical simulation in complex two-

dimensional and three-dimensional flow fields. Interesting outcomes, shading light on the interplay 

between mixing and reactions, are envisioned for mixing-controlled reactive transport in different 

heterogeneous and anisotropic media, for Fickian and anomalous transport.  
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