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Abstract

For complex diseases, the relationship between genotypes, environment factors and phenotype is
usually complex and nonlinear. Our understanding of the genetic architecture of diseases has
considerably increased over the last years. However, both conceptually and methodologically,
detecting gene-gene and gene-environment interactions remains a challenge, despite the existence
of a number of efficient methods. One method that offers great promises but has not yet been
widely applied to genomic data is the entropy-based approach of information theory. In this paper
we first develop entropy-based test statistics to identify 2-way and higher order gene-gene and
gene-environment interactions. We then apply these methods to a bladder cancer data set and
thereby test their power and identify strengths and weaknesses. For two-way interactions, we
propose an information-gain approach based on mutual information. For three-ways and higher
order interactions, an interaction-information-gain approach is used. In both case we develop one-
dimensional test statistics to analyze sparse data. Compared to the naive chi-square test, the test
statistics we develop have similar or higher power and is robust. Applying it to the bladder cancer
data set allowed to investigate the complex interactions between DNA repair gene SNPs, smoking
status, and bladder cancer susceptibility. Although not yet widely applied, entropy-based
approaches appear as a useful tool for detecting gene-gene and gene-environment interactions. The
test statistics we develop add to a growing body methodologies that will gradually shed light on
the complex architecture of common diseases.
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Introduction

Complex diseases result from mutual interactions between genetic variants and
environmental factors and our understanding of their genetic architecture has considerably
grown over the last decades. In recent years, there has been great enthusiasm to detect and to
characterize gene-gene and gene-environment interactions of complex diseases using
genome data [Mahdi et al., 2009; Moore and Williams, 2009; van-der-Woude et al., 2010;
Wan et al., 2010; Zhang and Liu, 2007]. However, despite considerable effort, identifying
and characterizing susceptibility genes of common complex human diseases and their
network of interactions remains a great challenge. The challenge is both conceptual and
technical: conceptually, it is not always clear how to define the interactions. There are two
different arguments about gene-gene and gene-environment interactions: (1) statistical
interaction, (2) biological interaction. Technically, traditional statistical approaches may not
be useful because of the complexity and nonlinearity between complex traits and genetic,
environment factors.

In traditional statistical models, i.e., linear models and generalized linear models such as
logistic regressions, the genetic and environmental effects are decomposed into main and
interaction effects [Fisher, 1918]. The statistical interactions are deviations from the main
effects and don’t make sense unless the main effect is significant. Moreover, the traditional
statistical models may not work for high dimension sparse data. For instance, logistic
regression models including interaction terms can fail to converge when some cells contain
few individuals [Andrew et al., 2006]. Yet, one advantage of traditional statistical models is
that the related theory is very mature and user-friendly softwares are available. For instance,
variance partitioning and ANOVA are standard procedure in SAS for data analysis and
model selection.

Biological interactions, on the other hand, happen at the cellular level and result from
physical interactions between biomolecules such as DNA, RNA and proteins [Moore and
Willams, 2009; Bateson, 1909; Bateson, 2002]. The biological gene-gene and gene-
environment interaction is the interdependence between genetic and environmental factors
and may cause complex diseases. In complex diseases, the relationship between genotypes,
environmental factors and disease phenotypes is usually complex and nonlinear. Thus,
biological interaction makes sense and it is valid in describing the complicated relation
between genetic, environmental factors and disease phenotypes. In the absence of main
effects, the biological gene-gene and gene-environment interactions may exist and can be
important [Frankel and Schork, 1996]. However, the related theory to detect and to
characterize the biological gene-gene and gene-environment interactions is not well-
developed. There is a need to develop powerful methods and user-friendly softwares to
identify and to interpret the complex genetic architecture of complex traits.

By using multiple genetic markers and environmental factors in analysis, it is usually a high-
dimensional problem. For instance, assume we have two single nucleotide polymorphism
(SNP) markers. Each of the two SNP has 3 genotypes, and then there are 9 genotype
combinations if we consider the two SNPs simultaneously. If we add one environmental
factor which has 2 categories, e.g., smoking vs non-smoking, there are 2 × 9 = 18 genotype-
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environment combinations if we consider the two SNPs and the environmental factor
simultaneously. Hence, one needs to handle the high-dimensional data.

In the multifactor dimensionality reduction (MDR) procedure, high dimensional genetic data
are collapsed into a single dimensional variable allowing for such data to be analyzed [Hahn
et al., 2003; Lou et al., 2007; Ritchie et al., 2001, 2003a, 2003b, 2004; Velez et al., 2007].
MDR is a non-parametric procedure that makes no assumption about the relationship
between the phenotypes, the genetic, and the environmental factors. Since there was no
alternative and powerful procedure, Andrew et al. [2006] ran logistic regression models to
test three way interaction to replicate the findings of MDR. Unfortunately, the logistic
regression models failed to converge due to the sparse nature of bladder cancer data. Thus, it
is not only interesting but also necessary and important to develop novel statistical methods
to detect and to characterize the complex biological gene-gene and gene-environment
interactions of complex traits.

The traditional statistical models can not properly fit the nonlinear relationship between
genotypes, environment factors and disease phenotypes in the absence of main effects. It
may not be able and useful to model biological interactions. For the bladder cancer data of
Andrew et al. [2006], the main effects of genetic polymorphisms were not observed and it is
unclear if logistic regressions may fit the data well. The failure of convergence may be due
to invalidness of the logistic regression model itself.

It is well-known that information theory based on entropy function is widely used to study
nonlinear problems and complex system. The entropy function is a nonlinear transformation
of interested variables. The entropy is commonly used in information theory to measure the
uncertainty of random variables. The entropy-based approach is likely to be very useful to
study the nonlinear relationship between genotypes, environment factors and phenotypes
and to interpret the gene-gene and gene-environment interactions of complex diseases [Dong
et al., 2008; Kang et al., 2008; Nothnagel et al., 2002]. In this article, we develop entropy-
based approaches to detect and to characterize gene-gene and gene-environment interactions
of complex diseases.

We start with the definition of entropy for genetic markers and environmental factors. Then,
2-way mutual information and information gain (IG) are introduced to describe gene-gene
and gene-environment interactions. One idea of this article is to reduce high dimensional
data to be a one-dimensional variable, and then to construct a χ2-distribution statistic to test
gene-gene interaction of complex diseases. We considered two di-allelic markers A and B in
a case-control design. By using the information gain function, we reduce the 9-dimensional
genotype combinations of the two markers to be a one-dimensional variable to construct the
information gain based test TIG. The method can be applied to test 2-way gene-environment
interaction by treating the levels of environment factor as genotypes of a marker, i.e., one
marker is replaced by the environment factor.

To generalize the 2-way methods to handle multiple K-way cases, K ≥ 3, we need to
distinguish two different concepts in information theory: interaction information and total
correlation information (TCI). In 2-way case, the two concepts are the same. However, they
are different in multiple K-way cases, K ≥ 3. Roughly, the interaction information among
multiple factors is the amount of information that is common to all the factors. The total
correlation information, however, describes the total amount of dependence among all the
factors. The K-way total correlation information can be decomposed into a summation of all
lower and same order k-way interaction information, 2 ≤ k ≤ K [Jakulin, 2005].

We generalize the 2-way methods to detect and to characterize multiple K-way gene-gene
and gene-environment interactions and correlations, K ≥ 3. For multiple K-way interactions,
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the K-way interaction information is proposed to extend the 2-way mutual information. For
multiple K-way correlations, total correlation information is used. Correspondingly, the
interaction information gain (IIG) and total correlation information gain (TCIG) can be
defined as one-dimensional variables for case-control data. Thus, high-dimensional genetic
data are collapsed as one-dimension variables via the information gains. Using the one-

dimensional variables, test statistics are constructed which are -distributed. Compared
with the naive χ2 test statistics which usually have high degrees of freedom, the proposed
information gain tests are easy to implement. In addition, the naive χ2 tests are not always
implementable due to sparse nature of high dimension genetic data.

Simulation study is performed to evaluate the robustness of the proposed test statistics by
type I error rate calculations. Power analysis is carried out to show the usefulness of the
proposed methods. The method is applied to bladder cancer data to explore gene-gene and
gene-environment interactions and correlations of SNPs and smoking status with the
disease. We use the bladder cancer data to show a forward selection procedure for the final
model selection, and the procedure can be applied to the study of other complex traits.

Methods

In information theory, entropy measures the uncertainty associated with a random variable
or a random system [Shannon, 1948]. The entropy H(X) of a discrete random variable X is
defined by

(1)

where p(x) = P(X = x), x ∈ , is the probability mass function of the random variable X,
and  is a finite set (e.g., {1, 2, ···, n}) or an enumerable infinite set (e.g., {1, 2, ···}) [Cover
and Thomas, 2006]. The log is to the base 2. By definition, 0 log 0 = 0. The higher the
entropy H(X), the the higher the uncertainty we may predict the outcome about the variable
X. The concept of the Shannon entropy has been used to select interesting combinations of
polymorphisms for evaluating and for visualizing the information gain, which in turn allows
for the detection of gene-gene and gene-environment interactions [Jakulin, 2005; Jakulin
and Bratko, 2003, 2004; Jakulin et al., 2003; Moore et al., 2006; Wu et al., 2009].

Genotype and Environment-Based Entropy

For a case-control study design, we denote the disease status of an individual by D, and
attribute the value D = 0 to healthy individuals (control) and the value D = 1 to affected ones
(case). For explanation purposes, let us consider two di-allelic markers A and B (e.g., SNPs)
and an environmental exposure E. Let us denote the alleles of markers A and B by A, a and
B, b, respectively, and code the environmental factor E as E = 0, 1, 2 (e.g., non smoking, <
35 pack years, ≥ 35 pack years). There are three genotypes at marker A (AA, Aa, aa) and
three genotypes at marker B (BB, Bb, bb). For convenience, we call each of the genotypes
GA at marker A and GB at marker B by the number of A and B alleles present. That is,

(2)

In the literature, genetic markers and environmental factors are treated as attributes [Jakulin
and Bratko, 2003; Jakulin et al., 2003]. Using the entropy definition (1), we can define the
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entropy H(A) of marker A in the general population and the conditional entropy H(A|D) in
the affected population as

(3)

Similarly, we may define the entropy H(B) of marker B in the general population and the
conditional entropy H(B|D) in the affected population. For the environmental factor E, its
entropy H(E) in the general population and its conditional entropy H(E|D) in the affected
population can be defined, accordingly. When the markers A and B are combined, the
entropy H(A, B) in the general population and the conditional entropy H(A, B|D) in the
affected population are:

(4)

Similarly, when one marker (e.g., A) and the environmental factor E are combined, the
entropy H(A, E) in the general population and the conditional entropy H(A, E|D) in the
affected population are:

(5)

The entropy H(B, E) in the general population and the conditional entropy H(B, E|D) in the
affected population can be defined in a similar manner. When both markers and the
environmental factor are combined, the entropy H(A, B, E) in the general population and the
conditional entropy H(A, B, E|D) in the affected population are:

(6)

2-Way Mutual Information and Information Gain

The mutual information measures the interaction between two markers. In the general
population, the mutual information of markers A and B, I(A, B), is defined as [Shannon,
1948; Cover and Thomas, 2006]

(7)
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For the two markers A and B, I(A, B) ≥ 0, and I(A, B) = 0 if and only if GA and GB are
independent (i.e., P(GA = i, GB = j) = P(GA = i)P(GB = j), p28 of Cover and Thomas
[2006]).

Figure 1a) shows an I-diagram of H(A), H(B) and I(A, B), and it is equivalent to a Venn
diagram in set theory [Chanda et al., 2007; McGill, 1954; Yeung, 1991]. The left and right
rectangles illustrate the magnitude of H(A) and H(B), respectively, and their overlap,
colored in black, corresponds to the magnitude of the I(A, B). In the affected population, the
mutual information of markers A and B is defined as

(8)

I(A, B|D) measures the interaction between markers A and B given the disease. For the two
markers A and B, I(A, B|D) ≥ 0, and I(A, B|D) = 0 if and only if GA and GB are
conditionally independent given the disease (i.e., P(GA = i, GB = j|D = 1) = P(GA = i|D =
1)P(GB = j|D = 1)).

The information gain of markers A and B in the presence of a disease can be defined as the
difference between the mutual information in the affected population and that in the general
population [Jakulin and Bratko, 2003, 2004; Jakulin et al., 2003; McGill, 1954; Moore et al.,
2006]

(9)

If the disease and the two markers are independent (i.e., P(GA = i, GB = j|D = 1) = P(GA = i,
GB = j)), then I(A, B|D) = I(A, B) and the information gain IG(AB|D) is equal to 0. In that
case, the interaction between markers A and B does not contribute to predicting disease risk.
Hence, we can determine whether the gene-gene interaction between markers A and B
predicts disease status by testing if the difference between estimates of mutual information is
zero. Based on this rationale, we can build test statistics for practical applications.

For marker A or B and environmental factor E, the mutual information and the conditional
mutual information can be defined as above. The information gain of marker A and
environmental factor E in the presence of a disease can be defined as the difference IG(AE|
D) = I(A, E|D) − I(A, E). If the information gain is null, i.e., IG(AE|D = 0), the marker A
and the environmental factor E are independent of the disease status and the interaction
between A and E does not predict disease status. Likewise, if the marker B and the
environmental factor E are independent of the disease status D, then there is no information
gain (i.e., IG(BE|D) = I(B, E|D)−I(B, E) = 0) and the interaction between B and E does not
predict disease status.

3-Way Interaction Information and Total Correlation Information

The information gains IG(AB|D), IG(AE|D), and IG(BE|D) represent 2-way interaction
gains of two attributes given a disease. If we consider the three attributes A, B and E
simultaneously, we can define the 3-way interaction information gain and the total
correlation information as follows [Chanda et al., 2007; Han, 1980; McGill, 1954;
Watanabe, 1960; Yeung, 1991]. In the general population, the 3-way interaction information
of markers A and B and environmental factor E is defined as [Cover and Thomas, 2006,
p49].
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The 3-way interaction information I(A, B, E) contains interactions that can not be explained
by the 2-way mutual information I(A, B), I(A, E), and I(B, E). It represents the gain or loss
of information by adding one attribute to a pair of attributes. Hence, the 3-way interaction
information among attributes A, B and E can be understood as the amount of information
that is common to all the attributes, but not present in any subset. The interaction
information can be negative or positive.

Figure 1b) shows an I-diagram of H(A), H(B), H(E), and I(A, B, E) for two markers A and
B and an environmental factor E [Chanda et al., 2007; McGill, 1954; Yeung-1991]. In
Figure 1b), the black region corresponds to the magnitude of the I(A, B, E). Compared to
Figure 1a), Figure 1b) includes an additional rectangle corresponding to the magnitude of
H(E). If one attribute (e.g., the environmental factor E) is independent of two dependent
attributes (e.g., the markers A and B), the interaction information I(A, B, E) will be 0. This
is because P(GA = i, GB = j, E = e) = P(GA = i, GB = j)P(E = e) implies P(GA = i, E = e) =
P(GA = i)P(E = e) and P(GB = j, E = e) = P(GB = j)P(E = e), and thus I(A, B, E) = 0. If all
three attributes are independent, the interaction information I(A, B, E) is of course equal to
0. Hence, I(A, B, E) is an interaction among all three attributes.

The total correlation information is defined as the difference between the joint entropy H(A,
B, E) and the three individual entropies H(A), H(B) and H(E), i.e.,

(10)

The total correlation information describes the total amount of dependence among the three
attributes A, B and E. It is always positive, or zero if and only if all the three attributes are
independent, i.e., P(GA = i, GB = j, E = e) = P(GA = i)P(GB = j)P(E = e). It will be different
from zero even if only one pair of attributes are dependent. For instance, it is non-zero if the
genetic markers A and B are independent of the environmental factor E but A and B are
dependent or in linkage disequilibrium. Figure 1c) shows an I-diagram of H(A), H(B), H(E),
and TCI(A, B, E) for two markers A and B and an environmental factor E [Chanda et al.,
2007; McGill, 1954; Yeung-1991].

The second equality of relation (10) shows that the total correlation information TCI(A, B,
E) is equal to the summation of all 2-way mutual information I(A, B), I(A, E), I(B, E), and
3-way interaction information I(A, B, E). Thus, the 2-way mutual information and the 3-way
interaction information can be seen as a decomposition of a 3-way dependency into a sum of
2-way and 3-way interactions [Jakulin, 2005]. The existence of 3-way correlations (i.e.,
TCI(A, B, E) ≠ 0)) indicates the existence of some 2-way or 3-way interactions. On the other
hand, the existence of 2-way or 3-way interactions can lead to 3-way correlations.

In the disease population, the 3-way interaction information I(A, B, E|D) and total
correlation information TCI(A, B, E|D) of markers A and B and environmental factor E are
defined as

Fan et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2012 November 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The interaction information gain IIG(ABE|D) and the total correlation information gain
TCIG(ABE|D) of markers A and B and environmental factor E in the presence of a disease
can be defined as the differences [Jakulin and Bratko, 2003, 2004; Jakulin et al., 2003;
McGill, 1954; Moore et al., 2006]

(11)

If the disease is independent of the two markers and the environmental factor E, I(A, B, E|D)
= I(A, B, E) and the information gain IIG(ABE|D) is equal to 0. Similarly, TCI(A, B, E|D) =
TCI(A, B, E) and the total correlation information gain TCIG(ABE|D) is equal to 0. Hence,
we can test for the existence of gene-gene and gene-environment interactions or correlations
between the disease and two markers A and B and the environmental factor E by testing if
IIG(ABE|D) and TCIG(ABE|D) are zero. Based on this rationale, we can build test statistics
for practical applications.

K-Way Interaction Information and Total Correlation Information

Suppose that we are interested in interactions or correlations between the disease and an
arbitrary number K of attributes  = (A1, ···, AK), which can be genetic markers or
environmental factors. For simplicity, we assume that each Ai can take three values 0, 1, or
2. For a vector of realization a⃗ = (a1, ···, aK) of  = (A1, ···, AK), we denote the joint
probabilities as Pa ⃗= P(A1 = a1, ···, AK = aK) = Pa1···aK in the general population and as Qa⃗ =
P(A1 = a1, ···, AK = aK|D = 1) = Qa1···aK in the affected population. Based on the joint
probabilities, we can define the entropies H( ) = H(A1, ···, AK) = −Σa ⃗ Pa⃗log Pa⃗ and H(  |
D) = H(A1, ···, AK | D) = −Σa⃗ Qa⃗ log Qa⃗.

For a subset  = (Ai1, Ai2, ···, Ain) ⊆  = (A1, A2, ···, AK), we can define the related
entropies H( ) and H(  | D) in a similar manner. Here ⊆ means that  is a subset of  and
it can be equal to  = (A1, A2, ···, AK). For a realization s⃗ of  = (Ai1, Ai2, ···, Ain), the
marginal probabilities are denoted as Ps⃗ and Qs.⃗ For individual attributes A1, ···, AK, the
marginal probabilities and entropies are denoted as Pa1, ···, ·, ···, P·,···,aK, H(A1), ···, H(AK),
Qa1,···,·, ···, Q·,···,aK, H(A1 | D), ···, and H(AK | D). For a subset , let us denote | | = |(Ai1,
Ai2, ···, Ain)| = n, i.e., the number of attributes of . The K-way interaction information can
be defined as [McGill, 1954; Han, 1980; Yeung, 1991]

The K-way interaction information gain is defined as IIG(  | D) = I(  | D) − I( ).

In the general population, the K-way total correlation information is defined as the
difference between the summation of the individual entropies H(A1), ···, H(AK) and the joint
entropy H( ) [Jakulin, 2005; Watanabe, 1960; Chanda et al., 2007], i.e.,

(12)
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The total correlation information TCI( ) is the total amount of dependence among all the
attributes  = (A1, ···, AK). As the second equality in relation (12) shows, the total
correlation information TCI( ) is equal to the summation of all interaction information
I( ) including 2-way mutual information,  ⊆ . Thus, the interaction information can be
seen as a decomposition of a K-way dependency into a sum of k-way interactions, k ≤ K
[Jakulin, 2005]. The existence of K-way correlations indicates the existence of some k-way
interactions, k ≤ K. On the other hand, the existence of low order k-way interactions can
lead to high order K-way correlations.

In the affected population, the K-way total correlation information is defined as the
difference between the summation of the individual entropies H(A1 | D), ···, H(AK | D)) and
the joint entropy H(  | D)), i.e.,

The K-way total correlation information gain is defined as TCIG(  | D) = TCI(  | D) −
TCI( ). If the disease is independent of the attributes, the interaction information gain
IIG(  | D) is equal to 0 and similarly, the total correlation information gain TCIG(  | D) is
equal to 0. The test statistics can be built accordingly to test the interaction or correlation
between the disease and the attributes  = (A1, A2, ···, AK).

Test Statistics Based on the 2-Way Mutual Information Gain

Based on the above discussion about 2-way mutual information and information gain, we
can construct test statistics to detect gene-gene and gene-environment interactions. In what
follows, we discuss only the construction of a test statistic to detect a gene-gene interaction
between markers A and B. The same procedure can be applied to construct a test statistic to
detect a gene-environment interaction between marker A (or B) and environmental factor E.

Consider a case-control design with M controls from an unaffected population and N cases
from an affected population. Assume that each individual in the sample is typed at both
markers A and B. Let us denote by Xij the count of controls whose genotypes are (GA = i,
GB = j), and by Yij he count of cases whose genotypes are (GA = i, GB = j), i, j = 0, 1, 2. The
test statistics can be built based on the column vectors X = (X00, X01, X02, X10, X11, X12,
X20, X21)τ and Y = (Y00, Y01, Y02, Y10, Y11, Y12, Y20, Y21)τ. Hereafter, the superscript τ
denotes the transpose of a vector or a matrix. To remove redundancies, X22 is not included
in X, and Y22 is not included in Y. Before defining our test statistics, let us introduce some
notations.

In the general population, we denote the joint genotype probabilities for markers A and B by
Pij = P(GA = i, GB = j). For the affected population, we denote the joint conditional genotype
probabilities for markers A and B by Qij = P(GA = i, GB = j|D = 1). One can see that Pij and
Qij both sum to 1 and that some parameters are redundant. Let us denote P = (P00, P01, P02,
P10, P11, P12, P20, P21)τ and Q = (Q00, Q01, Q02, Q10, Q11, Q12, Q20, Q21)τ. Both the column

counting vector  and the column counting vector  follow a multinomial
distribution. The mean vectors of X and Y are MP and NQ, respectively, and the variance-
covariance matrix of X and Y are M[diag (P) − PPτ] and N[diag (Q) − QQτ], respectively.
In the following, let us denote Σ = diag (P) − PPτ and ΣD = diag (Q) − QQτ.

The sample mean X̄ = X/M serves as the estimate of P and the sample mean Ȳ = Y/N serves
as the estimate of Q. Assume that the sample sizes M and N are large enough that the large
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sample theory applies. By the multivariate central limit theorem of large sample theory,

 can be approximated by a multivariate normal distribution with a zero mean
vector and a variance-covariance matrix Σ [Lehmann, 1983, Theorem 5.1.8, p343].

Similarly,  can be approximated by a multivariate normal distribution with a zero
mean vector and a variance-covariance matrix ΣD.

Now, let us define

where  and . Let

 and . Then, the information gain can
be expressed as

We denote the partial derivatives of functions f and g as  and , which are column vectors.

The elements of  and  are given in the Appendix A as

(13)

We further denote .

We denote the estimate of Pij as Pîj = Xij/M and the estimate of Qij as Q̂ij = Yij/N. Similarly,

we denote the estimates of other parameters as , etc. Then, the estimates f̂, Λ̂,
and ĝ of f, Λ, and g can be calculated by replacing Pij and Qij using P̂ij and Q̂ij.

Based on the large sample theory,  tends to a normal distribution with a zero

mean and a variance . Similarly,  tends to a normal distribution with a

zero mean and a variance  [Lehmann, 1983, Theorem 2.5.3, p112]. Note that f =
I(A, B) = I(A, B|D) = g under the null hypothesis of independence between the disease and
the two markers A and B, and so ĝ − f ̂= (ĝ − g) − (f ̂− f) tends to a normal distribution with
a zero mean and a variance Λ. With these discussions in mind, the statistical tests can be
constructed as
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(14)

The test TIG is based on the information gain IG(AB | D). The test T is a naive χ2-
distributed statistic, which is based on the 2 by 8 contingency table to compare the counts of
case and controls for genotype combinations of markers A and B. Under the null hypothesis

that the two markers are independent of the disease, the test TIG is centrally -distributed

with 1 degree of freedom and the test T is centrally -distributed with 8 degrees of
freedom. Under the alternative hypothesis that the disease and the two markers are not

independent, the test TIG is non-centrally -distributed with a non-centrality parameter λIG

= (g − f)2/Λ and the test T is non-centrally -distributed with a non-centrality parameter

.

The statistics TIG and T are overall test statistics to test the association between the markers
A and B and the disease. If the markers are associated with the disease (i.e., the markers are
not independent of the disease), we need to know which genotypes are associated with the
disease. For genotype (GA = i, GB = j), we can test if it is associated with the disease using
one of the two following tests

(15)

where Λ̂ij is the estimate of Λij and  is the estimate of Var(Pîj − Q̂ij). The

estimates Λ̂ij and  are given by

The test Tij compares the difference Pîj − Q̂ij of the proportions of cases and controls with
genotype (GA = i, GB = j), and the test TE,ij is based on the difference fîj − ĝij. If genotype
(GA = i, GB = j) is strongly associated with the disease, the differences Pîj − Q̂ij and fîj − ĝij
tend to be different from 0 and significant results are likely to be found using the tests Tij
and/or TE,ij.

Under the null hypothesis that the disease and the genotype (GA = i, GB = j) are

independent, the test TE,ij and Tij are centrally -distributed. Under the alternative
hypothesis that the disease and the genotype (GA = i, GB = j) are not independent, the test

TE,ij and Tij are non-centrally -distributed with non-centrality parameters λE,ij = (gij −
fij)2/Λij and λij = (Pij − Qij)2/Var(Pîj − Q̂ij), respectively.
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Test Statistics Based on the 3-Way Interaction Information Gain and Total Correlation
Information Gain

Again, consider a case-control design with M controls from an unaffected population and N
cases from an affected population. Let us denote by Xije the count of controls whose
genotypes are (GA = i, GB = j, E = e) and by Yije the count of cases whose genotypes are
(GA = i, GB = j, E = e), i, j, e = 0, 1, 2. The test statistics can be built based on two column
vectors X and Y, where X includes all Xije except X222, and Y includes all Yije except Y222
to remove the redundancy.

In the general population, we denote the joint genotype probabilities for markers A and B
and environmental factor E by Pije = P(GA = i, GB = j, E = e). In the affected population, we
denote the joint conditional genotype probabilities by Qije = P(GA = i, GB = j, E = e|D = 1).
Let us denote a column vector P which includes all Pije except P222 and we denote a column

vector Q which includes all Qije except Q222. The column counting vectors  and

 follow the multinomial distributions  and , respectively.
The mean vector of X̄ = X/M is P and that of Ȳ = Y/N is Q. The variance-covariance
matrices of X and Y are MΣ and NΣD, respectively, where Σ = diag (P) − PPτ and ΣD = diag
(Q) − QQτ. As before, we assume that the sample sizes M and N are large enough for the

large sample theory to apply. Based on the multivariate central limit theorem, 

and  tend to a multivariate normal distribution with a zero mean vector and
variance-covariance matrices Σ and ΣD, respectively [Lehmann 1983, Theorem 5.1.8, p343].

Denote . Similarly, Qi··, Q·j·,
and Q··e can be defined in a similar manner. Now, let us define

If  and , the
total correlation information gain can be expressed as

We denote the partial derivatives of functions f and g as  and , which are column vectors.

The elements of  and  are given in the Supplementary Materials Appendix A as

(16)

Here, .
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To build a 3-way interaction information gain based test statistic, we denote

; and we define Qij·, Q·je and Qi·e in a similar
manner. Let us define

If  and , the 3-way
interaction information gain of markers A and B and environmental factor E can be
expressed as

We denote the partial derivatives of functions h and ℓ as  and , which are column vectors.
The elements of  and  are given in the Supplementary Materials Appendix B as

(17)

Here, .

We denote the estimate of Pije and Qije as Pîje = Xije/M and Q̂ije = Yije/N, respectively.

Similarly, we denote the estimates of other parameters as , etc. Then, the
estimates f,̂ ĝ, ĥ, ℓ̂, Λ̂, and Γ̂ of f, g, h, ℓ, Λ, and Γ can be calculated by replacing Pije and Qije
using Pîje and Q̂ije. The statistical tests to test the correlations and interactions between
markers A and B, environmental factor E and the disease can be constructed by

(18)

The test TTCIG is based on the total correlation information gain TCIG(ABE|D) and can be
used to test for the existence of 3-way correlations. The test TIIG, on the other hand, is based
on the 3-way interaction information gain IIG(ABE|D) and can be used to test for the
existence of 3-way interactions. Under the null hypothesis that the two markers A and B,
and the environmental factor E are independent of the disease, the test statistics TTCIG and

TIIG are centrally -distributed. Under the alternative hypothesis that the two markers and
the environmental factor are not independent of the disease, the test statistics TTCIG and TIIG

are non-centrally -distributed with non-centrality parameters λTCIG = (g − f)2/Λ and λIIG
= (h − ℓ)2/Γ, respectively.
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Test Statistics Based on the K-Way Interaction Information Gain and Total Correlation
Information Gain

Given a case-control sample with M controls and N cases, we are going to construct test
statistics to test K-way interactions between K attributes A1, ···, AK. Hereafter, |s⃗| is the
number of elements in a vector s.⃗ The approach is similar to the one we used for lower-order
interactions. Let us denote

where  is the product of all individual marginal
probabilities of A1, ···, AK in the affected population and

 is the product of all individual marginal
probabilities of A1, ···, AK in the general population. We denote the partial derivatives of

functions f and g as  and , which are column vectors. The elements of  and  are given
as

(19)

which can be proven along the vein of relation (16) in Supplementary Materials Appendix

C. We define , where P is a column vector including all
Pa1···aK except P2···2, Σ = diag (P)−PPτ, Q is a column vector including all Qa1···aK except
Q2···2, and ΣD = diag (Q) −QQτ.

Similarly, let us denote
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where |(a1, ···, aK)\s⃗|mod(2) = 0 means that the subset (a1, ···, aK)\s ⃗contains an even number
of elements, and |(a1, ···, aK)\s⃗|mod(2) = 1 means that the subset (a1, ···, aK)\s⃗ contains an odd

number of elements. Moreover, the product  does not
contain Qa1,···,aK since s ⃗⊂ (a1, ···, aK) means that s⃗ is a real subset of (a1, ···, aK) [i.e., s⃗ ≠
(a1, ···, aK)]. The same logic applies to the other products. We denote the partial derivatives
of functions ℓ and h as  and , which are column vectors. The elements of  and  are
given as

(20)

which can be proven along the vein of relation (17) in Supplementary Materials Appendix

C. Here, . To test for the existence of K-way interactions

and correlations between the disease and the attributes A1, ···, AK, the -distributed test
statistics can be constructed as TTCIG = (ĝ − f)̂2/Λ̂ and TIIG = (ĥ − ℓ̂)2/Γ̂, respectively.

Association Test Statistics based on 1-way Entropy Loss

Suppose that we are interested in testing for the existence of an association between an
attribute and a disease in a case-control study. The entropy of the attribute can be used as the
basis to construct test statistics. The attribute here can be a single marker or an environment
factor. In addition, if two or more markers are in strong linkage disequilibrium and their
haplotype data are available, the haplotype data can be treated as an attribute. Here we use
marker A as the attribute. It is well-known that the entropy is maximized when a system
reaches its equilibrium state. In the one locus case, the equilibrium state refers to the Hardy-
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Weinberg equilibrium. Since the assumption of Hardy-Weinberg equilibrium is likely to be
true in the general population, the entropy H(A) can reach the maximum. In the affected
population, the assumption of Hardy-Weinberg equilibrium may not be true and the
conditional entropy H(A|D) may decrease. The entropy loss of marker A in the presence of a
disease can be defined as follows:

(21)

If the disease and marker A are independent, H(A|D) = H(A). Then the entropy loss EL(A|
D) is equal to 0. Hence, we can test for the existence of an association between marker A
and a disease by testing if the entropy loss is zero. Based on this rationale, we can build test
statistics for practical applications.

In the general population, we denote the genotype probabilities for marker A by Pi = P(GA =
i). In the affected population, we denote the conditional genotype probabilities for marker A
by Qi = P(GA = i|D = 1). Here P = (P0, P1)τ, and Q = (Q0, Q1)τ. The entropy loss can be
expressed as

We denote the partial derivatives of the entropy functions H(A) and H(A|D) as the column

vectors  and . We can show that the elements of  and  are given by

(22)

For a case-control design with M controls and N cases, let us denote by Xi the count of
controls whose genotypes are (GA = i) and by Yi the count of cases whose genotypes are
(GA = i), i, = 0, 1, 2. We denote the estimates of Pi and Qi as Pî = Xi/M and Q̂i = Yi/N. Then,
the estimates Ĥ(A), Ω̂, and Ĥ (A|D) of H(A), Ω, and H(A|D) can be calculated by replacing

Pi and Qi using Pî and Q̂i. Here , where Σ = diag
(P) − PPτ and ΣD = diag (Q) − QQτ. The entropy loss-based statistics to test for the
existence of an association between marker A and a disease can be constructed by

Under the null hypothesis, TEL is centrally -distributed. Under the alternative hypothesis,

TEL is non-centrally -distributed with a non-centrality parameter λEL = (H(A) − H(A|
D))2/Ω.

Results

In this section, we apply the proposed methods to the bladder cancer data of Andrew et al.
[2006] to search for interactions between the disease and the genetic variants and smoking
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factor. Then, we investigate the robustness of the proposed test statistics by type I error rate
calculation, using the joint genotype frequencies of the bladder cancer data. We perform
power analysis using the analytical non-centrality parameters of 2-way tests under a few
interaction models taken from the literature [Moore et al., 2002; Ritchie et al., 2003a].

Application to Bladder Cancer Data

The bladder cancer data of Andrew et al. [2006] consists of 355 cases and 559 controls. The
genotype data of 7 SNPs are available, i.e., three SNPs (APE1 148, XRCC1 399, and
XRCC1 194) belong to the BER pathway, one (XRCC3 241) belongs to the DSB pathway,
and the remaining three (XPC PAT, XPD 751, and XPD 312) belong to the NER pathway.
In addition to the bladder cancer status, the following information about each individual is
also available: gender, age, and smoking status given in pack years (e.g., non smoking, < 35
pack years, ≥ 35 pack years).

In the MDR analysis of Andrew et al. [2006], the combination of XPD 751 and XPD 312
was the best two-factor model, which was confirmed by the interaction dendrogram and
logistic regression analysis. The three-factor model added Pack-years of smoking to XPD
751 and XPD 312 was the most accurate model, which however was not confirmed by the
interaction dendrogram or logistic regression analysis (the logistic regression model failed to
converge).

We applied the proposed methods to the bladder cancer data of Andrew et al. [2006], and
the results are presented in Table 1. For 2-way interaction, we confirmed the result of
Andrew et al. [2006]. The combination of XPD 751 and XPD 312 was the only significant
SNP combination detected by our 2-way mutual information gain test statistic (TIG = 51.62,
p-value = 6.75e-13), and none of the rest two-factor combinations provided significant result
by TIG. By adding each of the remaining 5 SNPs and Pack years, the 3-way total correlation
information gain test statistic TTCIG provided a significant result (p-value ≤ 2.67e-9).
However, the 3-way interaction information gain test statistic TIIG provided no significant
result for any of the three-factor combinations of XPD 751, XPD 312, and one for the
remaining 5 SNPs and Pack years (p-value ≥ 0.23).

The only significant result provided by the 3-way interaction information gain test statistic
TIIG at 5% significance level came from the combination of XRCC1 399, XRCC1 194, and
XRCC3 241 (TIIG = 4.25, p-value = 0.04). However, the result was hardly significant when
we adjusted for multiple comparisons, using the Bonferroni procedure for example, which
suggested that there is no 3-way interaction combination based on our analysis. The very
significant results provided by the 3-way total correlation information gain test statistic
TTCIG (Table 1) were most likely due to the 2-way combination of XPD 751 and XPD 312.

Type I Error Rates

Using the joint SNP genotype frequencies of bladder cancer data, we performed simulations
to evaluate the type I error rates of 2-way information gain based test statistic TIG and 3-way
test statistics TIIG and TTCIG, and the results are presented in Table 2. Each empirical type I
error rate in Table 2 was calculated based on 100,000 simulations. That is, we simulated
100,000 random samples of N = M = 100, 150, 200, 250, 300, 400, 500, 600, 700 cases and
controls, respectively. These sample sizes were used consistently for all error rate
calculations. In each sample, M and N were generated according to the multinomial
distributions (M, P) and (N, Q), respectively. Here P = Q are the joint genotype frequencies
estimated from the bladder cancer data. For instance, the joint genotype frequencies of the
combination of Xpd 751 and Xpd 312 is P = Q = (156, 42, 15, 60, 193, 19, 5, 33, 36)τ/(156
+ 42 + 15 + 60 + 193 + 19 + 5 + 33 + 36) = (156, 42, 15, 60, 193, 19, 5, 33, 36)τ/559, which
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was used to generate simulation data to calculate the empirical type I error rates of the 2-
way test statistic TIG. In Table D.1 of the Supplementary Materials Appendix D, we present
the SNP combinations and their joint genotype frequencies used in the calculations of
empirical type I error rates of TIG, TIIG, and TTCIG.

We assumed P = Q in our simulation to calculate the type I error rates, i.e., the disease status
D is independent of genetic/environmental factors. We calculated an empirical test value for
each sample. The empirical type I error rates at nominal levels α = 0.01 and α = 0.05 are
reported in Table 2 and represent the proportions of the test values calculated for the

100,000 samples, that exceed the 99-th and 95-th percentiles of the -distribution. Because
the disease status D is independent of genetic or environmental factors, the empirical type I
error rates reported in Table 2 can be thought as false positives.

We then calculated 9 empirical type I error rates for each combination of genotype
frequencies, i.e., As the combination of SNPs Xpd 751 and Xpd 312 was the only one to
provide very significant TIG value (Table 1), we calculated the type I error rate only for this
combination. To calculate the empirical type I error rate for TTCIG, we added one of the
remaining five SNPs or pack year to Xpd 751 and Xpd 312 and calculated the joint SNP
genotype frequencies. This resulted in six combinations of three factors or attributes, i.e.,
Xpd 751 and Xpd 312 plus one SNP or Pack years. These six combinations provided very
significant results of total correlation between the bladder cancer and the three attributes
(Table 1). The results of Table 2 show that the empirical type I error rates of 2-way test
statistic TIG and 3-way test statistic TTCIG are around the nominal level α = 0.01 or α = 0.05
when the sample sizes M = N ≥ 300. Therefore, the test statistics TIG and TTCIG are
reasonably conservative and robust. The very significant results of TIG and TTCIG in Table 1
were most likely from the strong interaction between the bladder cancer and the two SNPs
Xpd 751 and Xpd 312.

In our simulation to calculate the entries of Table 2, the null hypothesis of TIG was that the
disease status D is independent of genetic markers A = Xpd 751 and B = Xpd 312, i.e., Qij =
P(GA = i, GB = j|D = 1) = P(GA = i, GB = j) = Pij, but that the genotypes of SNPs A and B
are not independent from each other. The null hypothesis of TTCIG in turn was that Qije =
P(GA = i, GB = j, E = e|D = 1) = P(GA = i, GB = j, E = e) = Pije, i.e., the disease status D is
independent of both genetic and environmental factors, but pair-wise and three-way
dependences between genetic and environmental factors are allowed. Actually, the
genotypes of SNPs Xpd 751 and Xpd 312 are strongly dependent of each other (Pearson χ2

= 256.83, p-value < 0.00005). In addition, Xpd 751 and Xpd 312 are in strong linkage
disequilibrium. Therefore, the simulated data were generated under the null hypothesis of
either TIG or TTCIG since the two SNPs, Xpd 751 and Xpd 312, are correlated to each other.
The empirical type I error rates of tests TIG and TTCIG reported in Table 2 were around the
nominal levels, and the two tests were reasonably robust.

To calculate the empirical type I error rates of the interaction information gain-based test
statistic TIIG, we chose the three SNP combinations which were significantly correlated to
each other. In the case of three SNPs A, B, and C, significantly correlated means that the
four null hypotheses
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are all unlikely to be true. We used the Pearson χ2 test to choose the three SNP
combinations. In Table D.2 of the Supplementary Materials Appendix D, we present the
three attribute combinations of theses SNPs. Utilizing the joint genotype frequencies of the
three SNP combinations in Table D.2 of the Supplementary Materials, we performed
simulations to calculate the empirical type I error rates for the 3-way test statistic TIIG. Since
each of the three SNP combinations was selected based on the existence of significant
correlations between these SNPs, the simulated data were likely to be generated under the
null hypothesis of TIIG, i.e., I(A, B, C|D) = I(A, B, C). The empirical type I error rates of the
3–way test statistic TIIG reported in Table 2 were generally slightly lower than the nominal
levels, which suggests that the test TIIG is conservative and robust. The test TIIG was more
conservative than the test TTCIG since the the former was constructed to detect the 3-way or
higher order interactions and the the latter was constructed to detect the correlations. The
existence of 2-way or 3-way interactions implies 3-way correlations, but 3-way correlations
are not necessarily due to 3-way interactions.

In Table E.1 of the Supplementary Materials Appendix E, we present the type I error rates of
1-way entropy loss test statistic TEL. The test statistic TEL is reasonably robust and
conservative.

Power Comparison

After evaluating the robustness of the test statistic TIG by type I error rate calculation, we
performed power calculations for the information gain based test TIG and the naive test T.
We were mainly concerned with the performance of the test statistic TIG for nonlinear
interactions and in the absence of main effect. To achieve the goal, six models of two-locus
penetrance functions and allele frequencies were taken from Moore et al. [2002], Figures 5–
10, and the penetrance functions and allele frequencies are presented in Table 3. Similarly,
four models were taken from Ritchie et al. [2003a], Figure 2, and the related parameters are
presented in Table 4.

To make a comparison, we calculated the theoretical power curves of both test statistics TIG
and T based on their non-centrality parameters λTIG, and λT, and the results are plotted in
Figures 2 and 3, respectively. Generally, the power of the information gain-based test TIG
was similar to or higher than that of a naive test T. For models 2 and 4–6 in Table 3 and
model 1–2 in Table 4, the power curves of TIG were higher than those of T. For the other
models, the power was similar. Hence, in terms of power, the information gain-based test
TIG performed equally well or better.

By construction, high dimension data are collapsed to build -distributed test TIG which is
based on a one-dimension variable. However, the test T is based on genotype frequency

comparison of high dimension data and it is -distributed. The information of high
dimension data is condensed in TIG. The degrees of freedom of T is 8 and so it is less
powerful than TIG which has only 1 degree of freedom. Intuitively, the reduction of degrees
of freedom leads to high power for the test statistic TIG.

Discussion

In this paper, we propose information gain based test statistics to detect and to characterize
gene-gene and gene-environment interactions of complex diseases. For 2-way interaction, an
information gain based approach is proposed using mutual information. The information
gain in the presence of disease is defined as a one-dimensional variable through mutual
information and entropy function of genetic markers, i.e., IG(AB | D) = I(A, B|D)−I(A, B).
Based on the one-dimensional information gain, a test statistic TIG is constructed and is
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showed to be -distributed. As equation (14) shows, the information gain based test TIG
does not involve matrix inverse calculation which facilitates the implementation in practical
applications because it is based on the normalization of a one-dimensional random variable
ĝ − f ̂= Î(A, B|D) − Î (A, B). However, the calculation of the naive test T involves matrix
inverse calculation and it is almost impossible to use it for sparse data as in our simulation
calculation of empirical type I error rates. One can calculate the generalized inverse of
matrix to implement the naive test T, and then its degrees of freedom changes from dataset
to dataset. By power comparison, we clearly showed that the naive test T does not have an
advantage over the information gain test TIG.

In Wu et al. [2009], a mutual information based approach was proposed to construct a
statistic to test 2-way gene-environment interaction by using a multi-dimensional vector.
Under the null hypothesis of independence of the genetic marker and the environmental

factor, the test statistic was showed to be a -distributed variable with 2 degrees of freedom
[Wu et al., 2009]. Some of the theoretical justification in our discussion such as mutual
information is similar to that of Wu et al. [2009]. However, our way to construct the test

statistic TIG is different. In addition, our test statistic TIG is -distributed no matter under
the null hypothesis of independence of disease status and genetic and environmental factors

or under the alternative hypothesis. Under the null hypothesis, TIG is centrally -

distributed. Under the alternative hypothesis, the TIG is non-centrally -distributed.

The methods are generalized to test high order K-way interactions and correlations of
genetic markers and environmental factors, K ≥ 3. Two approaches are proposed: (1) an
interaction information gain based approach, and (2) a total correlation information gain
based approach. Such as the 2-way case, the interaction information gain and total

correlation information gain are defined as one-dimensional variables. The related -
distributed test statistics TIIG and TTCIG are constructed to test higher order interactions and
total correlations, respectively. The test statistic TIIG is based on interaction information
gain and it can test K-way interactions, K ≥ 3. The test statistic TTCIG, however, is based on
total correlation information gain and it can test K-way correlations, K ≥ 3. One may want to
notice that correlation can be treated as the interaction in 2-way case, but they are not the
same for high order K-way cases, K ≥ 3.

The power analysis of high order K-way cases, K ≥ 3, is not carried out in this article. Our
problem is that we can not find appropriate models of high order K-way interaction such as
those of 2-way cases. It would be interesting to explore some high order K-way interaction
models first. Then, it will make more sense to calculate the theoretical power of the high
order interaction models and make comparison with the simulated results. To our
understanding, the area is still very new and a lot of work still need to be done to understand
the high order interactions. The current paper is just a starting point. We will continue our
research and report our results to scientific community in the future.

The proposed method was applied to bladder cancer data of Andrew et al. [2006]. We
confirmed the significant result of 2-way interaction combination of XPD 751 and XPD 312
in Andrew et al. [2006]. However, we found that there was no significant result of 3-way
interaction combinations for the bladder cancer data after adjusting for multiple tests. In the
meantime, significant 3-way correlations were found which were basically from the 2-way
interaction combination of XPD 751 and XPD 312.

In practice, one can use forward procedure to detect the interactions using test statistics TIG
and TIIG. As the first step, one can test 2-way interactions by TIG first. In the presence of 2-
way interactions, one can search for evidence of 3-way and higher order interactions by
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TIIG. If there are multiple genetic markers, the proposed method can be used to construct
genet network to interpret the relation among the markers and environmental factors with
the disease. Our analysis of the bladder cancer data provides an example of the procedure.
Similarly, one can use test statistics TIG and TTCIG to detect the correlations, but the high
order correlations may be actually from low order interactions.

One advantage of the proposed method is that it collapses high-dimensional genetic and
environment data into a single dimension, and this makes it possible to build test statistic for
high-dimensional sparse data to detect and to characterize gene-gene and gene-environment
interactions and correlations. For instance, there are 27 genotype combinations if we
consider 3 di-allelic markers. By using 3-way interaction information gain and total
correlation information gain of the three markers, we may reduce the 27-dimensional data to
be one-dimensional variables to construct the three-way information gain based test
statistics. The principle applies to high order K-way interactions and correlations.

To our knowledge, there is no much research about gene-gene and gene-environment
interactions using entropy-based approaches, although investigators are paying more and
more attention to the research [Dong et al., 2008; Kang et a., 2008; Moore et al., 2006; Wu
et al., 2009; Chanda et al., 2007]. It is a new and an interesting area which deserves more
attention and investigation. In this article, we make no assumption about population history.
It is unclear which kind of impact would appear in the presence of population structure,
genotyping error, missing genotypes, phenocopy, and genetic heterogeneity. It would be
interesting and important to systematically investigate the issues in the future study. So far,
we focus on qualitative trait of complex trait, i.e., either with disease or no disease. It would
be interesting to extend the method for quantitative traits. Besides, new methods and models
need to be developed to analyze other data type such as sibling and nuclear family [Lou et
al., 2008; Martin et al., 2006]. These can be exciting areas for future investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The research was supported by a Research and Travel Support from the Intergovernmental Personnel Act (IPA),
National Cancer Institute, NIH for Fan R., the National Cancer Institute grant R01-CA133996 for Amos C., and
NIH grant LM009012 for Moore J. H. We thank Ms. Davnah R. Urbach a lot for helping us in the writings of the
paper to remove numerous typographical, grammatical, and bibliographical errors.

References

Andrew AS, Nelson HH, Kelsey KT, Moore JH, Meng AC, Casella DP, Tosteson TD, Schned AR,
Karagas MR. Concordance of multiple analytical approaches demonstrates a complex relationship
between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis. 2006;
27:1030–1037. [PubMed: 16311243]

Bateson B. William Bateson: A biologist ahead of his time. Am J Hum Genet. 2002; 81:49–58.

Bateson, W. Mendel’s Principles of Heredity. Cambridge: Cambridge University Press; 1909.

Chanda P, Zhang A, Brazeau D, Sucheston L, Freudenheim JL, Ambrosone C, Ramanathan M.
Information-theoretic metrics for visualizing gene environment interactions. Am J Hum Genet.
2007; 81:939–863. [PubMed: 17924337]

Cover, TM.; Thomas, JA. Elements of Information Theory. 2. Wiley-Interscience; 2006.

Dong C, Chu X, Wang Y, Wang Y, Jin L, Shi T, Huang W, Li Y. Exploration of gene-gene interaction
effects using entropy-based methods. Eur J of Human Genetics. 2008; 16:229–235. [PubMed:
17971837]

Fan et al. Page 21

Genet Epidemiol. Author manuscript; available in PMC 2012 November 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fisher RA. The correlations between relatives on the supposition of Mendelian inheritance. Trans
Royal Soc Edinburgh. 1918; 52:399–433.

Frankel WN, Schork NJ. Who’s afraid of epistasis. Nature Genetics. 1996; 14:371–373. [PubMed:
8944011]

Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-
gene and gene-environment interactions. Bioinformatics. 2003; 19:376–382. [PubMed: 12584123]

Han TS. Multiple mutual informations and multiple interactions in frequency data. Information and
Control. 1980; 46:26–45.

Jakulin, A. PhD thesis. 2005. Machine Learning Based on Attribute Interactions.

Jakulin A, Bratko I. Analyzing attribute interact ions. Lecture Notes in Artificial Intelligence. 2003;
2838:229–240.

Jakulin, A.; Bratko, I. In: Greiner, R.; Schuurmans, D., editors. Testing the significance of attribute
interactions; Proceedings of the 21st International Conference on Machine Learning; Banff,
Canada. 2004. p. 409-416.

Jakulin A, Bratko I, Smrke D, Demsar J, Zupan B. Attribute interactions in medical data analysis.
Lecture Notes in Artificial Intelligence. 2003; 2780:229–238.

Kang G, Yue W, Zhang J, Cui Y, Zuo Y, Zhang D. An entropy-based approach for testing genetic
epistasis underlying complex diseases. Journal of Theoretical Biology. 2008; 250:362–374.
[PubMed: 17996908]

Lehmann, EL. Theory of Point Estimation. John Wiley & Sons; 1983.

Lou XY, Chen GB, Yan L, Ma JZ, Mangold1 JE, Zhu J, Elston RC, Li MD. A combinatorial approach
to detecting gene-gene and gene-environment interactions in family studies. Am J Hum Genet.
2008; 83:457–467. [PubMed: 18834969]

Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, Li MD. A generalized combinatorial approach
for detecting gene-by-gene and gene-by-environment interactions with application to nicotine
dependence. Am J Hum Genet. 2007; 80:1125–1137. [PubMed: 17503330]

Mahdi H, Fisher BA, Källberg H, Plant D, Malmström V, Rönnelid J, Charles P, Ding B, Alfredsson
L, Padyukov L, Symmons DPM, Venables PJ, Klareskog L, Lundberg K. Specific interaction
between genotype, smoking and autoimmunity to citrullinated α-enolase in the etiology of
rheumatoid arthritis. Nature Genetics. 2009; 41:1319–1324. [PubMed: 19898480]

Martin ER, Ritchie MD, Hahn L, Kang S, Moore JH. A novel method to identify gene-gene effects in
nuclear families: The MDR-PDT. Genet Epidemiol. 2006; 30:111–123. [PubMed: 16374833]

McGill WJ. Multivariate information transmission. Psychometrika. 1954; 19:97–116.

Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC. A flexible computational
framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic
studies of human disease susceptibility. Journal of Theoretical Biology. 2006; 241:252–261.
[PubMed: 16457852]

Moore, JH.; Hahn, LW.; Ritchie, MD.; Thornton, TA.; White, BC. In: Langdon, WB.; Cantu-Paz, E.;
Mathias, K.; Roy, R.; Davis, D.; Poli, R.; Balakrishnan, K.; Honavar, V.; Rudolph, G.; Wegener,
J.; Bull, L.; Potter, MA.; Schultz, AC.; Miller, JF.; Burke, E.; Jonoska, N., editors. Applications of
genetic algorithms to the discovery of complex models for simulation studies in human genetics;
Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann; San
Francisco. 2002. p. 1150-1155.

Moore JH, Williams SM. Epistasis and its implications for personal genetics. Am J Hum Genet. 2009;
85:309–320. [PubMed: 19733727]

Nothnagel M, Furst R, Rohde K. Entropy as a measure for linkage disequilibrium over multilocus
haplotype blocks. Hum Hered. 2002; 54:186–198. [PubMed: 12771551]

Ritchie MD, Coffey CS, Moore JH. Genetic programming neural networks as a bioinformatics tool in
human genetics. Lect Notes Comput Sci. 2004; 3102:438–448.

Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor
dimensionality reduction reveals high-order interactions among estrogen metabolism genes in
sporadic breast cancer. Am J Hum Genet. 2001; 69:138–147. [PubMed: 11404819]

Fan et al. Page 22

Genet Epidemiol. Author manuscript; available in PMC 2012 November 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting
genegene interactions in the presence of genotyping error, phenocopy, and genetic heterogeneity.
Genet Epidemiol. 2003a; 24:150–157. [PubMed: 12548676]

Ritchie MD, White BC, Parker JS, Hahn LW, Moore JH. Optimization of neural network architecture
using genetic programming improves the detection and modeling of gene-gene interactions in
studies of human diseases. BMC Bioinform. 2003b; 4:28.

Shannon CE. A mathematical theory of communications. The Bell System Technical Journal. 1948;
XXVII:379–423. 623–656.

van der Woude D, Alemayehu WD, Verduijn W, de Vries RRP, Houwing-Duistermaat JJ, Huizinga
TWJ, Toes REM. Gene-environment interaction influences the reactivity of autoantibodies to
citrullinated antigens in rheumatoid arthritis. Nature Genetics. 2010; 42:814–816. [PubMed:
20877316]

Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, Moore JH. A balanced
accuracy metric for epistasis modeling in imbalanced datasets using multifactor dimensionality
reduction. Genet Epidemiol. 2007; 31:306–315. [PubMed: 17323372]

Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NLS, Yu Y. BOOST: a fast approach to detecting
gene-gene interactions in genome-wide case-control studies. Am J Hum Genet. 2010; 87:325–340.
[PubMed: 20817139]

Watanabe S. Information theoretical analysis of multivariate correlation. IBM J Res Dev. 1960; 4:66–
82.

Wu X, Jin L, Xiong MM. Mutual information for testing gene-environmental interaction. PLos One.
2009:e4578. [PubMed: 19238204]

Yeung RW. A new outlook on Shannons information measures. IEEE Transactions on Information
Theory. 1991; 37:466–474.

Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nature Genetics.
2007; 39:1167–1173. [PubMed: 17721534]

Appendix A Proof of Relation (13)

A.1 The Subscripts ij Do Not Contain 2

Notice

In addition, we have

Moreover, we have
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Therefore, we have

Similarly, we have for i, j = 0, 1

A.2 The Subscripts ij Contain One 2

Notice

Therefore, we have

Similarly, we have for i, j = 0, 1
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Figure 1.
a) The I-diagram of entropies H(A), H(B), and 2-way mutual information I(A, B); b) The I-
diagram of entropies H(A), H(B), H(E), and 3-way interaction information I(A, B, E); c)
The I-diagram of entropies H(A), H(B), H(E), and 3-way total correlation information
TCI(A, B, E).
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Figure 2.
The power curves of test statistics TIG and T at a significance level α = 0.01 for the six
models of Table 3.
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Figure 3.
The power curves of test statistics TIG and T at a significance level α = 0.01 for the four
models of Table 4.
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Table 1

Results of the 2-way test statistic TIG and the 3-way test statistics TIIG and TTCIG of the bladder cancer data of
Andrew et al. [2006].

No. of Factors SNPs Test P-value

2-way interaction
Xpd_751, Xpd_312* TIG = 51.62 6.75e-13

XRCC1_194, XPC PAT# TIG = 2.47 0.12

3-way interaction and 3-way correlation

Xpd_751, Xpd_312, APE1 148 TTCIG = 44.54 2.49e-11

TIIG = 0.19 0.66

Xpd_751, Xpd_312, XPC PAT TTCIG = 43.87 3.51e-11

TIIG = 0.12 0.73

Xpd_751, Xpd_312, Pack_years TTCIG = 40.93 1.58e-10

TIIG = 0.11 0.74

Xpd_751, Xpd_312, XRCC3_241 TTCIG = 40.20 2.29e-10

TIIG = 0.12 0.73

Xpd_751, Xpd_312, XRCC1_399 TTCIG = 39.90 2.68e-10

TIIG = 1.46 0.23

Xpd_751, Xpd_312, XRCC1_194 TTCIG = 35.41 2.67e-9

TIIG = 0.30 0.58

Xpd_751, XRCC1_194, XRCC3_241 TTCIG = 5.67 0.02

TIIG = 1.80 0.18

XRCC1_399, XRCC1_194, XRCC3_241 TTCIG = 3.67 0.06

TIIG = 4.25 0.04†

XPC PAT, XRCC1_194, Pack_years TTCIG = 3.97 0.05

TIIG = 0.21 0.65

*
- the most significant result of TIG;

#
- the second most significant result of TIG;

†
- the only significant result of 3-way interaction information gain test statistic TIIG at 5% significance level.
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Table 3

Six models of two-locus penetrance functions and allele frequencies taken from Moore et al. [2002], Figures
5–10.

(a) Model 1, PA = PB = 0.5

BB Bb bb

AA 0.083 0.076 0.964

Aa 0.056 0.508 0.085

aa 0.977 0.098 0.062

(b) Model 2, PA = PB = 0.5

BB Bb bb

AA 0.094 0.905 0.097

Aa 0.967 0.097 0.937

aa 0.027 0.990 0.080

(c) Model 3, PA = PB = 0.5

BB Bb bb

AA 0.967 0.314 0.137

Aa 0.313 0.312 0.742

aa 0.129 0.779 0.075

(d) Model 4, PA = PB = 0.5

BB Bb bb

AA 0.967 0.139 0.799

Aa 0.057 0.655 0.627

aa 0.974 0.544 0.019

(e) Model 5, PA = PB = 0.5

BB Bb bb

AA 0.017 0.451 0.711

Aa 0.520 0.571 0.039

aa 0.640 0.053 0.949

(f) Model 6, PA = PB = 0.5

BB Bb bb

AA 0.954 0.256 0.360

Aa 0.010 0.731 0.300

aa 0.801 0.093 0.808

Genet Epidemiol. Author manuscript; available in PMC 2012 November 01.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Fan et al. Page 31

Table 4

Four models of two-locus penetrance functions and allele frequencies taken from Ritchie et al. [2003a], Figure
2.

(a) Model 1, PA = PB = 0.25

BB Bb bb

AA .08 .07 .05

Aa .10 0 .10

aa .03 .10 .04

(b) Model 2, PA = PB = 0.25

BB Bb bb

AA 0 .01 .09

Aa .04 .01 .08

aa .07 .09 .03

(c) Model 3, PA = PB = 0.1

BB Bb bb

AA .07 .05 .02

Aa .05 .09 .01

aa .02 .01 .03

(d) Model 4, PA = PB = 0.1

BB Bb bb

AA .09 .001 .02

Aa .08 .07 .005

aa .003 .007 .02
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