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ABSTRACT
We propose an entropy-based sensor selection heuristic for
localization. Given 1) a prior probability distribution of the
target location, and 2) the locations and the sensing mod-
els of a set of candidate sensors for selection, the heuris-
tic selects an informative sensor such that the fusion of the
selected sensor observation with the prior target location
distribution would yield on average the greatest or nearly
the greatest reduction in the entropy of the target location
distribution. The heuristic greedily selects one sensor in
each step without retrieving any actual sensor observations.
The heuristic is also computationally much simpler than the
mutual-information-based approaches. The effectiveness of
the heuristic is evaluated using localization simulations in
which Gaussian sensing models are assumed for simplicity.
The heuristic is more effective when the optimal candidate
sensor is more informative.

Categories and Subject Descriptors
H.1.1 [MODELS AND PRINCIPLES]: Systems and In-
formation Theory—Information theory ; C.2.4 [COMPUTER-
COMMUNICATION NETWORKS]: Distributed Sys-
tems—Distributed applications

General Terms
Algorithms, Management, Theory

Keywords
sensor selection, information-directed resource management,
information fusion, target localization, target tracking, wire-
less sensor networks, mutual information, Shannon entropy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’04, April 26–27, 2004, Berkeley, California, USA.
Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00.

1. INTRODUCTION
The recent convergence of micro-electro-mechanical sys-

tems (MEMS) technology, wireless communication and net-
working technology, and low-cost low-power miniature dig-
ital hardware design technology has made the concept of
wireless sensor networks viable and a new frontier of research
[2, 1]. The limited on-board energy storage and the limited
wireless channel capacity are the major constraints of wire-
less sensor networks. In order to save precious resources,
a sensing task should not involve more sensors than neces-
sary. From the information-theoretic point of view, sensors
are tasked to observe the target in order to increase the in-
formation (or to reduce the uncertainty) about the target
state. The information gain attributable to one sensor may
be very different from that attributable to another when sen-
sors have different observation perspectives and sensing un-
certainties. Selective use of informative sensors reduces the
number of sensors needed to obtain information about the
target state and therefore prolongs the system lifetime. In
the scenario of localization or tracking using wireless sensor
networks, the belief state of the target location can be grad-
ually improved by repeatedly selecting the most informative
unused sensor until the required accuracy (or uncertainty)
level of the target state is achieved.
There have been several investigations into information-

theoretic approaches to sensor fusion and management. The
idea of using information theory in sensor management was
first proposed in [8]. Sensor selection based on expected in-
formation gain was introduced for decentralized sensing sys-
tems in [12]. The mutual information between the predicted
sensor observation and the current target location distribu-
tion was proposed to evaluate the expected information gain
about the target location attributable to a sensor in [11, 6].
On the other hand, without using information theory, Yao
et. al. [16] found that the overall localization accuracy de-
pends on not only the accuracy of individual sensors but
also the sensor locations relative to the target location dur-
ing the development of localization algorithms. We propose
a novel entropy-based heuristic for sensor selection based on
our experiences with target localization. It is computation-
ally more efficient than mutual-information-based methods
proposed in [11, 6].
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We use the following notations throughout this paper:
1. S is the set of candidate sensors for selection, i ∈ S is
the sensor index;
2. x is the realization of the random vector that denotes the
target location;
3. xt is the actual target location;
4. x̂ is the maximum likelihood estimate of the target loca-
tion;
5. xi is the deterministic location of sensor i;
6. zi is the realization of the random variable that denotes
the observation of sensor i about the target location;
7. zt

i is the actual observation of sensor i about the target
location;
8. zv

i is the realization of the random variable that denotes
the view of sensor i about the target location.
The rest of this paper is organized as follows. Section 2

describes the heuristic in detail. Section 3 evaluates the
heuristic using simulations. Section 4 discusses the dis-
crepancy between the heuristic and the mutual information
based approaches. Section 5 outlines future work. Section 6
concludes the paper. Section 7 acknowledges the sponsors.

2. SENSOR SELECTION HEURISTIC
This Sect. formulates the sensor selection problem in lo-

calization, presents the details of the entropy-based sensor
selection heuristic, and discusses the relation between the
entropy difference proposed in this paper and mutual infor-
mation used in previous work about sensor selection.

2.1 Sensor Selection Problem in Localization
There are several information measures. In this paper, we

use Shannon entropy [14] to quantify the information gain
(or uncertainty reduction) about the target location due to
sensor observation. We adopt the greedy sensor selection
strategy used in mutual-information-based approaches [11,
6]. The greedy strategy gradually reduces the uncertainty
of the target location distribution by repeatedly selecting
the currently unused sensor with maximal expected informa-
tion gain. The observation of the selected sensor is incorpo-
rated into the target location distribution using sequential
Bayesian filtering [3, 7]. The greedy sensor selection and the
sequential information fusion continue until the uncertainty
of the target location distribution is less than or equal to
the required level. The core problem of the greedy sensor
selection approach is how to efficiently evaluate the expected
information gain attributable to each candidate sensor with-
out actually retrieving sensor data.
The sensor selection problem is formulated as follows.

Given
1. the prior target location distribution: p(x),
2. the locations of candidate sensors for selection: xi, i ∈ S,
3. the sensing models of candidate sensors for selection:
p(zi|x), i ∈ S,

the objective is to find the sensor î whose observation zî

minimizes the expected conditional entropy of the posterior
target location distribution,

î = argmin
i∈S

H(x|zi) . (1)

Equivalently, the observation of sensor î maximizes the ex-
pected target location entropy reduction,

î = argmax
i∈S

(H(x)− H(x|zi)) . (2)

H(x) − H(x|zi) is one expression of I(x; zi), the mutual
information between the target location x and the predicted
sensor observation zi,

I(x; zi) =

Z
p(x, zi) log

p(x, zi)

p(x)p(zi)
dxdzi , (3)

where p(x, zi) = p(zi|x)p(x) and p(zi) =
R

p(x, zi)dx. Thus,

the observation of sensor î maximizes the mutual informa-
tion I(x; zi),

î = argmax
i∈S

I(x; zi) . (4)

Sensor selection based on (4) is the maximal mutual in-
formation criterion proposed in [11, 6]. The target location
x could be of up to three dimensions. The sensor observa-
tion zi (e.g. the direction to a target in a three-dimensional
space ) could be of up to two dimensions. Therefore I(x; zi)
is a complex integral in the joint state space (x, zi) of up to
five dimensions. The complexity of computing I(x; zi) could
be more than that low-end sensor nodes are capable of. If
the observation zi is related to the target location x only
through the sufficient statistics z(x), then

I(x; zi) = I(z(x); zi) . (5)

If z(x) has fewer dimensions than x, then I(z(x); zi) is less
complex to compute than I(x; zi). In the above special sce-
nario, I(z(x); zi) has been proposed to replace I(x; zi) to
reduce the complexity of computing mutual information in
[11]. In this paper, we propose an alternative entropy-based
sensor selection heuristic. In general, the entropy-based sen-
sor selection heuristic is computationally much simpler than
the mutual information based approaches. However, the ob-
servation of the sensor selected by the heuristic would still
yield on average the greatest or nearly the greatest entropy
reduction of the target location distribution.

2.2 Entropy-based Sensor Selection Heuristic
During the development of wireless sensor networks for

localization, we have observed that the localization uncer-
tainty reduction attributable to a sensor is greatly effected
by the difference of two quantities, namely, the entropy of
the distribution of that sensor’s view about the target loca-
tion, and the entropy of that sensor’s sensing model for the
actual target location.
A sensor’s view about the target location is the geometric

projection of the target location onto that sensor’s observa-
tion perspective. For example, a direction-of-arrival (DOA)
sensor’s view of the target location is the direction from the
sensor to the target. The view of sensor i about the target
location is denoted as zv

i ,which is a function of the target
location x and the sensor location xi,

zv
i = f(x,xi) . (6)

zv
i usually has less dimensions than x. The probability dis-
tribution of the view of sensor i about the target location,
p(zv

i ), is the projection of the target location distribution
p(x) onto the observation perspective of sensor i,

p(zv
i )dzv

i =

Z
zv

i ≤f(x,xi)≤zv
i +dzv

i

p(x)dx . (7)

Alternatively, p(zv
i ) can be regarded as the ‘noise free’ pre-

diction of the sensor observation distribution p(zi) based on
the target location distribution p(x).
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Figure 1: A DOA sensor’s view about the target
location. The state space of the target location is
gridded in 1× 1 cells. The image depicts the proba-
bility distribution of the target location. The actual
target location is (200, 200), denoted by marker +.
From the perspective of the DOA sensor denoted
by the square, only the direction to the target is
observable. The view of the DOA sensor about the
target is in the interval [36o, 38o] if and only if the
target is inside the sector delimited by 36o line and
38o line.

In practice, the state space of the target location and the
sensor view can be discretized by griding for numerical anal-
ysis. The discrete representation of p(zv

i ) can be computed
as follows.
1. Let X be the grid set of the target location x;
2. Let Z be the grid set of the sensor view zv

i ;
3. For each grid point zv

i ∈ Z, initialize p(zv
i ) to zero;

4. For each grid point x ∈ X , determine the corresponding
grid point zv

i ∈ Z using equation (6), and update its prob-
ability as p(zv

i ) = p(zv
i ) + p(x);

5. Normalize p(zv
i ) to make the total probability of the sen-

sor view be 1.
The numerical computation of p(zv

i ) for a DOA sensor is
illustrated in Fig. 1 and Fig. 2.
The entropy of the probability distribution of the view of

sensor i, Hv
i , is

Hv
i = −

Z
p(zv

i ) log p(zv
i )dzv

i . (8)

Given the discrete representation of p(zv
i ) with a grid size

of δzv
i , Hv

i can be numerically computed as

Hv
i = −

X
p(zv

i ) log p(zv
i )δz

v
i . (9)

The sensing model of sensor i for the actual target location
xt is p(zi|xt), which describes the probability distribution of
the observation of sensor i given that the target is at xt. The
sensing model incorporates observation uncertainty from all
sources, including the noise corruption to the signal, the sig-
nal modeling error of the sensor estimation algorithm, and
the inaccuracy of the sensor hardware. For a single-modal
target location distribution p(x), we can use the maximum
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Figure 2: The discrete probability distribution of a
DOA sensor’s view. The state space of the DOA
sensor view is gridded in 2o intervals. The target lo-
cation distribution and the DOA sensor location are
illustrated in Fig. 1. Marker X denotes the proba-
bility of the DOA view interval [36o, 38o], which is the
summation of the probability of all target locations
inside the sector delimited by 36o line and 38o line
in Fig. 1. Please note that the sensor view distri-
bution does not depends on the sensing uncertainty
characteristics at all.

likelihood estimate x̂ of the target location to approximate
the actual target location xt. Thus the entropy of the sens-
ing model of sensor i for the actual target location xt is
approximated as

Hs
i = −

Z
p(zi|x̂) log p(zi|x̂)dzi . (10)

For a multi-modal target location distribution p(x) with M

peaks x̂(m), where m = 1, . . . , M , the entropy of the sensing
model of sensor i for the actual target location xt can be
approximated as a weighted average of the entropy of the
sensing model for all modes,

Hs
i = −

MX
m=1

p(x̂(m))

Z
p(zi|x̂(m)) log p(zi|x̂(m))dzi . (11)

Given a target location distribution p(x), the target location
with maximum likelihood or local maximum likelihood can
be found using standard search algorithms.
We have repeatedly observed that the incorporation of

the observation of sensor i with larger entropy difference
Hv

i − Hs
i yields on average larger reduction in the uncer-

tainty of the posterior target location distribution p(x|zi).
Therefore, given a prior target location distribution and the
location and the sensing uncertainty model of a set of can-
didate sensors for selection, the entropy difference Hv

i − Hs
i

can sort candidate sensors into nearly the same order as mu-
tual information I(x; zi) does. Specifically, the sensor with
the maximal entropy difference Hv

i − Hs
i also has the max-

imum or nearly the maximal mutual information I(x; zi).
Hence we propose to use the entropy difference Hv

i − Hs
i as

an alternative to mutual information I(x; zi) for selecting
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the most informative sensor. The entropy-based heuristic is
to compute Hv

i − Hs
i for every candidate sensor i ∈ S and

then to select sensor î such that

î = argmax
i∈S

(Hv
i − Hs

i ) . (12)

In Sect. 3, the validity of the heuristic is evaluated using
simulations and the complexity of the heuristic is analyzed
for two-dimensional localization. The entropy-based sen-
sor selection heuristic works nearly as well as the mutual-
information-based approaches. In addition, the heuristic is
computationally much simpler than mutual information.

2.3 Relation of Entropy Difference
and Mutual Information

A brief analysis of the relation between entropy differ-
ence Hv

i − Hs
i and mutual information I(x; zi) helps to re-

veal fundamental properties of our sensor selection heuristic.
Mutual information I(x; zi) has another expression, namely,
H(zi)−H(zi|x). The entropy difference Hv

i −Hs
i is closely

related to H(zi)− H(zi|x).
H(zi) is the entropy of the predicted sensor observation

distribution p(zi),

H(zi) = −
Z

p(zi) log p(zi)dzi . (13)

The predicted sensor observation distribution p(zi) becomes
the sensor’s view distribution p(zv

i ) when the sensing model
p(zi|x) is deterministic without uncertainty. The uncer-
tainty in the sensing model p(zi|x) makes H(zi) larger than
the sensor’s view entropy Hv

i defined in (8). Hv
i closely ap-

proximates H(zi) when the entropy of the sensing model
p(zi|x) is small relative to Hv

i .
H(zi|x) is actually the expected entropy of the sensing

model p(x) averaged for all possible target locations,

H(zi|x) =−
Z

p(x, zi) log p(zi|x)dxdzi

=

Z
p(x){−

Z
p(zi|x) log p(zi|x)dzi}dx .

(14)

When p(x) is a single-modal distribution, Hs
i is defined in

(10), which is the entropy of the sensing model for the most
likely target location estimate x̂. When p(x) is a multi-
modal distribution, Hs

i is defined in (11), which is the aver-
age entropy of the sensing model for all target locations with
local maximal likelihood. When the entropy of the sensing
model, − R p(zi|x) log p(zi|x)dzi, changes gradually with x,
Hs

i can reasonably approximate H(zi|x).
The entropy difference Hv

i −Hs
i reasonably approximates

the mutual information H(zi) − H(zi|x) when Hs
i is small

relative to Hv
i and the entropy of the sensing model changes

gradually with x. However, selection of the most informa-
tive sensor does not require an exact evaluation of sensor
information utility. Instead, an order of sensors in terms of
information utility is needed. Hv

i − Hs
i could sort sensors

into approximately the same order as mutual information
does. Therefore, a sensor with the maximal entropy differ-
ence Hv

i − Hs
i also has the maximal or nearly the maximal

mutual information. The correlation between the entropy
difference Hv

i − Hs
i and mutual information I(x; zi) is ana-

lyzed using simulations in Sect. 3. Section 4 discusses the
discrepancy between the heuristic and the mutual informa-
tion based approaches.

3. HEURISTIC EVALUATION
This Sect. presents the evaluation of the entropy-based

sensor selection heuristic using simulations. The compu-
tational complexity of the heuristic is also analyzed. The
Gaussian noise model has been widely assumed for sensor
observations in many localization and tracking algorithms,
e.g. the Kalman filter [9]. Successes of these algorithms
indicate that the Gaussian sensing model is a reasonable
first-order-approximation of the reality. As a starting point,
we assume Gaussian sensing models in the evaluative simula-
tions for simplicity. The simple Gaussian sensing models as-
sumed here are not accurate especially when sensors are very
close to the target. To avoid the problem of over-simplified
sensing models in the simulations, we only analyze sensors
with some middle distance range to the target. The heuris-
tic will be evaluated further under more realistic sensing
models in the future. Four scenarios of sensor selection for
localization have been studied. Three of them involve DOA
sensors, range sensors, or time-difference-of-arrival (TDOA)
sensors respectively. One of them involves all of the above
sensors mixed together. In every sensor selection scenario,
both the entropy difference Hv

i − Hs
i and mutual informa-

tion I(x; zi) are evaluated and compared for all candidate
sensors. In all sensor selection scenarios, the entropy differ-
ence Hv

i −Hs
i can sort all candidate sensors into nearly the

same order as mutual information I(x; zi) does. Therefore,
the sensor with the maximal entropy difference Hv

i −Hs
i se-

lected by the heuristic always has the maximum or nearly
the maximal mutual information I(x; zi). The larger the
entropy difference Hv

i −Hs
i and mutual information I(x; zi)

are, the more consistent their sensor selection decisions are.

3.1 Selection of DOA Sensors
Consider now entropy-based sensor selection when all can-

didate sensors are DOA sensors, as depicted in Fig. 3. The
prior probability distribution p(x) of the target location x is
non-zero in a limited area. We assume the unbiased Gaus-
sian sensing models for DOA sensors in some middle distance
range to the target. Specifically, given a target location such
that 10 ≤‖ x − xi ‖≤ 600, the probability distribution of
DOA observation zi is assumed to be

p(zi|x) = 1

σ
√
2π

e−(zi−zv
i )2/(2σ2) , (15)

where zv
i = f(x,xi) is the direction from sensor i to the

target location x. For many DOA estimation algorithms
like the approximate maximum likelihood (AML) algorithm
[4], DOA estimation usually becomes much more uncertain
when the candidate sensor is either very near or very far
from the target. In this scenario, we exclude sensors that
are either outside the study area or within a distance of 10
to the area of non-zero p(x).
The entropy difference Hv

i − Hs
i and mutual information

I(x; zi) of DOA sensors are evaluated and compared in five
cases. In each case, Gaussian sensing models of the same
standard deviation σ are assumed for all 100 candidate sen-
sors. However, the standard deviation σ varies with the
case. As shown in fig. 4, mutual information I(x; zi) vs
the entropy difference Hv

i − Hs
i is plotted for all candidate

sensors in all cases. Mutual information I(x; zi) increases
nearly monotonically with the entropy difference Hv

i − Hs
i .

The larger the entropy difference Hv
i −Hs

i and mutual infor-
mation I(x; zi) are, the more correlated they are. Therefore,
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Figure 3: Scenario of sensor selection for localization
using DOA sensors exclusively. The image depicts
the prior probability distribution p(x) of the target
location x. p(x) is zero outside the solid rectangle.
The actual target location is (200, 200), denoted by
marker +. The squares denote candidate DOA sen-
sors for selection. 100 DOA sensors are uniformly
randomly placed outside the dotted rectangle. The
gap between the solid rectangle and the dotted rect-
angle is 10.

the entropy difference Hv
i −Hs

i sorts DOA sensors in nearly
the same order as mutual information I(x; zi) does, espe-
cially when the entropy difference Hv

i − Hs
i is large. The

candidate DOA sensor selected by the proposed heuristic
has the maximal entropy difference Hv

i − Hs
i , and also has

the maximal mutual information I(x; zi).

3.2 Selection of Range Sensors
and TDOA Sensors

This Subsect. evaluates the entropy-based sensor selection
heuristic for range sensors and TDOA sensors respectively.
Fig. 5 shows the sensor selection scenario in which all

candidate sensors can only measure the range to the tar-
get. The prior probability distribution p(x) of the target
location x is non-zero in a limited area. We assume the
unbiased Gaussian sensing models p(zi|x) for range sensors
used in [13]. When the actual range is small relative to the
standard deviation σ of the Gaussian sensing model, p(zi|x)
is significantly greater than zero even for negative values
of range observation zi. Because a range of negative value
has no physical meaning, the above Gaussian sensing model
is not valid for short ranges. To avoid the above difficulty
of the Gaussian sensing model, we only consider candidate
sensors in some middle distance range to the target. Specif-
ically, in this range sensor selection scenario, we exclude
sensors that are either outside the study area or within a
distance of 32 to the area of non-zero p(x).
Fig. 6 shows the sensor selection scenario in which only

TDOA sensors are used. The prior probability distribution
p(x) of the target location x is non-zero in a limited area. As
in [15], the signal arrival time difference observed by every
TDOA sensor is relative to a common reference sensor. We
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Figure 4: Mutual information I(x; zi) vs entropy dif-
ference Hv

i − Hs
i of DOA sensors. Each symbol de-

notes (Hv
i −Hs

i , I(x; zi)) pair evaluated for one candi-
date sensor. The prior target location distribution
and the candidate sensor placements are shown in
Fig. 3. Five cases with different standard deviation
σ of Gaussian sensing models are studied. In each
case, all candidate sensors are assumed to have the
same σ value.

also assume the unbiased Gaussian sensing models p(zi|x)
for TDOA sensors. In order to be comparable with scenarios
of DOA sensors and range sensors, we only consider TDOA
sensors in middle range distance to the target. Specifically,
we exclude TDOA sensors that are either outside the study
area or within a distance of 10 to the area of non-zero p(x).
Following the same approach to the heuristic evaluation

for DOA sensors, the entropy difference Hv
i −Hs

i and mutual
information I(x; zi) of every candidate sensor are evaluated
and compared for range sensor selection scenario in Fig. 5
and for TDOA sensor selection scenario in Fig. 6 respec-
tively. Mutual information I(x; zi) vs the entropy difference
Hv

i − Hs
i is plotted in Fig. 7 for all range sensors and in

Fig. 8 for all TDOA sensors. In both scenarios, mutual in-
formation I(x; zi) increases nearly monotonically with the
entropy difference Hv

i − Hs
i . The larger the entropy differ-

ence Hv
i −Hs

i and mutual information I(x; zi) are, the more
correlated they are. Using the proposed heuristic, both the
selected range sensor and the selected TDOA sensor have the
maximal entropy difference Hv

i − Hs
i , and also have nearly

the maximal mutual information I(x; zi).

3.3 Selection of Mixed Sensors
In order to evaluate the entropy-based sensor selection

heuristic across different sensing modalities, this Subsect. is
devoted to the sensor selection scenario in which candidate
sensors are a mixture of DOA sensors, range sensors and
TDOA sensors.
Fig. 9 shows the sensor selection scenario for mixed can-

didate sensors. Each candidate sensor is randomly assigned
one of three sensing modalities, namely, DOA, range, and
TDOA. Gaussian sensing models are assumed for all candi-
date sensors with middle range distance to the target. Each
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Figure 5: Scenario of sensor selection for localization
using range sensors. The image depicts the prior
probability distribution p(x) of the target location x.
p(x) is zero outside the solid rectangle. The actual
target location is (200, 200), denoted by marker +.
The circles denote candidate range sensors for se-
lection. 100 range sensors are uniformly randomly
placed outside the dotted rectangle. The gap be-
tween the solid rectangle and the dotted rectangle
is 32.

candidate sensor is also randomly assigned one of five values
of the standard deviation σ of the sensing model, namely,
2, 4, 8, 16, and 32. 100 candidate sensors are uniformly
randomly placed in the vicinity of the prior target location
estimation. In order to avoid the difficulties of Gaussian
sensing models for DOA sensors and range sensors close to
the target, we exclude sensors either outside the study area
or within a distance of 32 to the non-zero area of the prior
target location distribution p(x).
The entropy difference Hv

i − Hs
i and mutual information

I(x; zi) of every candidate sensor are evaluated and plot-
ted in Fig. 10. The correlation between Hv

i − Hs
i and

I(x; zi) of mixed sensors is very similar to the correlation
between Hv

i −Hs
i and I(x; zi) of sensors with single modal-

ity. Across various sensing modalities, mutual information
I(x; zi) increases nearly monotonically with the entropy dif-
ference Hv

i − Hs
i . Therefore, across various sensing modali-

ties, the candidate sensor with the maximal entropy differ-
ence Hv

i − Hs
i , selected by the proposed heuristic, has the

maximal mutual information I(x; zi).

3.4 Computational Complexity
Computational complexity analysis is an important part

of the evaluation of the heuristic. We will analyze the com-
plexity of the heuristic and compare it to the complexity of
the mutual-information-based approaches.
For two-dimensional localization, the target location x is

two-dimensional. The sensor’s view zv
i of the target loca-

tion x is one-dimensional. The sensor observation zi is one-
dimensional. We assume that all random variables are grid-
ded for numerical computation. Specifically, the area with
non-trivial p(x) is gridded into n × n. The interval with
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Figure 6: Scenario of sensor selection for localization
using TDOA sensors. The image depicts the prior
probability distribution p(x) of the target location x.
p(x) is zero outside the solid rectangle. The actual
target location is (200, 200), denoted by marker +.
The triangles denote candidate TDOA sensors for
selection. Every TDOA observation is relative to
a common reference sensor denoted by marker ×.
100 TDOA sensors are uniformly randomly placed
outside the dotted rectangle. The gap between the
solid rectangle and the dotted rectangle is 10.

non-trivial p(zi) or p(zv
i ) is also gridded into n. We assume

there are K candidate sensors for selection. K is usually a
small number.
The proposed heuristic evaluates the entropy difference

Hv
i − Hs

i of all sensors and then selects the one with the
maximal Hv

i −Hs
i . As shown in (7), p(zv

i ) can be computed
from p(x) with cost O(n2). As shown in (8), Hv

i can be
computed from p(zv

i ) with cost O(n). As shown in (10) and
(11), Hs

i can be computed from p(zi|x) with cost O(n). The
cost to compute Hv

i −Hs
i for one candidate sensor is O(n2).

Therefore, the total cost for the heuristic to select one out
of K candidate sensors is O(n2).
The mutual-information-based approaches evaluate the mu-

tual information I(x; zi) of all sensors and then select the
one with the maximal I(x; zi). As shown in (3), I(x; zi)
can be directly computed from p(x) and p(zi|x) with cost of
O(n3). Therefore, the total cost to select one out of K can-
didate sensors is O(n3). As we mentioned early in Subsect.
2.1, the computational cost of mutual information I(x; zi)
could be reduced in some special scenarios. In general, how-
ever, the heuristic is computationally much simpler than the
mutual-information-based approaches.

4. DISCREPANCY BETWEEN HEURISTIC
AND MUTUAL INFORMATION

As shown in Sect. 3, when the mutual information I(x; zi)
is close to 0 bit, the entropy difference Hv

i − Hs
i might not

sort candidate sensors into exactly the same order as the
mutual information does. Such discrepancy is caused by the
dispersion of the correlation between the entropy difference
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Figure 7: Mutual information I(x; zi) vs entropy dif-
ference Hv

i − Hs
i of range senors. Each symbol de-

notes (Hv
i −Hs

i , I(x; zi)) pair evaluated for one candi-
date sensor. The prior target location distribution
and the candidate sensor placements are shown in
Fig. 5. Five cases with different standard deviation
σ of Gaussian sensing models are studied. In each
case, all candidate sensors are assumed to have the
same σ value.

Hv
i −Hs

i and the mutual information I(x; zi) when the mu-
tual information is small. In this Sect., we examine such
correlation dispersion and evaluate its impact on the dis-
crepancy of sensor selection decisions of the entropy-based
heuristic and the mutual information based approaches.

4.1 Dispersion
In this Subsect., we describe the dispersion of the cor-

relation between the entropy difference Hv
i − Hs

i and the
mutual information I(x; zi) when the mutual information is
small. We also examine possible sources for such correlation
dispersion.
Close examination on the convex part of the mutual in-

formation vs. entropy difference curve in Fig. 7 and Fig. 8
reveals that the correlation between the mutual information
I(x; zi) and the entropy difference Hv

i − Hs
i is not strictly

monotonic. Instead, there is obvious dispersion of the cor-
relation. The convex part corresponds to the situation in
which candidate sensors are not very informative because
the mutual information between the target location distribu-
tion and the sensor observation is close to 0 bit. In another
words, when candidate sensors are not very informative, the
entropy difference Hv

i −Hs
i might not sort candidate sensors

into the same order as the mutual information I(x; zi) does.
Given a set of candidate sensors whose observation could
only reduce a little amount of uncertainty of the target lo-
cation distribution, the sensor selected on the basis of the
maximum entropy difference Hv

i − Hs
i might not have the

maximum mutual information I(x; zi). Thus, there might
be discrepancy between the sensor selection decision of the
entropy-based heuristic and that of the mutual information
based approaches if no candidate sensor is very informative.
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Figure 8: Mutual information I(x; zi) vs entropy dif-
ference Hv

i − Hs
i of TDOA senors. Each symbol de-

notes (Hv
i −Hs

i , I(x; zi)) pair evaluated for one candi-
date sensor. The prior target location distribution
and the candidate sensor placements are shown in
Fig. 6. Five cases with different standard deviation
σ of Gaussian sensing models are studied. In each
case, all candidate sensors are assumed to have the
same σ value.

There might be multiple causes of such correlation disper-
sion between the entropy difference Hv

i −Hs
i and the mutual

information I(x; zi). As pointed out in Subsect. 2.3, the en-
tropy difference Hv

i −Hs
i can be viewed as an approximation

of the mutual information I(x; zi). Thus, the order of sen-
sors sorted by the entropy difference Hv

i −Hs
i is intrinsically

an approximation of that by the mutual information I(x; zi).
In practice, the discretization of the state space of the tar-
get location random variable and the sensor view random
variable might also introduce inaccuracy into the evaluation
of Hv

i . Besides, as shown in (10) and (11), the maximum
likelihood estimate of the target location is used to approxi-
mate the actual target location when evaluating the entropy
of the sensing model for the actual target location.

4.2 Impact
In this Subsect., we examine the impact of the dispersion

of the correlation between the entropy difference Hv
i − Hs

i

and the mutual information I(x; zi) when the mutual infor-
mation is small. The analysis shows that such correlation
dispersion causes very little degradation to the quality of
sensor selection decision of the entropy-based heuristic.
As shown by the convex part of the mutual information

vs. entropy difference curve in Fig. 7 and Fig. 8, there is
dispersion of the correlation between the entropy difference
Hv

i −Hs
i and the mutual information I(x; zi) when candidate

sensors are not very informative. We model such dispersion
using a uniform distribution bounded by a parallelogram il-
lustrated in Fig. 11. A candidate sensor could assume any
position (Hv

i − Hs
i , I(x; zi)) within the parallelogram with

uniform probability. As shown in Fig. 11, the geometry of
the parallelogram is defined by parameters a, b and c. a
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Figure 9: Scenario of sensor selection for localiza-
tion using sensors with various modalities. The im-
age depicts the prior probability distribution p(x) of
the target location x. p(x) is zero outside the solid
rectangle. The actual target location is (200, 200),
denoted by marker +. The squares, the circles, and
the triangles denote DOA sensors, range sensors and
TDOA sensors respectively. Every TDOA observa-
tion is relative to a common reference sensor de-
noted by marker ×. Each sensor is randomly chosen
to be a DOA sensor, a range sensor, or a TDOA
sensor. Each sensor is also randomly assigned one
of five values of the standard deviation σ of Gaus-
sian sensing models, namely, 2, 4, 8, 16, and 32. The
size of a symbol indicates the magnitude of σ. 100
sensors of various sensing modalities and σ values
are uniformly randomly placed outside the dotted
rectangle. The gap between the solid rectangle and
the dotted rectangle is 32.

is the variation scope of entropy difference Hv
i − Hs

i among
the set of candidate sensors. c indicates the variation scope
of the mutual information I(x; zi) among the set of candi-
date sensors. b describes the magnitude of dispersion of the
correlation between the entropy difference Hv

i −Hs
i and the

mutual information I(x; zi). Although the bounded uniform
distribution is not accurate, it captures the major features
of the correlation dispersion revealed by simulations in Sect.
3. We choose this dispersion model for simplicity. As the
first order approximation, the simple dispersion model does
help to reveal some major characteristics of the impact of
the correlation dispersion on the heuristics-based sensor se-
lection.
A typical dispersion scenario is illustrated in Fig. 11.

The mutual information I(x; zi) of candidate sensors varies
from 0 bit to 1 bit. Correspondingly, the entropy difference
Hv

i −Hs
i of candidate sensors changes from −2 bit to 0 bit.

For any value of the entropy difference Hv
i −Hs

i , the disperse
of the mutual information I(x; zi) is 0.1 bit. Given the above
scenario, we run 10, 000 simulations. In each simulation, 8
candidate sensors randomly assume their (Hv

i −Hs
i , I(x; zi))

pairs within the specified dispersion range. In each simula-
tion, we identify both the sensor with the maximum entropy
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Figure 10: Mutual information I(x; zi) vs entropy
difference Hv

i − Hs
i of mixed senors. Each symbol

denotes (Hv
i −Hs

i , I(x; zi)) pair evaluated for one can-
didate sensor. The prior target location distribution
and the candidate sensor placements are shown in
Fig. 9.

difference Hv
i − Hs

i and the sensor with the maximum mu-
tual information I(x; zi). With 87.8% chance, the sensor
selected by the entropy-based heuristic also has the maxi-
mum mutual information. Even when the heuristic fails to
select the sensor of the maximum mutual information, the
mutual information of the selected sensor is on average only
about 0.026 bit less than the maximum mutual information.
Overall, the mutual information of the sensor selected by the
entropy-based heuristic is about 0.026×(1−87.8%) = 0.0032
bit less than the maximum mutual information. Therefore,
most of the time, the correlation dispersion does not cause
discrepancy of the sensor selection decisions between the
entropy-based heuristic and the mutual information based
approaches. Over all, the entropy-based heuristic introduces
very little degradation to the quality of the sensor select de-
cision even when candidate sensors are not very informative.
We have analyzed the impact of the correlation disper-

sion for different configurations of a, b, c, and the number
of candidate sensors. In table 1 , a = 2 bit, b = 0.1 bit and
c = 1 bit are fixed. We only change the number of candi-
date sensors. The chance for the heuristic to successfully
select the sensor with the maximum mutual information de-
creases as the number of candidate sensors increases. When
the heuristic fails to select the sensor with the maximum
mutual information, the degradation of sensor selection de-
cision based on the heuristic compared to that based on
the mutual information does not change with the number of
candidate sensors. Thus, the overall degradation of sensor
selection decision based on the heuristic compared to that
based on mutual information also increases as the number
of candidate sensors increases.
In table 2 , a = 2 bit and c = 1 bit are fixed and the

number of candidate sensors are fixed to be 8. We only
change the dispersion width b. The chance for the heuristic
to successfully select the sensor with the maximum mutual
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Figure 11: Discrepancy between the entropy-based
sensor selection heuristic and the mutual informa-
tion based approaches when candidate sensors are
not very informative. The dispersion of the corre-
lation between the entropy difference Hv

i − Hs
i and

the mutual information I(x; zi) is modeled by a uni-
form distribution bounded by a parallelogram. The
geometry of the parallelogram is defined by param-
eters a, b and c. Candidate sensors are denoted by
marker × whose coordinates are (Hv

i − Hs
i , I(x; zi)).

The entropy-based heuristic selects the rightmost
sensor, which has the maximum entropy difference
Hv

i − Hs
i and is enclosed by a square marker. The

mutual information based approaches selects the top
sensor, which has the maximum mutual information
I(x; zi) and is enclosed by a diamond-shaped marker.
The above two selected sensors might not be the
same. In the scenario of this figure, a = 2 bits, b = 0.1
bit, c = 1 bit, and 8 candidate sensors are available
for selection.

information decreases as the dispersion width b increases.
When the heuristic fails to select the sensor with the max-
imum mutual information, the degradation of sensor selec-
tion decision based on the heuristic compared to that based
on the mutual information increases as the dispersion width
b increases. Thus, the overall degradation of sensor selection
decision based on the heuristic compared to that based on
mutual information also increases as the dispersion width b
increases.
In table 3 , a = 2 bit and b = 0.1 bit are fixed and

the number of candidate sensors are fixed to be 8. We
only change the mutual information variation scope c. The
chance for the heuristic to successfully select the sensor with
the maximum mutual information increases as the mutual
information variation scope c increases. When the heuristic

Table 1: Impact Change with Number of Sensors
Number of Candidate Sensors 4 8 16

Chance of Success (%) 93.6 87.8 78.2
Degradation per Failure (bit) 0.026 0.026 0.026
Overall Degradation (bit) 0.0016 0.0032 0.0058

Table 2: Impact Change with Dispersion Width
Dispersion Width b (bit) 0.05 0.1 0.2
Chance of Success (%) 93.6 87.8 78.1

Degradation per Failure (bit) 0.013 0.026 0.054
Overall Degradation (bit) 0.0008 0.0032 0.012

Table 3: Impact Change with Mutual Info. Scope
Mutual Info. Scope c (bit) 0.5 1 2
Chance of Success (%) 78.2 87.8 93.6

Degradation per Failure (bit) 0.027 0.026 0.025
Overall Degradation (bit) 0.0058 0.0032 0.0016

fails to select the sensor with the maximum mutual informa-
tion, the degradation of sensor selection decision based on
the heuristic compared to that based on the mutual infor-
mation does not change much with the mutual information
variation scope c. Thus, the overall degradation of sensor
selection decision based on the heuristic compared to that
based on mutual information decreases as the mutual infor-
mation variation scope c increases.
In table 4 , b = 0.1 bit is fixed and the number of can-

didate sensors are fixed to be 8. We proportionally change
the entropy difference variation scope a and the mutual in-
formation variation scope c so that c/a = 1/2 is fixed. The
chance for the heuristic to successfully select the sensor with
the maximum mutual information increases as the entropy
difference variation scope a and the mutual information vari-
ation scope c proportionally increase. When the heuristic
fails to select the sensor with the maximum mutual infor-
mation, the degradation of sensor selection decision based
on the heuristic compared to that based on the mutual in-
formation does not change. Thus, the overall degradation of
sensor selection decision based on the heuristic compared to
that based on mutual information decreases as the entropy
difference variation scope a and the mutual information vari-
ation scope c proportionally increase.

5. FUTURE WORK

5.1 Prior Target Location Distribution
When the sensors is selected for tracking a temporally con-

tinuous source, the prior target location distribution at time
t+1 can be obtained from the posterior target location dis-
tribution at time t by using the target dynamic model as de-
scribed in [11]. However, when the sensor selection heuristic
is applied to locate a temporally discontinuous source such
as a bird call, it is not straightforward to obtain the prior
target location distribution used in the sequential Bayesian
fusion. One possible solution to the above problem could be
as follows. First, all sensors buffer the signal once an event

Table 4: Impact Change with Entropy Diff. Scope c
and Mutual Info. Scope a in Proportion
Entropy Diff. Scope a (bit) 1 2 4
Mutual Info. Scope c (bit) 0.5 1 2
Chance of Success (%) 78.2 87.8 93.6

Degradation per Failure (bit) 0.026 0.026 0.026
Overall Degradation (bit) 0.0058 0.0032 0.0016
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such as a bird call is detected. Then, all triggered sensors
elect a leader that received the strongest signal intensity us-
ing a protocol similar to that described in [10]. Finally, the
leader can pick a few sensors to generate an initial prior tar-
get location distribution assuming a certain sensing model.
With the initial prior target location distribution, we can
apply the sensor selection heuristic to incrementally reduce
the uncertainty of the target location distribution. We plan
to implement and test the above mechanism in the future.

5.2 Discretization of State Space
There is a trade off of computational efficiency and nu-

merical accuracy in the discretization of the state space of
random variables such as the target location and the sen-
sor view. The bigger the grid size is, the fewer grids are
involved in the computation. However, a bigger grid size
also introduces more inaccuracy into the evaluation of the
entropy difference heuristic. In the future, we must study
more details about the trade off in order to choose a proper
grid size.

5.3 Sensing Uncertainty Model
We have assumed Gaussian sensing models in the simu-

lations as the first step to evaluate the heuristic. Inaccu-
racy of sensing models diminishes the effectiveness of any
sensor selection criterion. We plan to construct a more re-
alistic sensing model for the AML-based DOA estimation.
We have implemented AML algorithm for real-time DOA
estimation on a wireless sensor network testbed [5]. We
will first analyze the sensing uncertainty characteristic of
the AML algorithm, and then experimentally validate and
refine it using the testbed. We will also evaluate the effec-
tiveness of the entropy-based sensor selection heuristic using
realistic sensing models and implement the heuristic on the
real-time wireless sensor network testbed for localization.

6. CONCLUSION
We have proposed an entropy-based sensor selection heuris-

tic for localization. The effectiveness of the heuristic has
been evaluated using simulations in which Gaussian sensing
models are assumed for simplicity. Simulations have shown
that the heuristic selects the sensor with nearly the maximal
mutual information between the target location and the sen-
sor observation. Given the prior target location distribution,
the sensor locations, and the sensing models, on average,
the sensor selected by the heuristic would yield nearly the
greatest reduction in the entropy of the posterior target lo-
cation distribution. The heuristic is more effective when the
optimal candidate sensor is more informative. As mutual-
information-based sensor selection approaches [11, 6] do, the
heuristic greedily selects one sensor in each step without re-
trieving any actual sensor observations. In addition, in gen-
eral, our heuristic is computationally much simpler than the
mutual-information-based approaches.
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