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Abstract We propose a time-varying optimal window width

(TVOWW) and an adaptive optimal window width selection

schemes to optimize the performance of several nonlinear-

type time–frequency analyses, including the reassignment

method and its variations. A window rendering the most con-

centrated distribution in the time–frequency representation

is regarded as the optimal window. The TVOWW selection

scheme is particularly useful for signals that comprise fast-

varying instantaneous frequencies and small spectral gaps. To

demonstrate the efficacy of the method, in addition to ana-

lyzing synthetic signals, we study an atomic time-varying

dipole moment driven by two-color mid-infrared laser fields

in attosecond physics and near-threshold harmonics of a

hydrogen atom in the strong laser field.

Keywords Nonlinear-type time–frequency analysis · Time-

varying optimal window width · Adaptive optimal window

width · Attosecond physics

1 Introduction

Scientists investigate nature by collecting diverse types of

data. They then infer the underlying rules by modeling and
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analyzing the recorded data. Time series is a commonly

encountered data type. Its time-evolving nature paves the

way for scientists to access the system’s dynamics. Time–

frequency (TF) analysis is a powerful time series analysis

tool, which captures non-stationary oscillatory dynamics and

serves as a portal to the underlying system.

During the past 70 years, several TF analysis methods

were developed [25], which can be classified into three types:

linear, quadratic, and nonlinear. Linear-type transforms, such

as the short time Fourier transform (STFT) and the contin-

uous wavelet transform (CWT), have been widely studied.

They are subject to the limitation of the uncertainty prin-

ciple associated with the CWT or the STFT [25,26,44].

Quadratic-type transforms, such as the Wigner–Ville dis-

tribution and Cohen class, could provide a more adaptive

analysis of the input signal. However, they suffer from severe

mode mixing artifacts [25]. There are several nonlinear-

type transforms including: the reassignment method (RM)

[3,11] and its variations, the TF by convex optimization

(Tycoon) [33], the Blaschke decomposition (BKD) [18,19],

the empirical mode decomposition (EMD) [30], the iter-

ative filtering [17], the sparsification approach [29], the

approximation approach [16], the TF jigsaw puzzle (TFJP)

for the Gabor transform (GT) [32,43], the non-stationary

GT (NSGT) [5], the matching pursuit [37], and several

others. The variations of RM include the synchrosqueez-

ing transform (SST) [22,53], the synchrosqueezed wave

packet transform [54], the synchrosqueezed S-transform

[31], the second-order SST [41], the concentration of fre-

quency and time (ConceFT) [23], and the de-shape SST

[36]. While the approaches vary from algorithm to algo-

rithm, the common goal of nonlinear-type transforms is to

obtain a “sharpened” TF representation (TFR) that could

provide more accurate dynamical information underlying

the recorded time series. We refer interested readers to [23]
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for a more extensive literature survey and their applica-

tions.

The nonlinear-type transforms can be classified into two

categories. The first category consists of transforms that do

not require choosing a window, like the BKD, the EMD,

and the Tycoon. While the EMD has been widely applied,

its application to data analysis needs more attention due to

its lack of mathematical foundation. The BKD, on the other

hand, is solidly supported by the complex analysis theory.

However, there are still several mathematical challenges left

unsolved, and the application of the BKD to data analysis is

still in its infancy. The Tycoon is a synthesis-based approach

to estimate the TFR with the sparsity constraint based on the

convex optimization. While it theoretically has the potential

to achieve a sharp TFR, it is currently compute-intensive.

The second category consists of transforms that depend on

a chosen window, which can be classified into two subcat-

egories: the reassignment-type and non-reassignment-type.

The reassignment-type subcategory includes the RM and

its variations, and the non-reassignment-type subcategory

includes the other algorithms. While different methods are

subject to different limitations, they are all limited by the

window selection problem. The question is: what is the

optimal window when we analyze a given time series? In

the ideal situation, the optimal window should be universal

and always provides the optimal results under some con-

straints. However, it is widely believed that there probably

is no optimal window due to the complicated nonlinearity

hidden inside the natural signals. To resolve this issue, differ-

ent methods provide different solutions. For example, in the

reassignment-type transforms, we could theoretically prove

that when the signal and window satisfy some regularity con-

ditions, the algorithms are adaptive to the signal, in the sense

that the dependence on the window is negligible; see, for

example, [22, Theorem 3.3]. However, in practice, the situa-

tion might be more complicated. Therefore, the performance

of the algorithm is not guaranteed. Thus, how to determine

the optimal window for nonlinear time series is a crucial

issue.

In this paper, we aim to alleviate this window selection

issue for the reassignment-type transforms. We consider the

Rényi entropy to determine the optimal window. By apply-

ing the optimal window width, the TFR sharpness can be

enhanced while the reconstruction routine of the SST and

its variations can be preserved. We specifically consider a

window that is optimal for a chosen TF analysis, if the distri-

bution of the associated TFR is highly concentrated. While

there are several ways to measure the distribution concentra-

tion, we apply the Rényi entropy [6,20,45], which has been

shown to efficiently estimate the signal information content

and complexity in the TFR.

The article is organized as follows. Section 2 summarizes

the background material, including the adaptive harmonic

model (AHM) describing an oscillatory signal composed

of multiple components and several reassignment-type TF

analysis tools that could be applied to analyze such signals.

Section 3 describes a scheme to optimize the performance

of the reassignment-type TF analyses by window width

selection techniques. A comparison of the proposed scheme

and some non-reassignment-type transforms is also pro-

vided. Numerical results and an application to the attosecond

physics are reported in Sect. 4. A conclusion is drawn in

Sect. 5.

2 Background

In this section, we summarize the AHM to quantify oscilla-

tory signals and review several recently proposed TF analysis

tools suitable for analyzing signals satisfying the AHM.

While the review could be extended to other reassignment-

type transforms, such as the RM, the de-shape SST and the

ConceFT, we only review the SST1 and the second-order SST

in this section.

2.1 Adaptive harmonic model

The AHM aims to describe the time-varying oscillatory

dynamics in a given signal. Suppose that the signal x(t)

is composed of finite K ≥ 1 oscillatory functions; that is,

x(t) =
∑K

k=1 fk(t), where fk is the k-th oscillatory func-

tion and k = 1, . . . , K . The kth oscillatory function fk is

composed of an amplitude modulation (AM) ak(t), which is

positive, and a phase function φk(t), which is strictly mono-

tonically increasing, so that fk(t) = ak(t) cos(2πφk(t)), for

k = 1, . . . , K . The φ′
k(t) is thus positive and is regarded as

the instantaneous frequency (IF) of the k-th oscillatory func-

tion. In this study, we consider only real oscillatory signals,

since most time series we acquire in the real world are real.

While such a AHM describes a signal composed of mul-

tiple oscillatory functions, it is too general to work with and

we need some constraints. Fix ǫ ≥ 0. Let the positive con-

stant c be the supremum of the variation of the IF function;

that is, ‖φ′′
k ‖∞ ≤ c for k = 1, . . . , K . It is also assumed

that the variation of the AM is controlled by the IF; that

is, |a′
k(t)| ≤ ǫφ′

k(t) for all time t ∈ R and k = 1, . . . , K .

We call an oscillatory function satisfying these constraints an

intrinsic mode type (IMT) function. Assume that the smallest

frequency gap between two adjacent IMT components is d,

and d > 0, for all time t ∈ R. That is, φ′
k(t) − φ′

k−1(t) > d,

for k = 2, . . . , K . In practice, we assume ǫ < 1 and is small

enough so that the AM is slowly varying. The function satis-

1 The SST can be defined also on the CWT [22], the S-transform [31],

as well as other linear-type TF transforms [54]. Here we focus only on

the SST defined on the STFT.
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fying the above conditions is said to be the generalized AHM

for the signal, and the constants ǫ, c, d are model parameters.

2.2 STFT

The STFT of a tempered distribution x with respect to a

chosen window G in the Schwartz space is defined by

V G
x (u, η) =

∫ ∞

−∞
x(t)G(t − u)e−i2πη(t−u) dt, (1)

where u ∈ R is the time and η ∈ R
+ is the frequency.

2.3 SST

The SST can be embedded in different linear-type trans-

forms, such as the CWT [22], the wave packet [54], or the

S-transform [31]. Here we only mention the SST embedded

in STFT due to the page limit. The SST with the resolution

κ > 0 and the threshold γ ≥ 0 is defined by

S
G,κ,γ
x (u, ξ) =

∫

Ax,γ (u)

V G
x (u, η)

1

κ
h
( |ξ − ω

γ
x (u, η)|
κ

)

dη,

(2)

where u ∈ R is the time, ξ > 0 is the frequency, Ax,γ (u) :=
{

η ∈ R+ :
∣

∣V G
x (u, η)

∣

∣ ≥ γ
}

, h(t) = 1√
π

e−t2
, κ > 0 and

ωx (u, η) is the reassignment rule:

ω
γ
x (u, η) =

{

−i∂u V G
x (u,η)

2πV G
x (u,η)

when |V G
x (u, η)| ≥ γ

−∞ when |V G
x (u, η)| < γ.

(3)

The TFR determined by the STFT is sharpened by reas-

signing its coefficient at (u, η) to a different point (u, ξ)

according to the reassignment rule. The SST is clearly non-

linear in nature. It is important to note that the reassignment

rule primarily depends on the phase information of the STFT,

which contains the IF information. According to the theoret-

ical analysis in [41,53], the TFR of the SST is concentrated

only on the IFs of all oscillatory components when the IF’s

of IMT functions in x(t) are slowly varying.

While the SST algorithm looks complicated at the first

glance, the idea underlying the algorithm is intuitive. Take

a harmonic function x(t) = Aei2πξ0t into account. Choose

the window function G that satisfies Ĝ is a real function and

Ĝ(ξ) ≥ γ when ξ ∈ [−�,�], where γ > 0 is chosen small

enough and � > 0. Note that x(t) is an IMT function. The

STFT of x(t) could be directly calculated by the Plancherel

theorem, and we have V G
x (u, η) = AĜ(η − ξ0)e

i2πξ0u . The

information we have interest in an oscillatory signal, the

IF, is hidden in the phase of V G
x (u, η). An intuitive idea to

obtain the IF in this case is first apply the logarithm func-

tion on V G
x (u, η), next divide it by i2π , and then apply the

derivative according to u when |Ĝ(η − ξ0)| ≥ γ ; that is,
d

i2πdu

[

log(AĜ(η − ξ0))+ i2πξ0u
]

= ξ0. Clearly, this oper-

ator is equivalent to the reassignment rule; that is,

∂u

log
[

V G
x (u, η)

]

i2π
= −i∂u V G

x (u, η)

2πV G
x (u, η)

(4)

when |Ĝ(η−ξ0)| ≥ γ . We choose
−i∂u V G

x (u,η)

2πV G
x (u,η)

to estimate the

IF since we do not need to worry about the phase unwrapping

problem when applying the logarithm function to a complex

function. To continue, note that we have −i∂u V G
x (u, η) =

2πξ0V G
x (u, η) by a direct calculation. Hence, ω

γ
x (u, η) = ξ0

when η ∈ [ξ0 − �, ξ0 + �] and ω
γ
x (u, η) = −∞ otherwise.

For this signal, we have Ax,γ (u) = [ξ0 −�, ξ0 +�], and the

reassignment rule indicates that the IF is ξ0. Thus, the SST

of x can then be computed by the following equation:

S
G,κ,γ
x (u, ξ)

= ei2πξ0u

∫ ξ0+�

ξ0−�

Ĝ(η − ξ0)
1

κ

1√
π

e−|ξ−ξ0|2/κ2

dη

= Cei2πξ0u 1

κ
e−|ξ−ξ0|2/κ2

, (5)

where C = 1√
π

∫ �

−�
Ĝ(η)dη ≈ 1√

π
G(0). Clearly, when κ

is small, for each u, S
G,κ,γ
x (u, ξ) is concentrated around ξ0,

which help alleviate the smearing effect in the STFT caused

by the uncertainty principle.

2.4 Second-order SST

When the IF is not slowly varying, the sharpening ability

of the SST might be deteriorated. The second-order SST

resolves this problem by taking the second-order informa-

tion in the phase of the STFT to correct the reassignment rule.

The second-order SST could be viewed as a combination of

the SST and the RM—its sharpening ability is similar to that

of the RM, and it allows us to reconstruct IMT functions

like the SST. There are at least two versions of second-order

SST. We discuss the vertical SST (vSST) and the oblique

SST (oSST) [41]. Both the vSST and the oSST depend on

the second-order reassignment rule, which is a correction of

the reassignment rule ω
γ
x in (3):

ω̂
γ
x (u, η) =

{

ω
γ
x (u, η) + c(u, η)

(

u − t̂x (u, η)
)

when ∂η t̂x (u, η) 
= 0

ω
γ
x (u, η) otherwise,

(6)

where u ∈ R is the time, η > 0 is the frequency, and

t̂x (u, η) = u + i
∂ηV G

x (u, η)

V G
x (u, η)

and c(u, η) = ∂tω
γ
x (u, η)

∂η t̂x (u, η)
. (7)
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The vSST with the resolution κ > 0 and the threshold γ ≥ 0

is defined by

vS
G,κ,γ
x (u, ξ) =

∫

Ax,γ (u)

V G
x (u, η)

1

κ
h
( |ξ − ω̂

γ
x (u, η)|
κ

)

dη;

(8)

the oSST with the resolution κ > 0 and τ > 0 and threshold

γ ≥ 0 is defined by

oS
G,κ,γ
x (u, ξ) =

∫∫

V G
x (y, η)eiπ(2ξ−c(y,η)(τ−y))(τ−y)

× 1

κ
h
( |ξ−ω̂

γ
x (y, η)|
κ

) 1

τ
h
( |u − t̂x (y, η)|

τ

)

dηdy. (9)

Note that the vSST could be viewed as a direct generalization

of the SST with the modified reassignment rule, while the

oSST could be viewed as a mixture of the SST and the RM.

The reader is referred to [41] for details of the second-order

SST and [8] for its theoretical analysis.

2.5 IMT function reconstruction

Each IMT function [22] can be reconstructed from the SST,

as well as the vSST, if the input signal x(t) =
∑K

k=1 xk(t)

satisfies the AHM. Take the SST as an example. Each IMT

function xk = ak(t) cos(2πφk(t)), k ∈ {1, ..., K }, can be

reconstructed by the following two steps. First, evaluate the

“complexification” of the k-th IMT function by

x̂C

k (t) = 1

G(0)

∫

Ẑk (t)

S̃
κ,γ

G,x (t, ξ)dξ, (10)

where Ẑk(t) = [φ̂′
k(t) − ǫ1/3, φ̂′

k(t) + ǫ1/3] and φ̂′
k(t) is the

estimated IF of the k-th IMT function, which can be obtained

by the ridge extraction algorithm [9,12,38]. Then, the k-th

IMT function is then extracted by

x̂k(t) = ℜx̂C

k (t), (11)

where ℜ is the operator taking the real part of the input com-

plex value. The reconstruction formula (10) could serve as

an approach to obtain the complex form of a real signal. This

property is important since, in general, evaluating the com-

plex form of an IMT function is a non-trivial issue. It is opted

that to successfully obtain the imaginary counterpart of xk(t)

and ak(t) sin(2πφk(t)) via the Hilbert transform, there are

several constraints for the spectra of ak(t) and cos(2πφk(t)).

We refer the reader with interest to [7,40] for details.

3 Time-varying optimal window widths

It has been well known that a short window is helpful for

analyzing a signal with fast-varying IF components. On the

other hand, for signals with two IMT functions with close

IFs, the window should be long enough to avoid spectral

overlaps. An “optimal” window should provide a balance

between these two facts. However, the uncertainty principle

[26,44] suggests that the benefits of a short and a long window

width cannot be attained simultaneously. In this regard, we

need a method to choose a proper window width dynamically

to balance on both ends.

Several attempts have been proposed in the literature to

balance between different window bandwidths. For example,

in [32,43], the TFJP was proposed to select the optimal win-

dow for the GT based on the Rényi entropy [20]; in [4], the

NSGT depends on a frame associated with a non-uniform

grid on the TF plane, which comes from the information

provided by the signal. The frame could be viewed as the

“optimal window” for the GT. These approaches have been

shown to be helpful in the audio processing [32], for example,

the beat tracking problem [28]. In general, these approaches

could be understood as the TF tiling or a dictionary learning

problem—for a chosen redundancy, how to provide the best

tiling of the TF plane, or to choose the optimal frame, so that

the TF representation is “optimal” based on a chosen crite-

rion, for example, the minimal ℓ1 norm [24] or the minimal

Rényi entropy.

The reassignment-type transforms could be viewed as an

approach to solve the dictionary learning problem by taking

the phase of the STFT into account. Note that the STFT could

be viewed as evaluating the coefficients of a signal associated

with an infinitely redundant dictionary

D = {G(t − ·)ei2πξ t }t∈R,ξ∈R+ , (12)

where G is the chosen window. Directly determining the

optimal frame out of D is not an easy task. Instead of deter-

mining the optimal frame, the reassignment rule used in the

RM and the SST and its variations could be viewed as an

alternative to approximate the optimal frame out of D. Note

that in the SST (2), the vSST (8), and the oSST (9), the

coefficients of the STFT are moved to a new location based

on the reassignment rule. In this sense, nonlinear-type TF

analysis could be viewed as evaluating the coefficients of an

approximated optimal frame. We mention that this viewpoint

has been taken into account to design the Tycoon algorithm

[33]. Theoretically, if the signal satisfies the AHM model,

it has been shown that the reassignment rule could lead to

the optimal frame [12,22,41]. However, due to the lack of

knowledge of the model parameters, like ǫ, c, d of a given

signal, the reassignment rule, and hence the TFR, might be

influenced by the interaction of the chosen window and the

123



Int J Data Sci Anal (2017) 3:231–245 235

time-varying AM and IF, and the overlap of spectra of dif-

ferent oscillatory components. In practice, although we have

a rule of thumb of how to choose the window based on the a

priori knowledge of the signal, the reassignment rule might

deviate from the optimal frame.

In order to resolve this issue, we propose an adaptive

way to determine the optimal window for the reassignment-

type transforms. This approach can be viewed as correcting

the approximated optimal frame determined by the reassign-

ment rule. A window is regarded as optimal for a chosen

reassignment-type TF analysis if it provides the most con-

centrated TFR. Since the IF and AM of each IMT function

may vary from time to time, a single window optimal for

the entire signal might not be suitable. Therefore, the notion

of the optimal window for a chosen TF analysis should be

local. For example, for each time, we determine an optimal

window.

In general, finding the optimal window is a difficult task.

In statistics, the problem is commonly reduced to the win-

dow bandwidth selection problem [52]. In this work, we

simplify the window selection problem to the window band-

width selection problem. To further simplify the discussion,

we consider the Gaussian window, that is,

G(t) = gσ (t) := 1√
2πσ

e−t2/(2σ 2), (13)

where σ > 0 is the bandwidth of the window. In this case, the

STFT is the same as the GT. In this section, for a chosen TF

analysis with the Gaussian window (13), we describe a time-

varying optimal window width (TVOWW) selection scheme

and an adaptive optimal window width (AOWW) selection

scheme to compute a series of local optimal window widths.

We mention that although we focus on the window bandwidth

selection problem with the Gaussian window, the discussion

below could be directly generalized to other window func-

tions or even multiple window functions.

3.1 The TVOWW and the AOWW selection schemes

First select a reassignment-type transform, for example, the

SST. The TVOWW selection scheme evaluates the local win-

dow width by iterating the following steps for each time

u ∈ R:

1. Evaluate the distribution concentration of the TFR on

[u − b, u + b] × R
+, where b ≥ 0 determines the size of

the neighborhood, by a chosen distribution concentration

measure, denoted as Cσ,b(u).

2. The local optimal window width at the time instant u is

determined by

σ̃b(u) := argminσ>0Cσ,b(u). (14)

3. Apply the window width σ̃b(u) to evaluate the TFR of

the signal x(t) at time u.

The proposed scheme could be directly applied to other TF

analyses, such as the STFT, the second-order SST, or other

nonlinear TF analyses. When b = ∞, σ̃b is a constant value

and the SST is reduced to the original SST with one window

width, which is chosen to optimize the selected measure of

distribution concentration. We regard this special case the

global optimal window width (GOWW).

The AOWW selection scheme evaluates the local window

width via iterating the following steps for a given pair of time

and frequency, (u, ξ).

1. Evaluate the distribution concentration of the TFR on

[u − b, u + b] × [max{0, ξ − bF }, ξ + bF ], where b ≥ 0

determines the size of the neighborhood and bF > 0

determines the size of the neighborhood in the frequency

axis, by a chosen distribution concentration measure,

denoted as Cσ,b,bF
(u, ξ).

2. The local optimal window width at the time instant u is

determined by

σ̃b,bF
(u, ξ) := argminσ>0Cσ,b,bF

(u, ξ). (15)

3. Apply the window width σ̃b,bF
(u, ξ) to evaluate the TFR

of the signal x(t) at time u and frequency ξ .

While the AOWW could provide a sharper TFR, com-

pared with the TVOWW, the computational burden of the

AOWW selection scheme is greatly increased. Furthermore,

for a given time u, since the window width varies for differ-

ent frequencies, the reconstruction formula (10) cannot be

applied. We mention that the above algorithm can be easily

generalized to select multiple window functions. Thereby,

different windows can be taken into account in the optimiza-

tion (14) or (15), so that the optimal window function and its

corresponding optimal window width are selected. Since the

multiple window selection is out of the scope of this work,

we will study it in the future work.

3.2 Rényi entropy

The information entropy is a common measure to estimate

the dispersion of an information content. By viewing the TFR

at each time as a probability density function, a larger entropy

indicates a less distributed concentration of the TFR. In this

study, we adopt the Rényi entropy to measure the distribution

concentration of a TFR [6].
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The α-Rényi entropy of a nonzero function p, where α >

0, is defined as

Rα(p) := 1

1 − α
log2

(‖p‖2α

‖p‖2

)2α

, (16)

where ‖p‖α := (
∫

|p(x)|αdx)1/α for 0 < α < ∞. Note

that when α < 1, ‖ · ‖α is not a norm but a quasi-norm.

It is well known that the larger the Rényi entropy is, the

less concentrated the distribution is [32,48]. That is to say, a

window width providing the least Rényi entropy is regarded

as the optimal window width. Note that when α → 0, the

Rényi entropy gives the ℓ0 norm information of the signal;

when α → 1, the Shannon entropy is recovered; and when

α → 1/2, we obtain the information of the commonly used

ratio norm ℓ1/ℓ2. In general, α > 2 is recommended for

TFR measures [48] and we chose α = 2.4 in this study. In

practice, we notice that the results are insensitive within a

certain range of α values (α > 0).

Denote the TFR of a chosen TF analysis P defined on

R × R
+. The TFR distribution is considered the most con-

centrated if its corresponding Rényi entropy is minimized.

We thus define the measure of distribution concentration in

the TVOWW selection scheme as

Cσ,b(u) := 1

1 − α
log2

∫∫

Iu
|R(t, ξ)|2αdtdξ

( ∫∫

Iu
|R(t, ξ)|2dtdξ

)α , (17)

where u ∈ R and Iu := [u−b, u+b]×[0,∞). Similarly, the

distribution concentration measure in the AOWW selection

scheme is defined as

Cσ,b,bF
(u, ξ) := 1

1 − α
log2

∫∫

Ju,ξ
|R(t, ξ)|2αdtdξ

( ∫∫

Ju,ξ
|R(t, ξ)|2dtdξ

)α ,

(18)

where u ∈ R, ξ ∈ R
+, and Ju,ξ := [u − b, u + b] ×

[max{0, ξ − bF }, ξ + bF ].

4 Results and discussions

We start the demonstration of the proposed the TVOWW and

the AOWW selection schemes by analyzing a synthetic data.

We then show the result of analyzing the laser-driven atomic

dipole moment and discuss the performance of the proposed

scheme. In this section, for the SST and the second-order

SST, the numerical value of κ and τ is selected to be small

enough so that 1
κ

h( ·
κ
) and 1

τ
h( ·

τ
) are both implemented as

discretized Dirac measures. The γ value is fixed at 10−6%

of the mean square energy of the signal x(t) under analysis.

4.1 Synthetic signal

Consider a multicomponent signal given by

x(t) = x1(t) + x2(t) + x3(t), (19)

where the signal components are:

x1(t) = cos(2πφ1(t))χ[−∞,20](t)

x2(t) = cos(2πφ2(t))χ[−∞,13.6](t)

x3(t) = cos(2πφ3(t))χ[17.5,∞](t),

where χI is the indicator function supported on I ⊂ R and

φ1(t) = 1.33t−5 + 3t

φ2(t) = −0.0437(t − 5)4+0.5(t − 5)3+0.25(t − 5)2 + 5t

φ3(t) = −2.7

3.5
cos (3.5t) + 0.85(t − 15)2 + 0.5t .

The corresponding IFs are φ′
1(t) = (ln 1.33)1.33t−5 +

3, φ′
2(t) = −0.175(t − 5)3 + 1.5(t − 5)2 + 0.5(t − 5) + 5,

and φ′
3(t) = 2.7sin 3.5t + 1.7(t − 15) + 0.5. The observed

signal Y (t) = x(t) + λΦ(t), where Φ is the white Gaussian

noise with mean 0 and standard deviation (std) 1, and the

λ value (λ > 0) is chosen so that the signal-to-noise ratio

(SNR), defined as 20 log std(x(t))
λ

, is 15 dB. Y (t) is sampled

at 60 Hz from the 0-th to the 25-th second (s). We select the

optimal window width σ from a set of candidate bandwidths,

{11/720, 31/720 . . . , 501/720} s.

4.1.1 TFR with the GOWW

We first show the limitation of using the GOWW selection

scheme for the SST. In other words, we run the optimal win-

dow selection scheme with b = ∞, resulting in the GOWW

of 71/720 s. Fig. 1a demonstrates that the SST with the

GOWW can capture the oscillatory dynamics. Nevertheless,

while a small window width is required to reduce the Rényi

entropy in the TFR, it results in the evident interference pat-

tern between the neighboring IF components. For example,

the spectral gap (differences between the adjacent IF com-

ponents) at the 5-th s (i.e.,φ′
1(5) and φ′

2(5)) is 1.8 Hz, and a

strong interference pattern is observed at the 5-th s. Accord-

ing to Definitions 3.1 and 3.2 in [22], the window width,

measured by the full width at half maximum (FWHM), which

is defined as 2
√

2 ln 2σ̃b, should be at least 1/1.8 ≈ 0.55 s

in order to separate the two neighboring components in the

AHM. Here, the FWHM of the GOWW is 0.23 s, which

is insufficient and leads to the interference pattern. Similar

interference patterns can be observed at times 13.6 s, and

18.5 s, where spectral gaps are approximately 3 Hz and 7

Hz, respectively. It is clear that a larger spectral gap results
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Fig. 1 a TFR of the SST with

the GOWW. b The TFR of the

SST with the TVOWW. c The

true IFs (blue x1(t); magenta

x2(t); red x3(t)) are

superimposed on the TFR of the

SST with the TVOWW. Note

that the range of the color bar is

increased for the comparison. d

The spectral gap (upper panel)

and the corresponding TVOWW

(lower panel). It is clear that

when the spectral gap is small, a

longer window is needed. The

TFR values are normalized by

the z-score (color figure online)
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(a) SST with the GOWW
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(b) SST with TVOWW
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(d) Spectral gap and the TVOWW

in a less coupled interaction between the IF components. In

summary, since the optimal window is chosen globally, the

local details may not be refined even if the overall sharpness

of the TFR is increased.

4.1.2 TFR with the TVOWW

We next demonstrate that the proposed TVOWW selection

scheme can further improve the TFR quality. To reduce the

computation capacity, we evaluate the local optimal win-

dow width every 0.25 s in a neighborhood with a width of

2b = 0.33 s. The neighborhood size is found to be insen-

sitive to the final result. While a small value is favorable,

the width of the neighborhood should be greater than the

sampling period [27]. Subsequently, a linear interpolation is

applied to the samples of the TVOWWs such that there is an

optimal window for each time instant in the signal interval.

The TFR of the SST with the TVOWW is presented in Fig. 1b

and its comparison with the true IFs is displayed in Fig. 1c. It

is clearly shown that the coupling artifact between closing IF

components is eliminated, particularly at the 5th s, as well as

at the 13.6, and 18.5 s. The IF components in the TFR with

an improved quality approaches the ideal IF components, as

in Fig. 1c. We further display the corresponding TVOWW

along with the spectral gap in Fig. 1d. According to this fig-

ure, the window widths become large at the closing times 5,

13.6, and 18.5 s to separate the different IF components. Note

that at time 5 s, the largest window width is σ̃b = 345
720

= 0.48

s, corresponding to a FWHM of 1.08 s, which is larger than

0.55 s.

4.1.3 Necessity of selecting a proper window width

In this subsection, we accentuate that while the second-order

SST and the RM could provide a sharper TFR compared with

the SST, the impact of the window width is not negligible. We

demonstrate the TFR of the synthetic signal (19) analyzed by

the second-order SST and the RM in Figs. 2 and 3. In both

figures, no noise is involved. While the second-order SST

and the RM can mitigate the limitation of the SST caused by

the fast-varying IF components, without a proper choice of

the window width, the second-order SST and the RM could

fail.

Figure 2 shows that a large window width is required to

separate the two components with closing IFs. The (a–d) in

Fig. 2 are TFRs using a small window width 111
720

s, which

is the GOWW of the vSST. The coupling artifact between

the two components caused by the small width for the all

transforms is evident. As mentioned in previous sections, the

coupling artifact can be greatly diminished by increasing the

window width. In (d–h) in Fig. 2, we choose the window

width as 345
720

s, which is the largest TVOWW for the SST.

For all TFRs, the two IF components are clearly separated,

particularly in the RM result Fig. 2h.
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Fig. 2 A large window is

needed to separate the two

adjacent IF components for

different TF analyses. The

window width in the upper

panel is 111
720

s (small) and that in

the lower panel is 345
720

s (large).

The TFRs of the SST, the vSST,

the oSST, and the RM are shown

in (a, e), (b, f), (c, g), and (d, h),

respectively. The TFR values are

normalized by the z-score. It is

clear that while the TFRs of the

second-order SST and the RM

are sharpened, with the small

window width these TFRs suffer

from the “coupling artifact”

caused by the two closing IF

components. A longer window

width in this case can help

remove the artifact. We could

see that the SST could not well

handle the fast-varying IF
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(a) SST, small window width
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(b) vSST, small window width
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(c) oSST, small window width
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(d) RM, small window width
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(e) SST, large window width
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(f) vSST, large window width
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(g) oSST, large window width
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(h) RM, large window width

Figure 3 shows that a small window width is required to

capture the variation in an oscillating IF component. Note

that the small window width is 111
720

s and the large window

width is 251
720

s. A small window width provides a fine tem-

poral resolution, which allows us to extract the dynamical

information of an IF component (a–d in Fig. 3), while a large

window width causes ambiguity in temporal direction (e–h

in Fig. 3).

In summary, a proper window width is a prerequisite to

obtain the accurate IF information in the TFR in spite of the

fact that the conventional reassignment rule in the RM and

high-order reassignment rules in the second-order SST can

cope with the fast-varying IF components efficiently.

4.1.4 Reconstruction error analysis

Finally, to quantify the improvement of the TFR by tak-

ing the TVOWW into account, we evaluate the normal-

ized root-mean-square deviation (RMSD) by comparing the

reconstructed signal components, the IF, and the AM with

corresponding true answers.

The normalized RMSD for the evaluation component f̂i ,

where i = 1, 2, and 3, is given as

Normalized RMSD
(

f̂i

)

=
‖ f̂ 2

i (t) − f 2
i (t)‖L2

| fi,max − fi,min|
, (20)
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Fig. 3 A small window width

is needed to capture the variation

in the oscillatory IF component.

The window width in the upper

panel is 111
720

s (small) and that in

the lower panel is 251
720

s (large).

The TFRs of the SST, the vSST,

the oSST, and the RM are shown

in (a, e), (b, f), (c, g), and (d, h),

respectively. The TFR values are

normalized by the z-score. It is

clear that while the TFRs of the

second-order SST and the RM

are sharpened, with the large

window width these TFRs are

“confused” by the fast-varying

IFs. A shorter window width in

this case can help increase the

TFR quality. We could see that

the SST could not well handle

the fast-varying IF
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(a) SST, small window width
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(b) vSST, small window width
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(c) oSST, small window width
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(d) RM, small window width
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(e) SST, large window width

Time (Sec) 

F
re

q
u

e
n

c
y
 (

H
z
)

17 18 19 20 21 22
0

5

10

15

20

0

1

2

3

4

5

6

(f) vSST, large window width
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(g) oSST, large window width
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(h) RM, large window width

where fi,max and fi,min are the maximum and minimum

values of fi , respectively. Here f̂i can represent the recon-

structed signal component x̂i , the reconstructed IF, and the

reconstructed AM from the TFR.

In addition to the noiseless condition, we compute the

normalized RMSD for SNR of 15 and 10 dB for 25 trials and

report the mean and the standard deviation of the normalized

RMSD.

The results for the reconstruction performance, the recon-

structed IF, and the reconstructed AM for each component

are presented in Figs. 4, 5, and 6, respectively. The IF com-

ponents are estimated by evaluating the center of mass of the

TFR. The AM components are extracted from the envelope

of the reconstructed signal components. Note that the error

varies for different methods to compute the AM components.

The results confirm the benefit of the TVOWW selection

scheme, particularly for the components x1(t) and x2(t). For

x3(t), the errors of the GOWW and the TVOWW selection

schemes are similar, since this signal component is less cou-

pled with the others.

The results for the reconstructed IF and the reconstructed

AM for each component are presented in Figs. 5 and 6,

respectively. The IF components are estimated by evaluat-

ing the center of mass of the TFR. The AM components are

extracted from the envelope of the reconstructed signal com-

123



240 Int J Data Sci Anal (2017) 3:231–245

no noise snr=15 dB snr=10 dB
0

0.01

0.02

0.03

0.04

0.05

x
1
(t)

n
o

rm
a

liz
e

d
 R

M
S

D

GOWW

TVOWW

(a)

no noise snr=15 dB snr=10 dB
0

0.01

0.02

0.03

0.04

0.05

0.06

x
2
(t)

n
o

rm
a

liz
e

d
 R

M
S

D

GOWW

TVOWW

(b)

no noise snr=15 dB snr=10 dB
0

0.01

0.02

0.03

0.04

x
3
(t)

n
o

rm
a

liz
e

d
 R

M
S

D

GOWW

TVOWW

(c)

Fig. 4 Normalized RMSD estimated by comparing the true answer xi (t) with the reconstructed signal x̂i (t) from TFRs with the GOWW or the

TVOWW for i = 1, 2, and 3. Noisy cases are considered for the SNR of 15 and 10 dB

no noise snr=15 dB snr=10 dB
0

0.02

0.04

0.06

0.08

0.1

x
1
(t)

n
o

rm
a

liz
e

d
 R

M
S

D

GOWW

TVOWW

(a)

no noise snr=15 dB snr=10 dB
0

1

2

3

4

5

6

7

x 10
−3

x
2
(t)

n
o

rm
a

liz
e

d
 R

M
S

D

GOWW

TVOWW

(b)

no noise snr=15 dB snr=10 dB
0

0.005

0.01

0.015

0.02

0.025

x
3
(t)

n
o

rm
a

liz
e

d
 R

M
S

D

GOWW

TVOWW

(c)

Fig. 5 Normalized RMSD estimated by comparing the true instantaneous frequency with the reconstructed instantaneous frequency from TFRs

with the GOWW or the TVOWW for each IMT. Noisy cases are considered for the SNR of 15 and 10 dB
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Fig. 6 Normalized RMSD estimated by comparing the true amplitude modulation with the reconstructed amplitude modulation from TFRs with

the GOWW or the TVOWW for each IMT. Noisy cases are considered for the SNR of 15 and 10 dB

ponent. Note that the error varies for different methods to

compute the AM components.

Although not shown in the paper due to the page limit, we

mention that the TVOWW selection technique can be applied

to the second order SST and other variations of the SST to

improve the reconstruction quality.

4.1.5 Toward an optimally concentrated TFR—AOWW

We demonstrate that the AOWW selection scheme can

achieve a more concentrated TFR by considering the optimal

window width in both time and frequency axes. For the exam-

ple of the synthetic signal, we set 2bF = 1.6 Hz and evaluate

the local optimal window width every 1.4 Hz. The TFR

results for the SST and the vSST using the AOWW selection

scheme are presented in Fig. 7. By comparing Fig.7a with

1b, we found that the TFR is sharpened using the AOWW

selection scheme, at the expense of significantly increased

computation and the lost of the inverse routine to reconstruct

each IMT component. Moreover, the TFR of the vSST with

the AOWW (Fig.7b) and that with the TVOWW is similar.

4.1.6 The influence of parameters in the GOWW, the

TVOWW and the AOWW selection schemes

We mention that the optimal α value chosen for the Renyi

entropy might depend on the application. For a specific appli-

cation, we could further optimize α, and it might depend on
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Fig. 7 TFRs of the SST and the

vSST using the AOWW
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(b) vSST

Table 1 Component reconstruction errors for three different values of

α in the GOWW and the TVOWW selection schemes

α = 2 α = 2.4 α = 2.8

x1(t) GOWW 0.1177 0.1177 0.1177

TVOWW 0.0357 0.0359 0.0353

x2(t) GOWW 0.1152 0.1152 0.1152

TVOWW 0.0288 0.0287 0.0280

x3(t) GOWW 0.0202 0.0202 0.0202

TVOWW 0.0210 0.0213 0.0213

Here b and bF are fixed

Table 2 Component reconstruction errors for three different values of

b in the TVOWW selection scheme

b = 0.08s b = 0.17s b = 0.25s

x1(t) 0.0354 0.0358 0.0398

x2(t) 0.0288 0.0294 0.0342

x3(t) 0.0199 0.0200 0.0200

Here α and bF are fixed

parameters such as the sampling rate, frequency-axis and

time-axis discretization, and the parameters b and bF .

In this subsection, we show that the GOWW, the TVOWW

and the AOWW selection schemes are not sensitive to these

parameters. Table 1 presents the normalized RMSD of the

reconstructed components for three different α, which are

2, 2.4, and 2.8. Here b and bF are fixed. Table 2 presents

the normalized RMSD of the reconstructed components for

three different b, which are 0.8 s, 0.17 s, and 0.25 s. Here

α and bF are fixed. Since no reconstruction routine is avail-

able for the AOWW, the evaluation of the dependence of the

AOWW on the chosen parameters is based on the deviation

of the IF components via ridge extraction. Table 3 presents

the normalized RMSD of the reconstructed IF components

for three different bF , which are 0.6 Hz, 0.8 Hz, and 1 Hz.

Here α and b are fixed. Here the local optimal window width

is evaluated every 1 Hz. These results provide the evidence

that the GOWW, the TVOWW, and the AOWW selection

schemes are stable to three major parameters α, b, and bF .

Table 3 Instantaneous frequency reconstruction error with three dif-

ferent values of bF in the AOWW selection scheme

bF = 0.6 Hz bF = 0.8 Hz bF = 1.0 Hz

x1(t) 0.0184 0.0170 0.0150

x2(t) 3.29 × 10−4 2.72 × 10−4 2.66 × 10−4

x3(t) 0.0056 0.0049 0.0050

Here α and b are fixed

4.2 Application to attosecond physics

During the past decade, real-time observation and direct

control of electronic motion in atoms, molecules, nanos-

tructures and solids have been achieved due to advent in

the synthesis of attosecond pulses [34]. In general, an iso-

lated attosecond pulse is created by the superposition of

a broadband supercontinuum in high-order harmonic gen-

eration driven by high-intensity femtosecond laser pulses

[13]. To date, an isolated attosecond pulse as short as 67

attoseconds has been reported [55]. To synthesize shorter

attosecond pulses, a better understanding of the underlying

physical mechanism is needed. The physical mechanism of

the synthesis of attosecond pulses can be understood by ana-

lyzing the electron dipole moment oscillation induced by an

applied laser field via the TF analysis. In the previous litera-

ture [1,2,14,35,39,42,47,50,51], the linear-type transforms

based on short window widths have been adopted and the

results are consistent with the classical trajectory simulations

[21]. However, there is no discussion on how and why small

windows are chosen in the field of attosecond physics.

To clarify this issue, we study the electron dipole moment

in atomic hydrogen evoked by an optimally shaped laser

waveform that can generate an isolated 21 attosecond pulse

[15]. Such a laser profile can greatly extend the high-order

harmonics up to 900 harmonics within a short time interval,

suggesting fast-varying IF components. The time-dependent

dipole moment in the acceleration form is computed by

solving a three-dimensional time-dependent Schrödinger

equation in the framework of the time-dependent general-

ized pseudospectral (TDGPS) method within the electric

dipole approximation [49]. The TDGPS method gives accu-

rate orbital energies and has been employed in the strong

123



242 Int J Data Sci Anal (2017) 3:231–245

Time (Cycle)

H
a

rm
o

n
ic

 O
rd

e
r

−0.5 0 0.5 1
0

200

400

600

800

1000

Fig. 8 TFR of the SST with the TVOWW for the electron dipole

moment in an acceleration form. Note that the TFR is in the logarith-

mic scale. The second emission that reaches up to the 900th harmonic

order in a very short interval can be utilized to synthesize an isolated

ultrashort attosecond pulse

field physics as well as attosecond science. The simulation

details are referred to [15].

We then compute the Rényi entropy for a series of win-

dow widths, ranging from 0.25 atomic units (a.u.) to 8.33

a.u. We apply the TVOWW selection scheme with a neigh-

borhood size of 2b = 10 a.u., resulting in Fig. 8. Figure 8

indicates that there are three emissions taking place. The cut-

offs of the first and third emissions are located at around the

500th order, and the second emission reaches the 900th order.

The branches on the TFR nearly coincide with the classical

trajectories reported in the previous literature [15]. For com-

parison purposes, enlarged details of the second emission

with the GOWW and the TVOWW are displayed in Fig. 9.

It is observed that at around 0.43 laser cycles (1 laser cycle

= 275.77 a.u.), the branch indicated by the blue arrow in

Fig. 9b corresponding to the long trajectory quantum path

has the strongest intensity and consists of the most harmon-

ics. While the branch indicated by the red arrow dies out after

0.35 laser cycles in the TFR of the SST with the GOWW

(Fig. 9a), it is revealed by the result with the TVOWW

(Fig. 9b) that the short trajectory quantum path also has

an influence on the high-order harmonic emission. These

high-order harmonics occur almost simultaneously, which

is a prerequisite of a dependable attosecond pulse.

In the second example, we demonstrate that the AOWW

selection scheme is beneficial to distinguish the near-

threshold harmonics in the TF representation of a hydrogen

atom in the strong laser field. Figure 10 shows the TF rep-

resentations for HHG generated by a monochromatic laser

field with a wavelength of 800 nm and an intensity of

5 × 1013 W/cm2. The laser field profile is described by

sin2(π t/(nT )), where n = 40 is the pulse length mea-

sured in optical cycles (T = 2π/ω0), and ω0 is fundamental

angular frequency of the laser wavelength. (The definition

of the laser field profile and the simulation details can be

found in [46,47].) The laser parameters correspond to the

Keldysh parameter γK = 1.51 [10,47], indicating that the

main dynamic mechanism is the multiphoton ionization pro-

cess. Generally speaking, γK ≫ 1 and γK ≪ 1 correspond

to the multiphoton ionization regime and the tunneling ion-

Fig. 9 Enlarged figures from

Fig. 8 show delicate differences

between the TFR with the

GOWW (a) and the TVOWW

(b). The blue arrow indicates

the branch corresponding to the

long trajectory quantum path,

and the red arrow indicates the

branch corresponding to the

short trajectory quantum path
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Fig. 10 a TFR of the

synchrosqueezed Morlet wavelet

transform of the acceleration

dipole moment using a laser

field of a wavelength of 800 nm

and an intensity of

5 × 1013 W/cm2. b The TFR of

the synchrosqueezed Morlet

wavelet transform with the

AOWW selection scheme
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(b) AOWW applied to the Syn-

chrosqueezed Morlet wavelet transform
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ization regime, respectively. Figure 10a presents the result

of the synchrosqueezed Morlet wavelet transform with a

scaling parameter τ = 6, and in Fig. 10b, the AOWW

selection scheme is applied. Due to the advantage of mul-

tiresolution, the synchrosqueezed Morlet wavelet transform

[35,47] can clearly describe the below-threshold harmon-

ics (from the 1st to the 5th harmonics), and the chirp-like

dynamics in the above-threshold region. However, in the

near-threshold region (The ionization threshold in this case is

the 8.78th harmonic.), the harmonics (i.e., from the 7th to the

11th harmonics) are coupled and ambiguous. After applying

the AOWW selection scheme with a neighborhood size of

2b = 0.24T and 2bF = 0.46ω0, the near-threshold harmon-

ics in Fig. 10b are clearly depicted in the TFR. The second

example indicates that the AOWW selection scheme may be

applied to other atomic systems such as the Cs atom [35].

4.3 A comparison with other methods

The proposed TVOWW and the AOWW selection schemes

have similarities with some non-reassignment-type TF anal-

ysis methods. For example, in the sparsification approach

[29], when the signal satisfies the regularity conditions of the

AHM, a dictionary design and a sparsity-based optimization

lead to the desired time-varying spectral information and sig-

nal decomposition. However, it is not clear how to achieve

the optimal dictionary design, and the optimization step in

the sparsification could be compute-intensive if the dictio-

nary is chosen improperly. To have a parallel comparison

with the reassignment-type transforms, note that the dictio-

nary in the reassignment-type transforms, for example, D

in (12), is infinitely redundant. The “optimal” frame is not

chosen by any direct optimization procedure. Instead, the

reassignment rule provides an approximation of the optimal

frames. When combined with the TVOWW or the AOWW

selection scheme, we get the optimal frame over an infinitely

redundant dictionary. In this sense, when combined with the

TVOWW or the AOWW, the reassignment-type transforms

could be viewed as a variation of the sparsification approach.

The Tycoon [33], on the other hand, could be viewed as

a TF analysis technique based on the convex optimization

from the synthesis viewpoint [4]. In this approach, we do

not design a dictionary or choose a window. Instead, we

need to determine some fundamental quantities that a “good”

TFR should satisfy and then directly find this good TFR by

optimizing a functional capturing the determined fundamen-

tal quantities. Since the TFR determined by the SST could

approximate the considered functional [22,33], the combi-

nation of the TVOWW or the AOWW and the SST and its

variations could be viewed as a relaxation of the Tycoon.

In the TFJP [32], we first fix a TF plane tiling. For each

block in the TF plane tiling, the optimal window for the GT

is then selected based on the Rényi entropy. While it leads

to a sharper TFR, the “uncertainty” still exists. Furthermore,

since the TF plane tiling is not uniformly distributed, the sig-

nal decomposition ability is limited. While the SST and its

variations combined with the TVOWW or the AOWW selec-

tion schemes could be viewed as a variation of the TFJP in the

sense of “window selection,” we mention that the TFJP and

frame-based methods are different in essence. Specifically,

TFJP is not specifically designed for sums of frequency mod-

ulated signals but for a more general signal, so the application

fields of the TFJP are different.

5 Conclusions

In this study, we propose two optimal window width selec-

tion schemes, namely the TVOWW and the AOWW selection

techniques, to optimize the concentration of the TFR deter-

mined by a chosen TF analysis. The Rényi entropy is applied

to determine the concentration of the TFR. In addition to

showing the performance of the proposed scheme in a syn-

thetic signal, we show potential applications of this method

to attosecond physics. We believe that this work can serve as

a cornerstone in ultrafast dynamics in atoms and molecules

to uncover new physics.
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