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Abstract

Mixture models are a common unsupervised learning tech-
nique that have been widely used to statistically approximate
and analyse heterogenous data. In this paper, an effective mix-
ture model-based approach for positive vectors clustering and
modeling is proposed. Our mixture model is based on the in-
verted Beta-Liouville (IBL) distribution. To deploy the pro-
posed model, we introduce an entropy-based variational in-
ference algorithm. The performance of the proposed model
is evaluated on two real-world applications, namely, human
activity recognition and image categorization.

1 Introduction
Nowadays, we observe a rapid growth of complex data in
all format due to the technological development. Thanks to
the field of machine learning, we can automatically analyze
and infer useful information from these large-scale data. In
particular, data clustering is regarded as one of the most fa-
mous data analysis tools aiming at grouping data with sim-
ilar patterns into the same cluster. Among existing cluster-
ing techniques, finite mixture models have shown great flex-
ibility in data modeling and have been successfully used in
various applications like pattern recognition and smart build-
ings (Nguyen et al. 2019), (Manouchehri et al. 2019a). Most
existing related works assume that data samples are mainly
drawn from a Gaussian distribution. However, this assump-
tion has made the applicability of Gaussian mixture models
very limited as this type of distribution is not suitable for
all kinds of data (Elguebaly and Bouguila 2014). Therefore,
researchers have proposed alternative non-Gaussian mixture
models such as Dirichlet mixture models that are more rec-
ommended for proportional data modeling (Fan et al. 2017).
In addition, inverted Dirichlet mixture models have shown
great generalization capabilities due to their great model-
ing flexibility when dealing with asymmetric and symmet-
ric semi-bounded data (Bdiri and Bouguila 2013; Mashrgy,
Bdiri, and Bouguila 2014). However, a major drawback
of the inverted Dirichlet mixture model is that it assumes
that the feature vectors are positively correlated. Another
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challenge that we face when working with mixture mod-
els is the parameters estimation that is usually not simple
and analytically intractable. Multiple techniques have been
proposed to overcome this problem, like maximum likeli-
hood and expectation-maximization (EM) (Bishop 2006).
Nonetheless, they are impractical as they tend to cause over-
fitting. On the other side Bayesian-based techniques such as
Markov Chain Monte Carlo (MCMC) (Robert and Casella
2013) are more accurate but their convergence is not guar-
anteed. Another critical aspect to consider when designing
a mixture model is the selection of the optimal number of
components to represent the data. The minimum message
length criterion (Bouguila and Ziou 2005) is an example of
approaches that deals with this problem, to name a few.

In order to overcome the issues named above, we pro-
pose a novel finite variational inverted Beta-Liouville mix-
ture model for data clustering. Our work is motivated by
the success of the inverted Beta-Liouville (IBL) distribu-
tion (Maanicshah et al. 2020) (Fan and Bouguila 2016) in
various applications. According to (Bouguila 2011) (Fan and
Bouguila 2013) the Liouville family of distributions has re-
vealed great modelling capabilities when dealing with data
modeling. We also develop a variational inference algorithm
that efficiently learns the latent parameters of our proposed
model. The objective here is to find an approximate esti-
mation of the true posterior that minimizes the Kullback-
leibler divergence between the true posterior distribution and
the approximated one. Furthermore, we propose an entropy-
based variational learning algorithm to select the optimal
number of mixture components. Initially, we start with one
component, and continue incrementally to find the perfect
number of components.

The remainder of this paper is organized as follows. In
Section 2, we introduce the statistical background of the in-
verted Beta-Liouville mixture model. We describe the vari-
ational learning process of our model parameters in Section
3. Section 4 explains the entropy-based variational inference
process algorithm for model selection. We provide the re-
sults of our experiments on two real-world datasets in Sec-
tion 5. Finally, the paper is concluded in Section 6.



2 Model Specification
Let ~Xi = (Xi1, . . . , XiD) be a D dimensional vector gen-
erated from a set of N independently identically distributed
data samples X = ( ~X1, . . . , ~XN ), drawn from an inverted
Beta-Liouville distribution (Fan and Bouguila 2019):

p( ~Xi | αj1, . . . , αjD, αj , βj) =
Γ(
∑D
l=1 αjl)Γ(αj + βj)

Γ(αj)Γ(βj)

×
D∏
l=1

X
αjl−1
il

Γ(αjl)

( D∑
l=1

Xil

)αj−
∑D

l=1 αjl
(

1 +

D∑
l=1

Xil

)−(αj+βj)

(1)

The parameters of the probability density function for each
component j are θj = (αj1, . . . , αjD, αj , βj). By assuming
that each ~Xi is generated from a mixture of inverted Beta-
Liouville distributions, we can define the mixture model as:

p(X | ~π,Θ) =

N∏
i=1

M∑
j=1

πjp( ~Xi | θj) (2)

where p( ~Xi | θj) refers to the conditional probability of
the data samples with respect to each component, Θ =
(θ1, . . . , θM ) and ~π = (π1, . . . .πM ) is defined as the set
of mixing coefficients with the constraints

∑M
j=1 πj = 1

and 0 ≤ πj ≤ 1. Subsequently, we define an indicator ma-
trix Z = (~Z1, . . . , ~ZN ), where ~Zi = (Zi1, . . . , ZiM ) is a
binary latent vector associated with every data sample ~Xi,
with constraints Zij ∈ {0, 1} and

∑M
j=1 Zij = 1. We as-

sume that Zij is equal to 1 if ~Xi belongs to the component
j, and zero otherwise. The conditional probability distribu-
tion of the indicator variable Z is given by:

p(Z | ~π) =

N∏
i=1

M∏
j=1

πj
Zij (3)

From the equation above, we can define the following con-
ditional distribution

p(X | Z,Θ) =

N∏
i=1

M∏
j=1

p( ~Xi | θj)Zij (4)

Since these parameters are positive, it would be convenient
if we describe the priors with the Gamma distribution G(·)
as follows:

p(αjl) = G(αjl | ejl, fjl) =
f
ejl
jl

Γ(ejl)
αjl

ejl−1e−fjlαjl (5)

p(βj) = G(βj | gj , hj) =
h
gj
j

Γ(gj)
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p(αj) = G(αj | uj , νj) =
ν
uj

j

Γ(uj)
αj

uj−1e−νjαj (7)

where all the hyperparameters are positive. At this point, we
can represent the joint distribution for all the random vari-
ables as:
p(X ,Z,Θ | ~π) = p(X | Z,Θ)p(Z | ~π)p(~αl)p(~β)p(~α)

(8)
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(9)

3 Model Learning with Entropy-Based
Variational Inference

We define Q(Θ) as the approximation of the true posterior
p
(
Θ | X , ~π

)
. The main goal of variational inference is to

minimize the difference between the approximated distribu-
tion and the true posterior (Bishop 2006). The estimation
of the true posterior distribution is accomplished with the
Kullback-Leibler (KL) divergence between the two distribu-
tions. Therefore, the KL divergence between p

(
Θ | X , ~π

)
and Q(Θ) is defined as follows:

KL
(
Q || P

)
= ln p

(
X | ~π

)
− L

(
Q
)

(10)

L
(
Q
)

=

∫
Q
(
Θ
)

ln

(
p
(
X ,Θ | ~π

)
Q
(
Θ
) )

dΘ (11)

According to the Jensen’s inequality L(Q) ≤ ln p(X | ~π),
L(Q) acts as the lower bound of the log likelihood. This
means that we can minimize the KL divergence by max-
imizing the lower bound L(Q) (Bishop 2006). We adopt
the mean field approximation approach in order to find the
optimal parameters of the fully factorizable distribution Q,
where Q(Θ) = Q(Z)Q(~α)Q(~β)Q(~π)Q(~αl). For a specific
parameterQs(Θs), we can represent the optimal solution as:
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(
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)
=
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〈

ln p
(
X ,Θ

)〉
i6=s∫

exp
〈

ln p
(
X ,Θ

)〉
i 6=sdΘ

(12)

where 〈·〉i 6=s indicates the expectation with respect to all
the parameters except Qs. The variational approximations
of our model are concluded as follows:

Q
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Z
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All needed quantities in above equations namely r̃ij ,
(u∗j , ν

∗
j ), (g∗j , h

∗
j ), and (g∗j , h

∗
j ) are developed in (Fan and

Bouguila 2019).
The entropy-based variational Bayes for learning the finite
inverted Beta-Liouville mixture model (EV-IBLMM) is de-
veloped in the same way as in (Fan et al. 2018) using differ-
ential entropy estimation and MeanNN entropy estimator.
Let p( ~Xi) be the probability density function of a random
variable ~Xi = ( ~X1, . . . , ~XD) belonging to a set of N sam-
ples { ~Xi, . . . , ~XN}, i = 1, . . . , N . The differential entropy
of the continuous random variable ~Xi is defined by:

H
(
~Xi

)
= −

∫
p( ~Xi) log2 p( ~Xi)d ~Xi (17)

The maximum differential entropy of the IBL is given by:

HIBL

[
p
(
~Xi | θ

)]
= ln

[Γ(α)Γ(β)(
∏D
l=1 Γ(αl))

Γ(α+ β)Γ(
∑D
l=1 αl)

]
+ (α+ β)(ψ(β)− ψ(α+ β)) +

D∑
l=1

[
(1− αl)(ψ(αl)

− ψ
( D∑
l=1

αl

)]
+ (D − α)(ψ(α)− ψ(α+ β)) (18)

Details about MeanNN entropy estimator can be found in
(Faivishevsky and Goldberger 2009) and its application in
our case is straightforward and similar to (Fan et al. 2018).

4 Experimental Results
In this section, we evaluate the performances of our pro-
posed model EV-IBLMM based on real-world challenging
datasets for human activity recognition and image catego-
rization applications. We compare the results of our experi-
ments with two other similar models, namely, Entropy-based
Variational Dirichlet Mixture Model (EDMM) (Fan et al.
2017) and Entropy-based Multivariate Beta Mixture Model
(EV-MBMM) (Manouchehri et al. 2019b).

Human Activity Recognition (HAR)
Human activity recognition in smart homes is a key fac-
tor to achieve home automation especially with the signif-
icant advancement in sensing technologies. It enables the
smart applications to automatically react according to the
human behaviour. However, automatically recognizing hu-
man activities like walking, sleeping and cooking is a chal-
lenging task, because human activities are complex by na-
ture. In order to validate the performance of our model on
the human activity recognition task, we used a dataset pro-
posed in (van Kasteren, Englebienne, and Kröse 2011). This
dataset was collected based on several types of wireless sen-
sors including contact switches, pressure mats, and float sen-
sors. It is to note that the recorded data are prone to noise
because data might be lost if one of these sensors gets dis-
connected from the network. In this study, 20 sensors have
been used, where each sensor represents a feature to our
model. Since actions can overlap, the action that lasts longer

Table 1: Accuracy comparison of our EV-IBLMM approach
and the baseline methods on the Human Activity Recogni-
tion dataset.

Method Accuracy(%)
EV-IBLMM 95.00
EV-MBMM 93.30
EDMM 92.52

is maintained and kept. Thus, we consider a total of 6851
entries with 4 recorded activities. These activities include
eating, sleeping, taking a shower and opening a door. The
results of our proposed model and baselines are shown in
Table 1. We can see that our model achieves the best accu-
racy performance among the other mixture models, which
further demonstrates its efficiency for automatic human ac-
tion recognition.

Image Categorization
Image categorization is considered as one of the important
tasks of computer vision, and has witnessed much attention
in the last decades. In this part of our experiments, we tested
our proposed model on the image clustering task based on
the Caltech101 image dataset (Fei-Fei, Fergus, and Perona
2004). This dataset contains images from 101 classes, with
about 40-800 images in each category. For evaluation, we
select a subset of 2033 data samples from 3 classes, namely,
motorbikes, faces and airplanes. Some sample images from
the three considered categories are illustrated in Figure 1. In

Figure 1: Sample images of each category from the consid-
ered subset of the Caltech101 dataset.

order to test our model on the Caltech101 dataset, we use
SIFT (Lowe 2004) to extract the features of the designated
images. This method has shown to be a good choice for this
dataset. Then, we apply the K-means clustering algorithm
on the results of the SIFT method, and use the output to
create the Bag of Visual Words (BoVW) features. Table 2 il-
lustrates the accuracy performance produced by each model.
We observe that our EV-IBLMM model outperforms the EV-
MBMM and EDMM models with a considerable margin of
1.8% and 3.2%, respectively, on the Caltech101 dataset. This
highlights the effectiveness of our model in terms of model
selection and data clustering.

5 Conclusion
In this paper, we proposed an unsupervised entropy-based
variational method to learn the finite inverted Beta-Liouville
mixture model. In order to select the optimal number of
components, we used a novel entropy-based method for the



Table 2: Accuracy comparison of our EV-IBLMM approach
and the baseline methods on the Caltech101 dataset.

Method Accuracy(%)
EV-IBLMM 90.20
EV-MBMM 88.50
EDMM 87.10

splitting process. In this method, we conduct a comparison
between the theoretical entropy and the entropy calculated
with the MeanNN estimator. We proceed to split the com-
ponent that has the highest weight difference into two new
equal components, as we perceived that the mixture model
is not giving a good description of that component. The ex-
perimental results demonstrate that our proposed model suc-
cessfully outperforms two other competitive approaches on
human activity recognition and image clustering tasks.
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