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holes or simply lumps of classical fields. We refer to these collectively as saturons and show
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Keywords: Effective Field Theories, Nonperturbative Effects, Solitons Monopoles and

Instantons, Global Symmetries

ArXiv ePrint: 2003.05546

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2021)126

mailto:dvali.physics@gmail.com
https://arxiv.org/abs/2003.05546
https://doi.org/10.1007/JHEP03(2021)126


J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

Contents

1 Introduction 2

2 Entropy of a lump 5

2.1 Lump as multi-particle state 5

2.2 Inverse-coupling = area-law = unitarity 7

3 Connection with amplitudes 9

3.1 Exponential suppression of individual n-particle micro-states 11

3.2 Entropy enhancement 12

4 Entropic meaning of confinement 15

4.1 Confinement from entropy bound 16

4.2 Baryons 19

5 Scanning the cross section 20

5.1 Scanning λc 20

5.2 Scanning λt(q) 21

6 A model of saturon as vacuum bubble 23

6.1 The model 23

6.1.1 Small bubbles as saturons 26

6.1.2 Suppression of large bubbles 27

6.1.3 Superiority of area-law and inverse-coupling bounds 28

7 Black holes as saturons 30

7.1 Similarities in entropy 30

7.2 Decay and life-time 31

7.3 Infomation horizon and time-scales 33

7.4 Scattering amplitudes 34

8 Saturons and classicalization 35

9 Gravitational species bound 37

10 Outlook 39

A Argument from effective S-matrix 41

– 1 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

1 Introduction

The purpose of this paper is to show that unitarity of scattering amplitudes imposes the

following universal non-perturbative upper bounds on the entropy of the system.

• The area-law entropy bound:

The maximal entropy of any self-sustained quantum field theoretic object localized

within a sphere of radius R is equal to the area of the sphere measured in units of

the relevant Goldstone decay constant f :

Smax =
Area

f−2
. (1.1)

• The inverse-coupling entropy bound:

The maximal entropy of any self-sustained quantum field theoretic object localized

within a sphere of radius R is equal to the inverse of the running coupling α(q) of the

relevant long-range interaction evaluated at the scale of momentum-transfer q = 1
R

.

Smax =
1

α
. (1.2)

We shall argue that a violation of the above bounds leads to a non-perturbative violation

of unitarity.

The foundation for this connection was already laid down in previous articles [1, 2].

Namely, it was observed there that entropy of a self-sustained field theoretic object such as

soliton or a baryon of mass M and radius R saturates (1.1) and (1.2) simultaneously with

Bekenstein’s entropy bound [3],

Smax = 2πMR . (1.3)

This happens exclusively when the theory saturates unitarity. That is, the following rela-

tions emerge.

First, the maximal entropy is always equal to the surface area of the object, measured

in units of the decay constant f of the Goldstone field, as given by (1.1). This Goldstone

mode is universally present due to the fact that any localized field configuration breaks

spontaneously set of symmetries, which obviously include Poincare translations. However,

there also emerge the Goldstone mode(s) corresponding to the breaking of internal sym-

metries. This shall become clear below.

Secondly, the same maximal entropy is equal to an inverse of the running coupling

α evaluated at the scale q = 1/R, as described by (1.2). Of course, what matters is the

interaction with the range that covers R. Note, when the scale R separates two different

regimes, the equation (1.2) must be satisfied from both sides. For example, in case of a

baryon of size R, it is satisfied both by gluons and by pions.
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Thus, in [1, 2] the entropy bound attained by various objects was observed to satisfy

the following relation,

Smax = MR =
1

α
=

Area

f−2
. (1.4)

(Throughout the paper, the order-one numeric factors shall be explicitly shown only when

they are important.)

From here, the following natural questions emerge:

• Are the three bounds (1.1), (1.2) and (1.3) equivalent?

• And if not, which of them is more fundamental?

The main goal of the present paper is to understand the independent fundamental

meanings of the area-law (1.1) and the inverse-coupling (1.2) entropy bounds and their

connection to unitarity. First, we shall achieve this by analysing scattering amplitudes.

Secondly, we shall construct explicit renormalizable theories in which the saturation of the

three different bounds can be monitored in various parameter regimes.

The first part of our message is to establish an universal connection between the

bounds (1.1) and (1.2) and scattering amplitudes. Namely, there exists a one-to-one corre-

spondence between the saturation of (1.1) and (1.2) by an arbitrary field theoretic entity

— irrespectively whether of Lorentzian or Euclidean signature — and non-perturbative

saturation of unitarity by a set of 2 → n amplitudes with n = 1
α

at momentum-transfer

q = 1
R

. This saturation is non-perturbative and cannot be removed by resummation.

Surprisingly, the bounds (1.1) and (1.2) turn out to be more stringent than the Beken-

stein bound (1.3). As we shall see, in some situations these bounds can be violated even

when the Bekenstein bound (1.3) is still respected. Such examples are immediately killed

by unitarity. This is because the bounds (1.1) and (1.2) control the saturation of unitarity

by the scattering amplitudes. On the other hand, in all examples known to us, the satura-

tion of the bounds (1.1) and (1.2) automatically leads to the saturation of the bound (1.3).

Therefore, the saturation of the two former bounds appears to provide the necessary and

sufficient condition for reaching the maximal entropy permitted by the consistency of the

theory. Thus, in a consistent theory at the saturation point the entropy satisfies the triple

equation (1.4).

A natural physical interpretation of the above amplitudes at the saturation point is

that they describe a creation of n-particle composite object. This object saturates the

entropy bounds (1.1) and (1.2) and correspondingly satisfies (1.4). We shall refer to such

objects as saturons. The process thus schematically can be presented as a creation of a

classical object in a two-particle scattering,

2 → n = saturon . (1.5)

The reason why the cross-section of such a process is not exponentially suppressed is that

the saturon exhausts all possible final states in the given kinematic regime. So in this

sense saturons effectively provide the mechanism of classicalization of the scattering am-

plitude [4]. Of course, explaining how this happens is one of the central points of our paper.
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However, the above should not create a false impression that it is easy to produce a sat-

uron in a high energy scattering experiment. Although, at its mass-threshold the saturon’s

cross section saturates unitarity at the expense of its maximal entropy, there is a price to

pay. It comes in form of a very narrow (∆E
E

∼ α) “window of opportunity" for the choice of

the center of mass energy E of the initial state. Due to this, in order for saturons to play

a role in UV-completion of the theory, they must fill an almost continuous mass spectrum.

This is possible if the theory possess a non-trivial fixed point. In such a case, saturons can

play an interesting role both in UV-completion as well as in collider phenomenology.

From the point of view of fundamental physics, one of the implications of the

bounds (1.1) and (1.2) is to put phenomena such as confinement in a new light. Namely,

it was already suggested in [1] that confinement in SU(N) gauge theory can be viewed as

a built-in defence mechanism against violations of the entropy bounds. Here, we provide

more evidence for this. Namely, we consider an example presented in [2] of SU(N) gauge

theory in which the entropy bounds (1.1) and (1.2) are saturated by an instanton. We

show that this saturation is mapped on the saturation of unitarity by a set 2 → N -gluon

amplitudes. From here it is evident that in order not to violate these bounds the theory

must become confining at large distances. That is, without confinement there is no visible

mechanism that would prevent such a violation at some IR scale.

Analogously, when quarks are included, the theory resists against violation of the

bounds (1.1) and (1.2) by baryons. Namely, a baryon saturates both entropy bounds when

the number of the quark flavors is of the same order as the number of colors. The baryon

entropy in this limit is given by its area measured in units of the pion decay constant [1].

Simultaneously, the 2 → N pion cross section saturates unitarity. In this case, the violation

of the bounds (1.1) and (1.2) would render the theory asymptotically not free and thus

inconsistent in UV.

Finally, an important message of the present paper is the understanding of black holes

and the saturons of renormalizable theories as the representatives of the same saturon fam-

ily. In order to make the parallels maximally sharp, we construct an explicit renormalizable

theory which contains saturons. These are the solitonic vacuum bubbles. In the interior of

the bubble N distinct gapless Goldstone modes are localized. These gapless modes endow

the bubble with a large micro-state entropy. We then show that at the point when the

bubble saturates the entropy bounds (1.1) and (1.2), the corresponding amplitudes satu-

rate unitarity. So, the bubble becomes a saturon. At this point, all its properties become

identical to the known properties of a black hole.

For example, both the renormalizable saturon and a black hole obey the relation (1.4).

Here, we must remember that for a black hole f = MP , where MP is the Planck mass.

Indeed, first, MP represents the graviton decay constant. Secondly, the Goldstone boson

of a translation symmetry that is spontaneously broken by a black hole, is the graviton

itself. This immediately shows that the famous Bekenstein-Hawking entropy [5] satisfies

the relation (1.4). Next, just like a black hole, in the semi-classical limit (N = ∞) the

non-gravitational saturon possesses an information horizon. It emits particles in a way

that is strikingly similar to Hawking’s emission. In particular, the information stored in

the saturon’s interior cannot be decoded by analysing the emitted radiation. In contrast,
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for finite N , the saturon bubble does release information albeit very slowly. The time-

scales are identical to the ones that are commonly attributed to a black hole. Finally,

both a black hole and a non-gravitational saturon saturate unitarity in respective multi-

particle scatterings. This features are universal and independent on a particular nature of

a saturon. So they are shared by saturons in other renormalizable theories.

The natural interpretation of the above striking connection is that a black hole of size

R represents a saturated state of the soft gravitons of wavelength R, as this has been long

advocated by the black hole N -portrait [6, 7]. In this paper the relation (1.2) for black

holes has already been noticed. This relation was used there as a guiding principle for

establishing the similarity between black holes and other saturated states such as Bose-

Einstein condensates at criticality. The present paper reinforces this view.

2 Entropy of a lump

Before moving to amplitudes, we shall establish mapping between localized field theory

configurations with Lorentzian signature, such as solitons or lumps, and n-particle states.

We explain why for such objects the bound (1.4) holds.

2.1 Lump as multi-particle state

Consider degrees of freedom described by creation/annihilation operators âj(~k)†, âj(~k).

Here the label ~k refers to momentum, whereas j = 1, . . . , N is the species label describing

different spin and internal states. For example, j can denote sets of color or flavor in-

dexes. We shall assume that operators obey the standard bosonic commutation relations,

[âi(~k), âj(~k′)†] = δijδ~k ~k′ , [âi(~k), âj(~k′)] = 0. That is, âj(~k) represent different physical

modes of a bosonic quantum field φ̂j ,

φ̂j =
∑

~k

1
√
ω~k

(

ei~k~xâj(~k) + e−i~k~xâj(~k)†
)

. (2.1)

This field can either be fundamental or represent an effective description of some more

fundamental theory. For example, φ̂j may represent the low energy fluctuations of quark-

anti-quark condensate in QCD. We shall also assume that the effective Hamiltonian is

invariant under an internal symmetry G that acts on the label j. Again, this symmetry

can be either emergent or be fundamental.

Next, we shall denote by α the strength of an effective four-boson interaction,

α (φ̂iφ̂i)(φ̂jφ̂j) + . . . , (2.2)

The above notation is highly schematic. Throughout the paper we shall assume the coupling

α to be weak. In fact, defining the analog of the ’t Hooft coupling,

λt ≡ αN , (2.3)

our methods shall be most reliable in the limit,

α → 0, λt = finite . (2.4)

This is analogous to ’t Hooft’s limit [8].
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Now, we wish to focus on states in which modes of certain momentum ~k are highly

occupied

|n〉micro =
N
∏

j=1

(âj(~k)†)nj

√

nj !
| 0〉 , (2.5)

where n refers to a total occupation number,

n =
N
∑

j=1

nj . (2.6)

This number will be assumed to be very large. We shall refer to such states as micro-states.

This is because they are distinguished solely by different microscopic distributions of the to-

tal occupation number n among the j-species. And, in the limit (2.4) they become indistin-

guishable. Such states therefore describe different micro-states of the same macro-state |n〉.
Obviously, in such a state the wave-functions of n bosonic modes overlap, similarly to

what happens in Bose-Einstein condensates. It is therefore useful to introduce a concept

of the collective coupling defined as,

λc ≡ αn . (2.7)

Again, our analysis is most reliable in the following double-scaling limit,

α → 0, λc = finite . (2.8)

Despite the superficial similarity between λc and λt, the two couplings are physically very

different. It is enough to note that the ’t Hooft coupling λt is a parameter of the theory,

whereas the collective coupling λc is a parameter of the state. Despite this difference, as

we shall see, the two couplings become comparable and critical on the states that saturate

the entropy bounds (1.1), (1.2) and (1.4).

Now, using the number-eigenstates (2.5), we can form the coherent states that represent

classical field-configurations localized within certain characteristic radius R. They have a

form,

| sol〉 = e
∑

~k

∑N

j=1

√

nj(~k)(âj(~k)†−â(~k)j) | 0〉 , (2.9)

with
N
∑

j=1

∑

~k

nj(~k) = n ≫ 1 , (2.10)

where nj(~k)-s are sharply peaked around the characteristic momentum |~k| ∼ 1
R

≡ q.

Obviously, the corresponding classical field is described by the expectation value,

φj = 〈sol | φ̂j | sol〉 , (2.11)

of the quantum field. We shall refer to such a state as a lump or a soliton. Of course,

such a field configuration in general depends on time. It evolves both classically as well as

quantum mechanically. Since the quantum coupling α is weak, the classical (mean field)

– 6 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

evolution is valid for sufficiently long time. We are interested in field configurations that

spread-out from the initial localization on time-scales t ≫ R. This constraint does not

apply to internal oscillations of the lump, as long as they stay localized within the radius

R. At weak coupling, this requirement is satisfied by most of the self-sustained solitonic

configurations. The condition for self-sustainability will be derived below.

Under such conditions, the localized classical field configuration, φsol, can be treated

as n-particle state of characteristic momenta ∼ q = 1/R, each contributing ∼ q into the

energy of the lump. The total energy therefore is,

E ∼ n

R
. (2.12)

Now, assuming that at distances ∼ R the interaction is attractive, let us estimate

the number of constituents required for creating a self-sustained bound-state. This can be

done by balancing the kinetick energy of each quantum, Ekin ∼ 1
R

, against the attractive

potential energy from the rest. The latter goes as Epot ∼ αn
R

. This gives the equilibrium

condition,

Critical balance : λc = αn ∼ 1 . (2.13)

We thus learn that the self-sustained configuration is reached when the collective coupling

λc is order one, or equivalently, when n ∼ 1
α

. Inserting this relation in (2.12), we get for

the energy of the bound-state,

Esol ∼ q

α
∼ 1

αR
. (2.14)

The latter is a well-known relation between the energy of a soliton and its size.

Note, of corse, in general, in a self-sustained bound-state, the particles do not strictly

satisfy the dispersion relation ω~k
=
√

m2 + |~k|2 with m being a mass of a free parti-

cle. That is, the operators âj(~k) of the bound-state are related with analogous operators

of free asymptotic quanta by a non-trivial Bogoliubov transformation. However, in the

regime (2.13) at large-n this difference is unimportant for our purposes. In this regime, the

self-sustained states can consistently be mapped on the scattering amplitudes.

2.2 Inverse-coupling = area-law = unitarity

We now wish to derive the entropy of the lump and establish for which values of parameters

it saturates the bounds (1.1) and (1.2). For this, we need to count the number of degenerate

micro-states. As already noted, the states (2.5) (or (2.9)) represent particular micro-

states belonging to one and the same classical macro state. This is due to the following

reasons. First, such states form large representations under the symmetry G that acts on

the label j. Secondly, because the quantum coupling α is vanishingly small, the time-

scale for differentiating between individual “colors” or “flavors” is macroscopically large.

Correspondingly, such states are classically indistinguishable.

Thus, the number of degenerate micro-states is given by the dimensionality of rep-

resentation that they form under the symmetry group G. This dimensionality is easy to

estimate. For example, in the simplest case of a symmetric wave-function, nj-s can as-

sume arbitrary values subject to the constraint (2.6) (or (2.10)). Therefore, the number of
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micro-states is given by the following binomial coefficient:

nst ≃
(

n+N

N

)

= cN

(

(

1 +
λt

λc

)λc
(

1 +
λc

λt

)λt
)

1
α

, (2.15)

where we have used the Stirling approximation for large N = λt

α
and n = λc

α
. Notice, the

coefficient cN ≃
√

1
2π

(N−1 + n−1) can be replaced by one without any loss of information.

This is the benefit of working at large N and at the saturation point. Since we shall take

advantage of this fact throughout the paper, we shall explain it briefly here.

The trick is that the saturation values of λt and λc are determined by matching the

quantities that are exponentially sensitive to N and n (equivalently, to α−1). Therefore,

the coefficients such as cN , that exhibit power-law dependence on N and n, play essentially

no role in it. Such quantities correct the saturation value of λt only by the amount ∼ ln(N)
N

which vanishes in the ’t Hooft limit (2.4). Therefore, all such coefficients can be set equal

to one without compromising our analysis.

Then, taking the collective coupling at the critical value λc = 1, the number of states

becomes

nst ≃
(

(1 + λt)

(

1 +
1

λt

)λt
)

1
α

. (2.16)

The corresponding entropy of the soliton/lump is,

S = ln(nst) ≃ 1

α
ln

(

(1 + λt)

(

1 +
1

λt

)λt
)

. (2.17)

This entropy saturates the bound (1.2) for,

Entropy saturation : λt ≃ 0.54 . (2.18)

Of course, what matters is that the critical ’t Hooft coupling is order one. However, the

above numerical value obtained for λc = 1 will be useful as a reference point for the later

estimates. As a consistency check, notice that the actual value of cN corrects (2.18) by the

amount ∼ ln(N)
N

and is negligible.

Thus, we discover that the n-particle state, describing a self-sustained classical soli-

ton/lump, saturates the entropy bound (1.2) when the ’t Hooft and collective couplings

are both of order one,

λc ∼ λt ∼ 1 . (2.19)

As already pointed out in [1, 2], through the above equation, the saturation of entropy is

correlated with the saturation of unitarity. The depth of this correlation will be explored

throughout the paper.

Now, following [1, 2], it is easy to see that at the saturation point the entropy becomes

equal to an area of the soliton/lump in units of the Goldstone decay constant f . Let us

therefore determine the latter. The localized classical field configuration φ breaks spon-

taneously both the Poincare symmetries such as space-translations as well as the internal
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symmetries. The order parameter of breaking the translation invariance is ∇φ ∼ 1
R2

√
α

.

Consequently, the decay constant of the corresponding Goldstone fields is

f =
1

R
√
α

=

√
N

R
. (2.20)

Notice, the above expression also determines the decay constants of the Goldstone modes

of spontaneously broken internal symmetries. These are the symmetries under which the

lump/soliton transforms non-trivially. Previously, they were schematically denoted by G.

The explicit examples will be constructed below.

It is now obvious that the entropy (2.17) at the saturation point of the bound (1.2)

can be written as,

Smax =
1

α
= (Rf)2 =

Area

f−2
. (2.21)

Notice, the equation (2.20) relates the Goldstone decay constant f with the running cou-

pling α evaluated at the scale 1/R. All the scale dependence, such as the logarithmic

running of the coupling with the scale, must already be included in α entering both in

equation (2.20) as well as in equation (1.2). Correspondingly, the equation (2.21) includes

no additional log factors.

Thus, the areal-law bound (1.1) is saturated simultaneously with (1.2). As already

stressed in [1, 2], this is strikingly similar to a black hole entropy with the role of the

Planck mass played by f .

Thus, we discover that the saturation of the inverse-coupling entropy bound (1.2) takes

place together with the saturation of the area-law bound (1.1). It is very important that

this happens when the value of the ’t Hooft coupling is order one (2.19). This fact is the

key for connecting the saturation of the above entropy bounds to unitarity.

Notice, the saturation of the bounds (1.1) and (1.2) implies the saturation of the

Bekenstein bound (1.3). This can be seen easily by inserting (2.14) in the Bekenstein

formula (1.3). We get

SBek = ER =
1

α
. (2.22)

Thus, a self-sustained quantum field theoretic system with a single characteristic localiza-

tion scale R satisfies (1.4). This is exactly the result obtained in [1, 2].

However, the converse is not true in general. That is, a satisfaction of the Bekenstein

bound (1.3) does not guarantee the satisfaction of the bounds (1.1) or (1.2). However,

such examples violate unitarity and, therefore, are inconsistent. Thus, the areal-law and

the inverse-coupling bounds turn out to be more restrictive than the Bekenstein bound.

We conclude that in a consistent theory all three bounds must be saturated together (1.4).

In all examples known to us this proves to be the case.

3 Connection with amplitudes

The equation (2.17) tells us that the classical lump saturates the entropy bounds (1.1)

and (1.2) and satisfies (1.4) when the ’t Hooft coupling λt equals to the critical value (2.19)
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Figure 1. A typical diagram that violates perturbative expansion in powers λt in ’t Hooft’s double

line notations. Each extra bubble brings an additional factor λt.

(or more explicitly, (2.18)). We now wish to connect this phenomenon to the saturation of

unitarity by certain scattering amplitudes.

As the first step, let us have a closer look at the nature of would-be violation of

unitarity at strong ’t Hooft coupling. The first place where this violation is manifest is the

loop expansion. An example is given by bubble diagrams depicted on figure 1.

Since the addition of each bubble carries a factor ∼ λt, the expansion breaks down

for large λt. From the first glance, one would think that such breakdown of unitarity is

not fundamental and can be bypassed by re-summation. While the bubble diagrams are

resummable, the question is whether this procedure renders the saturation of unitarity

unphysical. We shall argue that this is not the case.

The important processes to look at are the multi-particle amplitudes of the sort 2 → n,

in which the final n-particle state has the form (2.5). We wish to show that such processes

saturate unitarity whenever the inverse-coupling entropy bound (1.2) is saturated by the

final state. The same applies to the area-law bound (1.1). This saturation is physical and

cannot be removed by resummation.

However, in order to avoid confusion, we must keep a clear separation between the

following two summations.

– 10 –
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• The first one is the resummation of all Feynman diagrams that contribute to the

transition amplitude into a specific n-particle micro-state (2.5).

• The second is the summation — in the cross section — over all micro-states (2.5)

that belong to the same classical macro-state.

We focus on the first one first.

3.1 Exponential suppression of individual n-particle micro-states

In order to clearly distinguish the false saturation of unitarity from the real one, consider

first a theory in which the final state particles do not transform under any large symmetry

group G. In this case, we can simply temporarily forget about the label j in the final state.

Of course, we still assume that the four-point coupling α is weak. In such a theory, we

look for a transition from an initial 2-particle state into a state (2.5). The latter contains

a high occupation number n with some characteristic momentum q = 1/R. As already

discussed, the proper coherent superposition of such states (2.9) can be viewed as a lump

or a solitonic wave of a classical field.

It is well-accepted (see, [15]–[23]) that the cross-section for such a process must be

exponentially suppressed. This is true, despite the fact that the multiplicity of contributing

Feynman diagrams grows factorially with n already at the tree-level [24, 25]. Namely, at

large n the perturbative cross-section behaves as,

σ2→n = cn n!αn , (3.1)

where only the leading factorial and exponential scalings in n are displayed explicitly. All

the standard integration, not connected with the G-degeneracy of the final state, is included

in the prefactor cn which has proper dimensionality. In particular, if theory is gapless, cn

will include the standard infrared dressing due to emission of infinitely-soft quanta.

As explained previously, since the prefactor cn exhibits a power-law dependence on n,

it is unimportant for physics close to saturation point at large n. Therefore, as previously,

we set all such coefficients equal to one. The maximal error we commit with this setting is

∼ ln(n)
n

.

The factorial growth of the perturbative cross section (3.1) creates a false impression

that at large n unitarity can be saturated (or even violated) at weak coupling α by a single

final micro-state. Or to put it differently, a classical object can saturate unitarity without

summation over final states of internal degeneracy G. This is not true, since for n > α−1

the growth of (3.1) is unphysical and cannot be trusted. The reason is that the perturbative

expansion in α breaks down beyond this point.

Indeed, thinking of cross section in terms of expansion in series of α, we must stop as

soon as σ2→n reaches the minimum in n. This happens at n = α−1, i.e., for the critical

value of the collective coupling,

Optimal truncation: λc = 1 . (3.2)

Hence, we shall adopt this value of the collective coupling as the point of optimal truncation

of series in α. It is highly instructive that this optimal value of λc coincides with its critical
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value obtained by the self-sustainability condition (2.13). This is no accident and it reveals

how the information about the non-perturbative solitonic state penetrates in the realm of

scattering amplitudes.

Now, using Stirling approximation, it is easy to see that for the critical value (3.2) the

cross section (3.1) is exponentially suppressed,

σ2→n = e−n = e− 1
α . (3.3)

This suppression represents an embodiment of the difficulty of producing a classical object

in a two-particle scattering process.

From (3.2), it is clear that the expression (3.1) can only be trusted for n 6 α−1.

Beyond this point it must be abandoned and non-perturbative methods must be used.

This non-perturbative analysis [15]–[21] confirm the exponential suppression of transitions

to states with high occupation number n.

However, for self-sufficiency, in the appendix we present a refined version of a short-cut

non-perturbative argument of [22]. It shows that for n ≫ α−1 the cross-section of any given

n-particle state (2.5) is suppressed as

σ2→n . n!n−n ∼ e−n . (3.4)

Notice, this is only a consistency upper bound and in reality the suppression could be much

stronger. However, the above upper bound is sufficient for our considerations.

3.2 Entropy enhancement

We thus adopt a physically justified picture that, in the absence of large internal degen-

eracy G, the cross section of producing a high-occupation number state is exponentially

suppressed, as given by (3.3) and (3.4).

However, in the presence of a large internal degeneracy group G, a new twist appears.

The theory now can give rise to classical objects that saturate entropy bound (1.2). From

quantum field theory perspective they represent the high occupation number states with

exponential degeneracy nst = e
1
α .

In such a case, while the exponential suppression of the properly resummed individual

processes (3.4) continues to hold, the number of processes that contribute into creation

of a given classical object is exponentially large. This number is equal to the number of

micro-states nst that belong to the same classical macro-state. The total cross section of

production of the classical object is thus obtained by summing over all such micro-states,

σ =
nst
∑

micr.st

σ2→n . (3.5)

Notice, here and below the notation σ refers exclusively to the part of the cross-section

that describes a creation of a given classical object.

We are now ready to understand the fundamental meaning of the inverse coupling

bound (1.2) in terms of the unitarity of the scattering amplitudes. For this, let us first note
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that for large n the summation over the micro-states in (3.5) reduces to a multiplication

by the micro-state degeneracy factor nst = eS ,

σ = σ2→neS . (3.6)

Using (3.3), at the point of optimal truncation, λc = 1, this becomes,

σ = e− 1
α

+S . (3.7)

From this expression it is clear that the cross section (3.7) saturates/violates unitarity

whenever the entropy S saturates/violates the bound (1.2). That is, the number of micro-

states nst compensates the exponential suppression of individual amplitudes precisely when

the classical object saturates the inverse-coupling entropy bound (1.2). At this point σ

becomes an all-inclusive cross-section and the corresponding classical object becomes a

saturon.

The term saturation of unitarity must be understood in the standard way that the

cross section becomes maximal compatible with unitarity. In particular, it will saturate

the Froissart bound for a given theory.

The above phenomenon comes from an additional enhancement of the cross section

due to an internal degeneracy G. This degeneracy is responsible for the maximal entropy

of the classical final-state. This saturation cannot be removed by any resummation. As

discussed above, this effect is very different from a “false” saturation of unitarity due to

factorial multiplicity of Feynman diagrams of individual amplitudes.

It is useful to translate the unitarity bound in terms of ’t Hooft coupling. For this, we

again focus at the optimal truncation point n = 1
α

. Then, the individual cross sections are

given by (3.3) and the total one is given by (3.7). Expressing the entropy S through (2.17),

we can rewrite (3.7) as

σ =

(

(

(1 + λt)
1

e

)
1

λt

(

1 +
1

λt

)

)N

. (3.8)

The critical value of λt for which the above cross section saturates unitarity is,

Unitarity saturation : λt ≃ 0.54 . (3.9)

Of course, λt here must be understood as the running ’t Hooft coupling evaluated at

the scale q. As it is clear from (2.18), the exact same value also saturates the entropy

bound (1.2).

As we can see from (3.9), the bound is saturated for the critical value of the ’t Hooft

coupling that is order one. This is typical and may raise some concerns. One may worry

that at the saturation point the perturbative expansion in λt may not be reliable (although

not out of question for (3.9)).

However, the fact that at the saturation point λt is “borderline”, as opposed to being

much larger than one, gives an important advantage. It allows to unambiguously capture

the tendency of saturation while approaching the saturation point from the domain of
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weak ’t Hooft coupling. In other words, we clearly see a synchronized growth of the

entropy and of the cross section when we increase λt while it is still smaller than one and,

correspondingly, falls within a perturbative control. Extrapolating this tendency, we reach

the conclusion that, for certain critical value λt ∼ 1, the saturation of unitarity by the

cross section does take place. In such a case, the corresponding value of S should be taken

as the field theoretic bound on the entropy. Using the expression (3.7) as the guideline,

the corresponding bound on entropy is given by (1.2).

We thus see that the saturation of the cross section by a classical object gives the

inverse-coupling entropy bound (1.2). The object therefore represents a saturon. Its mass

and the size are uniquely determined as,

Saturon mass: M ∼ q

α
∼ 1

αR
(3.10)

and

Saturon size: R ∼ 1

q
, (3.11)

where q is the scale at which the running ’t Hooft coupling reaches the critical value (3.9).

It is clear that simultaneously the area law bound (1.1) is also saturated. Indeed,

the saturon state breaks spontaneously both the space translations as well as the internal

symmetry that acts on index j. The decay constant of the resulting Goldstone modes is

f =
√

n
q

= q√
α

. It is then obvious from (3.11) that the final state entropy S = 1
α

that

saturates the inverse-coupling bound is equal to the area of the saturon in units of the

Goldstone decay constant f .

Finally, it is clear from (3.10) and (3.11) that the Bekenstein (1.3) bound is also

saturated. The saturon, therefore, saturates the combined bound (1.4).

The physical meaning of the above finding is pretty transparent. When we form an

n-particle state in a 2-particle collision, we are effectively forming a classical object. The

formation probability is exponentially suppressed by e−n. This suppression is confirmed

both by the previous analysis [15]–[21] as well as by the non-perturbative argument of [22]

presented in the appendix.

However, when the classical object saturates the entropy bound (1.2), the novelty ap-

pears. Now, the theory contains exponentially large number of copies of the same classical

object. I say “copies” because classically they are indistinguishable from one another. In-

deed, a classical observer, Alice, cannot resolve the “flavor” index j since the coupling

vanishes as α ∼ λt

N
∼ λc

n
. Rather, Alice is only sensitive to the effects controlled by ’t

Hooft and collective couplings. That is, Alice cannot tell the difference between the states

with different j-content, as long as the total occupation number n is large.

Correspondingly, the production of any of these micro-states in a scattering experiment

will be interpreted by Alice as the production of one and the same classical state. Now,

while each particular transition matrix element is exponentially suppressed, all of them

will contribute to the Alice’s classical count. Once the number of micro-states reaches the

critical value, this classical object saturates the scattering cross-section.

It is clear that this effect cannot be removed by any further re-summation. Indeed,

the resummation helps to compute the correct cross sections of the individual 2 → n
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Figure 2. A 2 → n process and an example of diagram in ’t Hooft double-line notation contributing

in it.

physical processes. They come out exponentially suppressed (3.3)–(3.4), as they should.

At the same time, the resummation cannot reduce the number of physically distinct final

states. As a result, no matter how suppressed are the individual processes, the suppression

gets compensated by the multiplicity of final micro-states when the corresponding micro-

state entropy saturates the bound (1.2). This is a fully non-perturbative phenomenon

highlighting a deep connection between entropy and unitarity.

4 Entropic meaning of confinement

One remarkable thing in connection between entropy and unitarity is that the saturation is

fully controlled by ’t Hooft and collective couplings, λt, λc. At the same time, the quantum

coupling α can be arbitrarily weak. It is fair to ask:

What happens if we try to deform the theory and push the state beyond the

saturation point?

This can be done by fixing the collective coupling at the critical value λc = 1 while

increasing the ’t Hooft coupling. From (2.15) it is clear that for λt → ∞ the number of

micro-states increases as,

nst ≃ (eλt)
1
α . (4.1)
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Correspondingly, the entropy of the macro-state increases as,

S ≃ 1

α
(1 + ln(λt)) . (4.2)

Consequently, for λt ≫ 1 the bound (1.2) is violated. Simultaneously, the cross section (3.8)

diverges as,

σ ≃ (λt)
1
α , (4.3)

and violates unitarity. Obviously, in a consistent theory this cannot happen. What is the

lesson that we are learning from here?

As a minimalistic move, we must adopt the saturation value as a consistency upper

bound on ’t Hooft coupling. The precise value depends on the representation content under

the symmetry group G but in general is order one.

Yet, the story must be more profound. It would be somewhat counter-intuitive if a

theory allows us to cross into a dangerous domain without a prior warning. Of course,

one can say that violation of unitarity by a multi-particle state is a clear warning sign.

However, we expect that a consistent theory does not stop here. Instead, it must block the

entrance into the dangerous domain of the parameter space dynamically.

Therefore, we would like to ask whether a consistent theory possesses a built-in mech-

anism that prevents such deformations from happening. We shall now argue that confine-

ment in SU(N) gauge theory represents such a preventive mechanism agains the violations

of the entropy and unitarity bounds. This idea has already been put forward in [1] and we

shall now elaborate on it.

4.1 Confinement from entropy bound

As an illustrative example, we consider a SU(N) Yang-Mills gauge theory with no fermions.

As it is well-known, this theory is asymptotically free, with the running gauge coupling α(q)

becoming weak at short distances. We shall define the ’t Hooft coupling λt as before (2.3)

and shall be working in ’t Hooft’s limit (2.4). Obviously, in this limit QCD scale ΛQCD is

kept fixed.

Now, as shown in [2], in this theory the entropy of an isolated instanton saturates the

bounds (1.1) and (1.2) for a critical value of the ’t Hooft coupling λt ∼ 1. For a generic

value of λt, the entropy scaling is similar to (2.17). More details can be found in [2] and

shall not be repeated here. Instead, we wish to establish what is the significance of this

fact from the point of view of the scattering amplitudes. Next, we wish to find out how

the theory responds if we attempt to violate the bound by making λt large.

First, we wish to show that the violations of the entropy bounds (1.1)–(1.2) by in-

stanton (or any colored state) would result into violation of unitarity by the scattering

amplitudes. We then argue that this is prevented by confinement. We shall try to support

this statement by assuming the opposite and running into an inconsistency.

Indeed, assume that the theory never becomes confining. Yet, it is asymptotically free

and therefore is consistent in UV. In such a theory there is no visible reason for why we

cannot force an instanton of some size R to violate the entropy bounds (1.1) and (1.2). This

can always be achieved by making the ’t Hooft coupling λt arbitrarily large at that scale.
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However, the problem with this proposal is that simultaneously the unitarity would

be violated by a 2 → n scattering process with the momentum-transfer q = 1
R

. Consider a

process in which the two initial gluons would scatter into n final ones,

Aγ
βA

ξ
γ → Aα1

β Aα2
α1
Aα3

α2
. . . Aξ

αn−1
. (4.4)

A typical ’t Hooft diagram describing a process of this sort is given in figure 2. The color

labels β and ξ are fixed by the initial gluons, whereas the color labels αj (j = 1, . . . , n− 1)

take values from 1 to N .

Since, by assumption, the theory is not confining, the complete set of S-matrix asymp-

totic states can be represented by all possible n-gluon states with arbitrary color indexes,

∣

∣

∣Aα1
β1
Aα2

β2
, . . . , Aαn

βn

〉

. (4.5)

Of course, by symmetry, the final state vector | t = ∞〉, obtained as a result of Hamilto-

nian evolution, must transform under the same representation of the SU(N)-group as the

initial state | t = −∞〉. That is, the state | t = ∞〉 must transform as a hermitian traceless

N ×N matrix with respect to the open color indexes ξ and β. So, the true final state will

be an appropriate superposition of all possible gluon states (4.5). In the current exam-

ple this superposition will contain traces with respect to all indexes other than ξ and β.

Schematically,

| t = ∞〉 =
∑

n

∑

α1,...,αn−1

un

∣

∣

∣Aα1
β Aα2

α1
Aα3

α2
. . . Aξ

αn−1

〉

, (4.6)

where un are some coefficients. The S-matrix elements will be determined by projecting this

superposition on different individual states from the complete set (4.5). Correspondingly,

in the rate of the process the squares of S-matrix elements are summed over all such states.

In particular, for 2 → n processes of the type (4.4) this amounts to,

∑

α1,...,αn−1

|
〈

Aγ
βA

ξ
γ

∣

∣

∣ Ŝ
∣

∣

∣Aα1
β Aα2

α1
Aα3

α2
. . . Aξ

αn−1

〉

|2 . (4.7)

In order to avoid a potential confusion with the counting of the final states, we can softly

Higgs the color group. We can easily achieve this by giving the tiny vacuum expectation

values to a set of the “spectator” Higgs fields. Such a Higgsing of SU(N) symmetry

generates a small mass gap and introduces the small mass splittings among the gluon fields.

Since the theory is non-confining by assumption, this splitting affects neither the structure

nor the magnitude of the amplitude. However, it removes all doubts whether the gluons of

different colors must be counted as independent final states. We can then smoothly take

the vacuum expectation values of the Higgs fields to zero and recover a gapless theory.

Note, in practice, the assumption that we are in an unconfining theory means that the

scale R = q−1, at which the entropy bound is violated, can be taken arbitrarily shorter

than the length of the confinement, LQCD. For example, we can choose LQCD to be of

galactic size, whereas q = R−1 to correspond to LHC energies. Obviously, in such a case

a local LHC observer is not affected by the confinement. Such an observer would use

the colored gluons (4.5), rather than the colorless composites such as glueballs, as the

– 17 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

asymptotic states of the S-matrix. Can such an observer witness a violation of entropy by

some field configuration at the scale R?

In order to argue against this, first assume that we are dealing with a fully resummed

amplitude. Then, our previous discussion goes through and we skip the details. The sum-

mary is that the cross section of creating an each particular n-gluon state is exponentially

suppressed. The enhancement is due to summation over micro-states corresponding to

different color assignments of the final gluons, as expressed in (4.7). The resulting multi-

plicity factor is similar to (2.15). So, for n = 1
α

the cross section is given by (3.8). This

cross-section saturates unitarity for λt ∼ 1. This is strikingly close to a critical value for

which, as observed in [2], the entropy of a single instanton of the same scale saturates both

bounds, (1.1) and (1.2).

We now wish to see what happens if we try to violate these bounds by deforming the

theory. We can achieve this by freezing λc = 1 while increasing the ’t Hooft coupling, λt →
∞. Of course, as already discussed, this would immediately result in a non-perturbative

violation of unitarity by the process (4.4) since the cross section grows exponentially (4.3)

with large λt. However, our point is that the confinement will set in before this can happen.

In other words, as already noted, by taking the theory not be confining, we have

implicitly assumed that the scale of confinement LQCD can be arbitrarily separated from

the scale R were the saturations of the entropy and unitarity bounds were taking place.

Or equivalently, LQCD can be arbitrarily larger than the saturon size R. What theory tells

us is that this was a wrong assumption.

We shall now explain why. Indeed, the increase of λt at a fixed scale q represents a

motion in the space of theories. This is because we are changing the relation between α(q)

and N . However, alternatively, we can view the same deformation as a motion towards

the IR-scale q from some UV-scale q′ > q within the same theory. Since we keep λc = 1,

this motion is accompanied by changing the number n of gluon constituents in the final

state. That is, within the same theory, we move from one process at the UV scale q′ to a

different process at the IR-scale q.

If gluons were to remain the valid degrees of freedom down to arbitrarily low energies,

such a descend towards IR could be continued indefinitely. We would then sooner or later

violate both entropy bounds (1.1) and (1.2). Correspondingly, the unitarity would also

be violated. This would mean that the SU(N) gauge theory is inconsistent, despite being

asymptotically free.

Somehow, the theory must prevent this from happening. In a theory with pure glue,

the only visible mechanism that can prevent such an unlimited descend towards IR is

confinement. That is, the theory must become confining before we manage to make λt suf-

ficiently large and violate both entropy bounds and unitarity. Thus, in a large-N theory of

pure glue the confinement appears to be a direct consequence of the bounds (1.1) and (1.2)

and of the unitarity constraints imposed by them.

The above example with confinement is indicative in the following general sense. On

one hand, the saturation of the entropy bound takes place for a critical value of the ’t

Hooft coupling that is typically order one. A further increase of λt would make entropy

larger than the value permitted by the bound (2.21). However, this is precisely the point
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at which the confinement sets in and prevents any further growth of λt. Of course, the

confinement is a very special phenomenon belonging to a particular theory. However, the

fact that the theory resists to an unlimited increase of the ’t Hooft coupling beyond the

critical point, appears to be genetic.

All the evidence we have, indicates that ’t Hooft coupling is universally bounded from

above by a critical value that is typically order one. When the system is pushed towards

the strong ’t Hooft coupling domain, it responds by a change of the regime which prevents a

further growth of λt. In the above example of large-N QCD with pure glue, the preventive

mechanism is confinement, but the effect is very general.

We are observing that different systems respond differently to the increase of λt. In

some non-confining systems, the further growth of λt is simply impossible due to a dynam-

ical energy balance. An example of this sort shall be considered in section 6. In some other

cases, for strong collective coupling, the configuration becomes unstable and chaotic. For

example, such a behaviour has been confirmed by an exact numerical diagonalization of

the Hamiltonian of a 1 + 1-dimensional system studied in [26].

4.2 Baryons

Notice, we encounter a similar resistance if we try to violate the entropy bound by quark

bound-states. As observed in [1], a baryon of large-N QCD [9] saturates the entropy bound

when the number of quark flavors NF becomes of the same order as the number of colors

N . Indeed, consider a baryon transforming as a symmetric tensor of rank N under the

flavor group SU(NF ). Its entropy is given by [1],

Sbar ≃ 1

α
ln

(

(

1 +
λc

λF

)λF
(

1 +
λF

λc

)λc
)

, (4.8)

where we have defined the analog of the ’t Hooft coupling with respect to the global

SU(NF )-flavor group, λF ≡ αNF . The baryon consists of N quarks and has a size Rbar ∼
Λ−1

QCD. Therefore, the collective coupling evaluated at the scale q = R−1
bar is λc ∼ 1. The

above entropy then saturates the bound (1.2) for λF ∼ 1. That is, the entropy reaches the

allowed maximum for N ∼ NF .

Simultaneously, the area-law bound (1.1) as well as the Bekenstein bound (1.3) are

also saturated. Indeed, remembering that the pion decay constant is fπ =
√
NΛQCD and

the baryon mass is Mbar = NΛQCD, we can write,

Sbar =
1

α
=

1

απ
= (Rbarfπ)2 = MbarRbar , (4.9)

where απ = q2

f2
π

is the pion coupling constant evaluated at the scale q = R−1
bar = ΛQCD.

It is natural that at the same time the 2 → N pion scattering cross section saturates

unitarity for the momentum-transfer set by the above scale q. This cross section is given

by the expression analogous to (3.8) with λt substituted by λF and α by απ. This process

can be interpreted as the production of a classical lump of the pion field. More precisely,

the final state can be viewed as an overlapping pair of the pion solitons, i.e., skyrmions [10].
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These solitons, as shown by Witten [11, 12], offer an effective description of the baryons at

large N .

Now, we can try to violate the entropy bound by taking λF ≫ 1. However, this is

impossible because of the two reasons. First, this would make the theory asymptotically

not free. Simultaneously, the above multi-pion scattering process would violate unitarity

at the scale q ≪ R−1
bar. This would mean that the effective theory of pions breaks down at

distances much larger than the would-be size of a baryon. So the latter object cannot even

be described within such a theory. Of course, the two responses are related. Namely, the

low energy theory of pions “senses” that something is going wrong in the UV and responds

to it via violations of unitarity by multi-pion amplitudes. We thus observe that asymptotic

freedom prevents the violation of the entropy bounds.

From the above point of view, the conformal window [13, 14] is of special interest.

Since the coupling is at the fixed point, it appears that in such a regime the saturons

with the fixed number of constituents n = N and arbitrarily large sizes R can exist.

Correspondingly, their masses will assume values (3.10). As a result, the entropy of a

saturon will be independent of its size and will be fixed at the bound (1.4). In this respect,

such saturons would exhibit a scale-invariance.

5 Scanning the cross section

We now wish to scan the multi-particle cross section over different values of kinematic

variables. For this, we need to parameterize σ properly. First, we shall choose n and q as

the scanning variables. Of course, in general, the number of active species N can depend on

the scale of momentum-transfer q. However, to start with, we assume N to be independent

of q. The scale-dependence of the ’t Hooft coupling λt(q) then is uniquely determined by

the running of α(q). Thus, the cross section effectively depends on two parameters (n, q),

which can be traded for (λc, λt) or (E, q), and so on.

We shall perform the scanning in two different regimes. In the first case, we scan n for

fixed q. This is equivalent of scanning over λc and E while keeping λt and α fixed. In the

second case, we scan over q (equivalently, over λt and E) for the fixed values of n.

5.1 Scanning λc

We first freeze λt, α and the scale q by the saturation condition (3.9) while allowing n

(equivalently λc) to vary. In this way, we scan over various processes in the same theory.

These processes probe the same momentum transfer scale q but differ by the occupation

number n in the final state. Obviously, they take place at different center of mass energies

E = nq.

Now, when we move λc away from its critical point, the resulting n-particle state

saturates neither entropy bound nor unitarity. In order to see this, let us write the total

n-particle cross section (3.8) for generic values of λc and λt

σ = σ2→n

(

(

1 +
λt

λc

)λc
(

1 +
λc

λt

)λt
)

1
α

, (5.1)
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where

σ2→n .







(λ−1
c e)− λc

α for λc 6 1,

e− λc
α for λc > 1 .

(5.2)

As previously, using the power of large-N , the non-exponential prefactor is set equal to one.

Of course, at the point of optimal truncation λc = 1 the equation (5.1) reproduces (3.8).

As already expressed by (2.18) and (3.9), at this critical point both entropy and unitarity

are saturated for

λt(q) ≃ 0.54 . (5.3)

Thus, if the running ’t Hooft coupling reaches this critical value at some scale q, the theory

gives rise to a saturon state in its spectrum. The mass and the radius of the saturon are

given by (3.10) and (3.11) respectively.

The expression (5.1) shows that the cross section of n-particle state is peaked at λc = 1

with the width ∼ α and falls-off exponentially away from this point. In particular,

σ .







λ
λc
α

t for λc ≪ 1,

( eλc

λt
)

λt
α e− λc

α for λc ≫ 1 .
(5.4)

This means that the saturon represents an exponentially narrow “resonance” of the width

∼ α in the spectrum of all possible n-particle states of momentum q. As explained above,

the momentum q is defined by the criticality of the ’t Hooft coupling (5.3).

Expressing λc = E
M

in terms of the center of mass energy E = nq and the saturon

mass M = q
α

, we can rewrite (5.4) as,

σ .







(λt)
E

Mα for E ≪ M,

( eE
λtM

)
λt
α e− E

Mα for E ≫ M .
(5.5)

Now, remembering that λt ≃ 0.54, it is clear that away from the resonance energy E = M

the cross section is exponentially suppressed.

Thus, for producing a saturon in a 2-particle scattering experiment, the center of mass

energy must be fine tuned to the mass of the saturon with an accuracy,

Saturation window :
∆E

M
∼ α . (5.6)

This illustrates the price that one needs to pay for producing a classical object with

an unsuppressed cross-section in a renormalizable theory.

5.2 Scanning λt(q)

We now wish to scan the cross section over q and n while keeping λc = 1. Then, the

q-dependence enters the cross section (3.8) through the running ’t Hooft coupling. Taking

the derivative of (3.8) with respect to q2, we get,

d

dq2
ln(σ) ≃ −N ln

(

(1 + λt)e
−1
)

1
λt

d

dq2
ln(λt) . (5.7)
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Around the saturation value (5.3) this expression simplifies to,

d

dq2
ln(σ) ≃ N

d

dq2
ln(λt) , (5.8)

or equivalently,
d ln(σ)

d ln(λt)
≃ N . (5.9)

This result teaches us several things. First, around the saturation point the derivative of

the cross section with respect to λt scales as N . Thus, the scale-dependence of the cross

section is extremely sensitive to the scale-dependence of λt.

Now, consider a theory that is asymptotically-free. In such a theory, λt runs with q2

logarithmically. Then, assuming we are not at the fixed point, we get,

d ln(λt)

d ln(q2)
∼ λt . (5.10)

Since, at the saturation point (5.3) the r.h.s. of the above equation is order one, the

derivative is order one. Then, (5.8) tells us that the derivative of σ around the same point

is of order N . Thus, the cross section sharply diminishes as we move towards UV from the

saturation point (5.3).

The motion towards infrared is more subtle. Obviously, any further increase of λt is im-

possible without violating the entropy bound. Thus, we see the following two possibilities:

• Either the theory hits an infrared fixed point;

• Or it develops a mass-gap.

The latter can happen either due to confinement or a Higgs effect. In particular, as

discussed above, in SU(N) gauge theory without matter, confinement appears to be the

only mechanism that can prevent the violation of the entropy bound.

It is impressive how profound the quantum field theory is. It tells us that there is no

“free-lunch” for producing a classical object in a two-particle scattering experiment at weak-

coupling. This is true, despite the fact that the object saturates the cross section at the

right energy E = M . The price is that the kinematic window of opportunity is very narrow.

It is certainly remarkable that a classical object can be produced with an unsuppressed

cross-section in a renormalizable theory. However, it dominates the cross-section only for a

particular “resonant” value of the center of mass energy. Away from it, the cross section falls

off steeply. Fundamentally, the following trade-off takes place. The difficulty of producing

a classical object in a quantum process manifests itself in an extremely precise choice of

the center of mass energy in the scattering experiment.

Can saturons unitarize the cross section in a continuous range of energies? In

renormalizable theories the difficulty is in maintaining the criticality relations such as

λc ≃ 1, λt ≃ 0.54 over a continuous range of scales. In other words, the renormalizable

theories do not possess saturons of arbitrary masses and sizes unless theory is at some

non-trivial fixed point.
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Here comes a profound difference with non-renormalizable theories such as gravity.

Gravity contains an almost continuous spectrum of saturons starting from the Planck

mass and above. These saturons are black holes. This is the reason why gravity can self-

unitarize by black holes at arbitrarily high center of mass energies above the Planck mass.

It is interesting to confront how violations of the entropy bound and unitarity are avoided

by the two theories. In SU(N) gauge theory this is achieved by confinement which generates

a mass gap and forces the asymptotic states to be colorless. In contrast, in gravity the

entropy violation is avoided by offering a black hole for arbitrarily high energy. In this

way, the entropy is kept at the saturation point for arbitrarily high center of mass energy.

6 A model of saturon as vacuum bubble

We shall now come up with an explicit renormalizable theory that contains saturons. This

theory allows us to take different parameter choices for which various entropy bounds are

saturated by solitonic objects of different sizes and energy. We can then explicitly trace how

the theory becomes inconsistent if Bekenstein bound (1.3) is obeyed without respecting the

other two bounds (1.1) and (1.2). The conclusion is that a consistent theory must respect

all three bounds and saturate all three of them simultaneously (1.4).

6.1 The model

Consider a theory of a scalar field φ that transforms as an adjoint representation of SU(N)

symmetry. As usual, the latter can be written as N × N traceless hermitian matrix φβ
α,

where α, β = 1, 2, . . . , N . In order not to blur the effect by the confinement, we shall keep

the SU(N)-symmetry global. The Lagrangian of the theory is,

L =
1

2
Tr(∂µφ∂

µφ) − V (φ) , (6.1)

where the scalar potential has the form,

V (φ) =
α

2
Tr

(

fφ−
(

φ2 − I

N
Trφ2

))2

. (6.2)

Here, I is the unit N ×N matrix. The vacuum equations,

fφβ
α − (φ2)β

α +
δβ

α

N
Trφ2 = 0 , (6.3)

have many degenerate solutions. They correspond to spontaneous breaking of SU(N)

symmetry down to SU(N − K) × SU(K) × U(1) subgroups for values of 0 < K < N . In

addition there exists an unbroken symmetry vacuum with φβ
α = 0.

All the above vacua are equally good for our purposes. So, for definiteness, we shall

focus on the unbroken-symmetry vacuum φ = 0 and the one with K = 1. In the latter

vacuum only the following component

φβ
α = φ(x) diag((N − 1),−1, . . . .,−1)

1
√

N(N − 1)
, (6.4)
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has a non-zero expectation value. Up to irrelevant 1/N -corrections, this expectation value

is equal to

〈φ〉 = f . (6.5)

Due to spontaneous breaking of global SU(N) symmetry down to SU(N − 1) × U(1), this

vacuum houses massless Goldstone species. Their number is,

NGold = 2(N − 1) , (6.6)

and their decay constants are given by f . As usual, the coupling “constant” of these

Goldstones, which we denote by αGold, exhibits the following dependence on the scale of

momentum-transfer q,

αGold =
q2

f2
. (6.7)

Correspondingly, we define the ’t Hooft coupling for Goldstones,

λGold ≡ αGoldNGold ≃ 2N
q2

f2
. (6.8)

Since the vacuum (6.4) is exactly degenerate with the one with unbroken symmetry,

there exist domain walls that separate the two. The solution for a planar infinite wall has

the form,

φ(x) =
f

2

(

1 ± tanh

(

xm

2

))

, (6.9)

where x is a coordinate that is perpendicular to the wall. The tension (energy per unit

surface area) of the wall is given by,

µ =
1

6

m3

α
, (6.10)

and the thickness of the wall is,

R ∼ 1

m
. (6.11)

Approximately, the same expressions apply to a closed bubble when its radius r is much

larger than the wall thickness, r ≫ R ∼ m−1. This regime is usually referred to as the thin

wall approximation.

In the regime of our interest, in which α is very small, the bubbles are long-lived. That

is, they oscillate for a sufficiently long time before decaying into particles. The qualitative

way for understanding this stability is different for large and for small bubbles. For large

bubbles (r ≫ m−1) the oscillation frequency is ∼ 1/r. This is much less that the mass of

a free quantum. Consequently, the production rate is suppressed. The decay rate for the

small bubbles, r ∼ m−1, will be derived later. However, a qualitative reason for their long

life-time is that the decay goes through the quantum re-scattering of constituents which is

suppressed due to weak coupling.

Notice, if we restrict the adjoint field to its component (6.4), the potential (6.2) becomes

V (φ) =
α

2

(

fφ− φ2
)2

+ O(N−2) . (6.12)
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We now wish to derive the restrictions imposed on the theory by the three entropy

bounds, (1.3), (1.2) and (1.1) and by unitarity. We start by choosing the trivial vacuum

φ = 0 as our asymptotic S-matrix vacuum. In this vacuum all particles have a mass

m =
√
αf . Next, consider a vacuum bubble inside of which φ = f .

The crucial fact is that inside the bubble the SU(N)-symmetry is spontaneously broken

down to SU(N − 1) × U(1) subgroup. This breaking results into ∼ 2N gapless Goldstone

modes localized within the bubble world-volume. These Goldstone modes create an expo-

nentially large number of the bubble micro-states. Using the method of [1], we can estimate

this number in the following way. The degeneracy of the bubble interior is controlled by the

degeneracy of the vacuum manifold in the broken phase. This vacuum manifold is obtained

by the action of SU(N)/SU(N − 1) × U(1) transformations on the expectation value (6.4).

The effective quantum Hamiltonian that describes the corresponding degeneracy of the

bubble is:

Ĥ = X





∑

j

â†
j âj − s(r)



 , (6.13)

where âj-s are quantized zero modes that classically parameterize the bubble moduli space.

Their number is of order 2N . The quantity s(r) is the time-averaged space integral of φ2(x).

For large (and slow) bubbles, r ≫ m, for which the thin wall approximation works, it is

given by the bubble volume times mf2,

s(r) ≃ 4π

3
r3mf2 =

4π

3

(rm)3

α
, (6.14)

whereas for the smallest bubbles, r ∼ m−1, we have s ∼ 1
α

.

Now, the degeneracy of (6.13) is given by the binomial factor which is of order

nst(r) ∼
(

1 +
2N

s(r)

)s(r) (

1 +
s(r)

2N

)2N

. (6.15)

This degeneracy endows the bubble with the corresponding micro-state entropy Sbub(r) =

ln(nst(r)). Next, for convenience, we introduce a notation,

λ(r) ≡ 2N

s(r)
=

2λt

αs(r)
, (6.16)

where the ’t Hooft coupling λt is defined as before, (2.3). In this notations, we can write

the entropy of a bubble of radius r as

Sbub(r) = s(r) ln

(

(1 + λ(r))

(

1 +
1

λ(r)

)λ(r)
)

. (6.17)

We shall now investigate the response of the theory when the above entropy saturates the

three bounds (1.3), (1.1) and (1.2) for the bubbles of various sizes.
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6.1.1 Small bubbles as saturons

We consider the smallest bubbles first, r ∼ R = m−1. The energy and the surface area of

such a bubble are given by Ebub ∼ 1
Rα

and Area∼ R2 ∼ m−2 respectively. Correspondingly,

for such bubbles we have,

EbubR ∼ 1

α
∼ 1

αGold
∼ (Rf)2 . (6.18)

Thus, all three bounds: the Bekenstein bound (1.3), the inverse-coupling bound (1.2) and

the area-law bound (1.1) are satisfied simultaneously. Moreover, the inverse-coupling bound

is satisfied for both couplings: for the coupling of massless Goldstones, αGold, as well as,

for the coupling of massive φ-quanta, α. The reason is that the range of the interactions

mediated by both fields is large enough to cover the size of the smallest bubble r ∼ m−1.

Correspondingly the bound (1.2) must be satisfied with respect to both couplings, and it

is. To put is shortly, we see that for smallest bubbles the relation (1.4) holds.

From the definition (6.16) and the expression (6.17) it is easy to see that the above

saturation takes place when the both ’t Hooft couplings are order one,

Saturation point: λt ∼ λGold ∼ 1 . (6.19)

Using our previous knowledge, it is easy to see how the above saturation of the entropy

bound is mapped on the saturation of unitarity. Namely, in respective S-matrix vacua the

processes 2 → n saturate unitarity at momentum transfer q = m. Of course, in both vacua,

the saturation takes place at the points of optimal truncation.

A typical process of this sort is given by figure 2. Here the double lines must be

understood as the adjoint φ-field in ’t Hooft’s notations. For such processes, our previous

analysis is directly applicable. As we already discussed in details, the cross section of this

process is given by (3.8). Obviously, in this expression we must insert the couplings that

are relevant for a given process. For example, for 2 → n Goldstone scattering process in

SU(N − 1) × U(1) vacuum, at the point of optimal truncation n = α−1
Gold the cross section

will take the form,

σGold =

(

e−1(1 + λGold)

(

1 +
1

λGold

)λGold
)

1
αGold

. (6.20)

As we already discussed several times, the above cross section is saturated for λGold order

one.

It is not surprising that this matches a regime in which the vacuum bubble saturates

the entropy bound (1.4). Indeed, from the point of view of an S-matrix vacuum with

unbroken symmetry, the smallest bubbles are well described as self-sustained states of

weakly interacting quanta of occupation number n = 1
α

. Correspondingly, the n-particle

process that saturates unitarity can be viewed as describing the formation of such a bubble

in a two-particle scattering process.

As we have discussed previously, the processes with the higher number of the final

quanta are exponentially suppressed. The reason was that, once we saturate the entropy
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bound by a state λc = 1, all the states λc ≫ 1 are well below the bound. As a result,

their entropy factors are too weak for winning over the exponential suppression of the

amplitudes. This is clearly illustrated by the equations (5.4) and (5.5).

The above insufficiency of the entropy enhancement for the states with λc ≫ 1 is also

matched by the entropy count of the larger bubbles r ≫ m−1. In order to see this, first

check the entropies of such bubbles. From (6.16) and (6.14) it is clear that for large bubbles

we have

λ(r) ≃ 3λt

2π(rm)3
. (6.21)

Recall that the ’t Hooft coupling was already set to its critical value λt ∼ 1 by the require-

ment of entropy saturation by the smallest bubbles. Since, λt is a parameter of theory, it

is the same for the bubbles of all sizes. Then, from (6.17) and (6.21) it is clear that for the

large size bubbles the entropy scales as,

Sbub(r)|r≫m−1 ≃ 2λt

α
ln

(

2πe(rm)3

3λt

)

. (6.22)

It is not difficult to see that the above entropy is well below of all three bounds (1.3), (1.1)

and (1.2).

Indeed, the maximal entropy permitted by the Bekenstein bound (1.3) for a large

bubble has the form,

SBek(r) = 2πEbubr ≃ 4π2

3

(rm)3

α
. (6.23)

Obviously, this is much larger than (6.22).

Next, check the inverse coupling bound (1.2). Since the bubble is much larger than

m−1, the only interaction that has a relevant range is the Goldstone exchange. Remem-

bering that the Goldstone coupling (6.7) evaluated at q = 1
r

is αGold = (fr)−2, the corre-

sponding entropy bound is

SGold(r) =
1

αGold
= (fr)2 =

(mr)2

α
. (6.24)

Since the Goldstone coupling constant is equal to the inverse area of the bubble measured

in units of f , the last expression also accounts for the area-law entropy bound (1.1). As

we can see, both are way larger than the actual entropy of the large bubble (6.22).

To summarize, we see that when the smallest bubble saturates the entropy bound, it

saturates all three bounds simultaneously, (1.4). At the same time, the larger bubbles are

below the bound. Correspondingly, their entropies cannot compete against the exponential

suppressions of the respective amplitudes.

6.1.2 Suppression of large bubbles

We wish to explicitly demonstrate the insufficiency of the entropy enhancement of the cross

sections for creation of large bubbles in a two-particle scattering process in the regime in

which the smallest bubbles saturate the entropy bound. We can achieve this by applying

our results to the analysis of [18]. In this work a process or bubble-creation in thin wall
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approximation was studied in a theory of a single real scalar field φ with two degenerate

vacua. Naturally, since such bubbles carry zero entropy, no entropy enhancement was

discussed there. Notice, our theory would reduce to such a model if we would reduce it

to a single component (6.4) of the adjoint field. The resulting theory of course contains

vacuum bubbles similar to ones we have studied. However, they carry zero entropy due to

the absence of the Goldstone phenomenon in the bubble interior. Therefore, the bubble

production rates in [18] and in the present model (6.1) will differ by the entropy factor.

In [18] the creation of a vacuum bubble of energy E = nm from a single virtual quantum

was studied as the first stage of a two-stage process. The second stage amounts to a decay

of the bubble into n near-mass-threshold particles. We shall focus on the first part of the

process. In our notations, the matrix element of [18] describing the bubble-formation has

the form,

|A1→B|2 ∼ e−cn
√

λc , (6.25)

where c > 0.

Now, the novelty in our case is that the rate must be summed over a large number of

the bubble micro-states. This amounts to multiplying (6.25) by the degeneracy factor eSbub .

For the large bubbles the entropy is given by (6.22). Noticing that λc = Ebub
m

α = 2π
3 (mr)2,

the large bubble entropy can be written as Sbub(r) ≃ 3λt

α
ln(λc). The rate of the bubble

production is then given by,

Γ ∼ |A1→B|2eSbub ∼ e
−n

√
λc

(

c−3λt
ln(λc)

λc
√

λc

)

. (6.26)

Now, remembering that in the above expression λt ∼ 1 and λc ≫ 1, it is clear that

the entropy enhancement factor is negligible as compared to the suppression. So, the

production rate of the large bubbles continues to be exponentially suppressed despite the

entropy enhancement.

Of course, the situation is very different for the smallest bubbles, r ∼ m−1, that

saturate the entropy bound (1.4). Because of this, they also saturate unitarity in the

scattering process and are produced by an unsuppressed rate. This is also indicated by

saturation of unitarity by the corresponding n-particle scattering process.

Unfortunately, the analysis of [18] is not applicable for small bubbles. Such bubbles

correspond to λc ∼ 1, which is outside of the validity domain of [18]. However, extrap-

olating (6.26) towards λc ∼ 1, clearly shows the tendency: the entropy factor starts to

compensate the suppression term. Of course, this is fully consistent with our results of

saturating the n-particle cross section at the optimal truncation point. This is natural

since the smallest bubbles are well-described as n-particle states. Correspondingly, the two

pictures — producing a bubble or an n-particle state — must match.

6.1.3 Superiority of area-law and inverse-coupling bounds

We now wish to show that saturating the Bekenstein bound (1.3) while disrespecting the

bounds (1.2) and (1.1) leads to an inconsistency of the theory. This indicates that in

general the latter bounds are more stringent than the former one.
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In the present model this happens when a large bubble of certain radius r∗ ≫ m−1

saturates the Bekenstein entropy bound (1.3). As we shall see, such a saturation violates

the other two bounds (1.1) and (1.2) and this triggers the violation of unitarity by the

scattering amplitudes.

The saturation value of λ(r∗) can be found by equating (6.17) to the corresponding

Bekenstein entropy (6.23). Using the expression (6.14), this saturation condition can be

written in the following form,

(1 + λ(r∗))

(

1 +
1

λ(r∗)

)λ(r∗)

≃ eπ , (6.27)

which is satisfied for λ(r∗) ≃ 8.

At first glance this saturation looks rather innocent. However, meanwhile the

bounds (1.1) and (1.2) are violated both by the Goldstone coupling αGold and the decay

constant f . This is immediately clear by comparing the maximal entropy (6.24) permitted

by the area (1.1) and the inverse-coupling (1.2) bounds to the Bekenstein entropy of the

same bubble (6.23). We have,

SBek(r∗)

SGold(r∗)
=

4π2

3
(mr∗) ≫ 1 . (6.28)

The violation of the inverse-coupling (1.2) and the area-law (1.1) bounds, leads to the

following disaster.

First notice, that the corresponding value of the Goldstone ’t Hooft coupling is enor-

mously large,

λGold ≃ 32π

3
(r∗m) ≫ 1. (6.29)

This is a very serious problem for the theory. With such a strong ’t Hooft coupling, the

2 → n Goldstone scattering process in SU(N − 1) × U(1) vacuum, violates unitarity at the

point of optimal truncation n = α−1
Gold. Indeed, the cross section (6.20) for large Goldstone

’t Hooft coupling given by (6.29) scales as,

σ ≃ (λGold)
1

αGold =

(

32π

3
(r∗m)

)

(r∗m)2

α

. (6.30)

Since in this expression (r∗m) ≫ 1, the above cross section violates unitarity beyond any

repair.

Now, the important thing is that the above violation takes place for the momentum-

transfer q ∼ r−1
∗ . The physical meaning of this fact is that the actual UV-cutoff of the

theory in the Goldstone vacuum is much less than the scale r−1
∗ ,

ΛUV ≪ 1

r∗
. (6.31)

This means that the bubble of size r∗ cannot be described within the validity of the theory.

This is despite of the fact that the bubble respects the standard Bekenstein bound (1.3). It

is the violation of the other two bounds (1.1) and (1.2) that makes the theory inconsistent.
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We thus arrive to the following conclusion:

A violation of the inverse-coupling (1.2) and the area-law (1.1) entropy bounds

makes the theory inconsistent even if the standard Bekenstein bound (1.3) is

satisfied.

Thus, the inverse-coupling (1.2) and the area-law (1.1) entropy bounds are not equiva-

lent to Bekentein bound (1.3) and in fact are more stringent. On the other hand, saturation

of (1.1), (1.2) also implies saturation of (1.3). Thus, in a consistent theory all three bounds

must be respected and saturated simultaneously.

7 Black holes as saturons

Obviously, there are striking parallels exhibited by saturons in renormalizable theories on

one hand and black holes in gravity on the other. These parallels appear to be so vast

and so precise that they must indicate about the universality of physics-laws that govern

the saturation point (1.4). This universality goes way beyond the particularities of the

underlying theory, whether it is gravity, a gauge theory or something entirely different.

What we are learning is that physics is controlled by a fundamental connection between

entropy and unitarity expressed by the bound (1.4).

In this section we shall make these parallels more transparent by organizing them in

form of an explicit “checklist” of similarities between renormalizable saturons and black

holes. In order to make the extend of the connection brisk, we shall choose for the role of

non-gravitational saturons the vacuum bubbles of the theory given by (6.1). We remind the

reader that the latter is a renormalizable quantum field theory of a self-interacting scalar

field φ in the adjoint representation of SU(N) symmetry. Since this symmetry is not even

gauged, it is hard to imagine an example that is more distant from gravity. Nevertheless,

as we shall see, the saturons in this theory share all their key properties with black holes.

We shall now discuss these properties one by one.

7.1 Similarities in entropy

As already discussed in details, saturons in the theory (6.1) represent vacuum bubbles. An

exterior of the bubble is an unbroken symmetry vacuum which we choose as asymptotic

S-matrix vacuum for our observer Alice. In the interior of the bubble the SU(N) symmetry

is spontaneously broken down to a maximal subgroup which we chose as SU(N−1)×U(1).

This breaking results into ∼ N Goldstone bosons localized in the bubble world volume.

They endow the bubble with the entropy given by (2.17). As already explained, the alter-

native way to think about bubble entropy is in terms of group representations. Because the

bubble is not elementary but rather is a state with high occupation number, it transforms as

a large representation of the SU(N) group. The entropy is set by the log of the dimensional-

ity of this representation. As we have seen, only the smallest bubbles, of size r ∼ R = m−1,

can saturate the entropy bound consistently. At the saturation point they saturate all three

bounds (1.3), (1.1) and (1.2) simultaneously. Therefore, they satisfy the relation (1.4).
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Now, we wish to note that (1.4) is exactly the relation satisfied by the Bekenstein

entropy of a black hole [5]. Of course, the fact that black hole entropy saturates the ordinary

Bekenstein bound (1.3) and also exhibits the area law, is well-known. What is much less

appreciated is that the black hole entropy also saturates the inverse-coupling bound (1.2).

The latter observation was originally made in [6, 7] which we shall now explain.

For this, first note that the graviton coupling at the scale of momentum-transfer q is

given by,

αgr(q) =
q2

M2
P

. (7.1)

However, this is nothing but an inverse of the Bekenstein entropy of a black hole of radius

R = q−1! Thus, the entropy of a black hole of mass M and radius R = M
M2

P

obeys the

following relation,

SBH = MR =
1

αgr(q)
=

Area

M−2
P

. (7.2)

This is exactly the relation (1.4) with f = MP and q = 1/R. As already explained in

the introduction, the relation is obvious since MP represents the graviton decay constant.

Also, a black hole breaks translation symmetry spontaneously and the Goldstone mode of

this breaking is of course the graviton excitation.

7.2 Decay and life-time

Until now, the best understood computation about the decay of a black hole, is the famous

original one by Hawking [30]. This computation is exact in the following semi-classical limit,

M → ∞, MP → ∞, R = finite . (7.3)

Of course, simultaneously the Planck constant ~ = 1 is kept finite. Notice, in the above

limit, also the black hole entropy SBH becomes infinite, as it is clear from (7.2).

Now, in the limit (7.3) the geometry of a black hole experiences no back-reaction from

the emitted quanta. That is, a black hole becomes a rigid reservoir of infinite energy

and information capacity. The Hawking’s computation shows that in this limit black hole

emits in thermal spectrum with temperature T ∼ 1
R

. That is, on average, a black hole

emits a quantum of energy ∼ 1
R

per time ∼ R. The emission of more energetic quanta is

exponentially suppressed, whereas the less energetic ones are suppressed by the phase-space.

Of course, in the limit (7.3) the black hole mass is infinite and so is the life-time.

However, if we extrapolate Hawking’s result for finite M , we can estimate that the black

hole shall lose of order half of its mass approximately after the time,

tBH ∼ R (RMP )2 ∼ RSBH . (7.4)

The last part of the equation relates this time-scale with the black hole entropy. This is

indicative, since the number of the emitted quanta of energy ∼ 1/R is equal to the black

hole entropy.

Now, strictly speaking, it is unjustified to extrapolate the results of Hawking’s semi-

classical computation beyond the above time-scale. The reason, without entering into much
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guess-work about the microscopic quantum gravity, is simple [32]. The back-reaction, that

the black hole experiences with each emission, is of order ∼ 1
SBH

. So, the cumulative effect

after the time (7.4) is large and must be taken into account. This cannot be done without

working in an explicit microscopic theory in which we shall not enter. We shall therefore

limit the study of the connection between saturons and black holes by the time-scale (7.4).

We now wish to show that the quantum decay of a saturon bubble exhibits a very

similar behaviour. Let us first note that the long life-time of large bubbles was concluded

in the earlier studies both by numerics [27–29] as well as by analytic arguments [18]. The

latter argument relies on a very narrow level-spacing of quantized bubbles. Due to this, the

emission of particles requires transitions between distant levels which is suppressed by the

wave-function overlap. In the present case there will be an additional suppression factor

due to the memory burden effect [35, 36]. This effects is connected with the high entropy of

the bubble which stabilizes it against the spread-out. Assuming that classically the bubble

is long lived, we focus our interest on the smallest ones that saturate the entropy bounds

and satisfy (1.4).

Now, for a saturon bubble of the theory (6.1), the analog of Hawking’s semi-classical

limit (7.3) is

M → ∞, f → ∞, R = finite , (7.5)

or equivalently,

Sbubble =
1

α
→ ∞, λc = 1, R = finite . (7.6)

In this limit, the decay rate of the saturon can be estimated in the following way.

The saturon bubble represents a loose bound-state of bosons of mass m. Because

of the binding potential their energies are of course below the threshold of free quanta.

However, the particles can be emitted because of quantum depletion due to re-scattering.

The rate can be easily estimated and is given by (see, [6, 7] for a very similar estimate of

the depletion of a saturated state),

Γemission ∼ R−1α2n2 ∼ R−1 . (7.7)

Thus, just like a black hole, the saturon emits on average one quantum of energy ∼ 1
R

per

time ∼ R. The emission of more energetic quanta is exponentially suppressed because this

requires a re-scattering of larger number of constituents. At the same time, the low energy

ones are suppressed by the phase space. Of course, since theory has a mass gap, nothing

can be emitted below the energy ∼ m.

To summarize, an asymptotic observer, Alice, would see a saturon bubble as an object

that emits in approximately-thermal spectrum. This is true despite the fact that the n-

particle state of saturon is not really thermal. What creates the effect of thermality is the

softness of the constituent quanta and the fact that the state is at the critical point λc = 1.

Now, extrapolating this result to finite n, the resulting half-life time of saturon bubble is,

tbub ∼ R (Rf)2 ∼ RSbub . (7.8)

Without much commenting, the striking analogy with all the aspect of black hole evapo-

ration and in particular with its half-life (7.4) is obvious.
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7.3 Infomation horizon and time-scales

One of the characteristic properties of semi-classical black holes (7.3) is the existence of

the horizon. This makes an information about the black hole interior inaccessible for

an outside observer, such as Alice. It is widely believed, although remains a subject of

active controversy, that for a black hole of finite mass the information is no longer hidden

and finally comes out. We shall not question this point of view since within a consistent

particle physics framework with unitary S-matrix, no other outcome is imaginable for us.

The question therefore is not whether the information is accessible but rather how long

is the required time-scale for decoding it. Of course, it is reasonable to assume that the

minimal time-scale required for a start of the information read-out, is the half-life of a

black hole. This view is supported by general arguments by Page [31]. We shall therefore

adopt the equation (7.4) as the lower bound on such a time-scale.

We shall now see that all the above properties are matched by saturons of renormal-

izable theory (6.1). Of course, the advantage is that in case of a saturon bubble we can

understand the microscopic origin of such properties very transparently. Let us first notice

that, just like a black hole, a saturon bubble creates an information horizon that makes the

knowledge about its micro-state inaccessible for Alice. Indeed, the quantum information is

encoded in saturon micro-states. These micro-states are labelled by the excitations of the

gapless Goldstone modes that are confined to the interior of the saturon. Their number is

∼ N as it is also indicated by the entropy of the saturon.

Now, for reading out this information Alice faces the following dilemma:

• Alice can wait for Saturon evaporation and examine its decay products very carefully;

• Alternatively, Alice can scatter an external probe particle at the saturon and study

the outcome.

A slight technical problem with pursuing both methods simultaneously is that scat-

tering will in general alter the internal state of saturon. So, it is cleaner to follow one

protocol.

It is easy to see that the minimal time-scale required by both efforts is given by (7.8).

Indeed, in order to examine the decay products carefully, Alice has to setup an interaction

that distinguishes among the different states within the same SU(N)-multiplet. This is sim-

ilar to measuring a spin polarization of a particle in a theory with a rotationally-invariant

Hamiltonian. Despite the fact that Hamiltonian commutes with the spin operator, the

particle spin projection can still be measured. This is not an issue. The problem in case of

a saturon bubble is that the information is stored among the states of enormous number of

Goldstone modes. So, each emitted quantum carries only a tiny fraction of this information.

The rate by which an emitted quantum interacts with Alice’s device is,

ΓAlice ∼ 1

R
α2NAlice , (7.9)

where NAlice is the measure of the capacity of the device which is under Alice’s control.

Alice can maximize this capacity, for example, by preparing a huge reservoirs of probe
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particles. However, even if Alice manages to identify the state of a given emitted quantum,

the latter only carries an exponentially small part of the information about the state of the

entire saturon. So, Alice needs to gather at least of order ∼ n emitted quanta before she

can start decoding information at a reasonable rate. This requires a minimal waiting time

given by (7.8), in exact analogy with a black hole.

Now, the second option for Alice is to scatter a soft probe particle through the interior

of the saturon and study the scattering products. The hope is that the probe particle

shall interact with Goldstone bosons that are confined within the interior and bring out

the information about their state. Notice, the probe particle must be optimally soft: on

one hand, it should not create too much level-splitting among the states of the gapless

Goldstones and, on the other hand, the interaction rate must not be too low. The latter

rate is suppressed by the decay constant of Goldstone bosons f .

At the end, the rate of scattering between an optimally-soft probe and the saturon

Goldstone field is,

ΓGold ∼ 1

R3f2
. (7.10)

The corresponding time-scale is nothing but a half-life of the saturon bubble (7.8). Again,

we observe that similarity with the black hole case is complete. In particular, in the

limit (7.5) the information becomes inaccessible. This is exactly analogous to what happens

with black hole information in the limit (7.3). Of course, both limits are fully consistent

with unitarity since the respective objects become infinitely massive and their life-times

become eternal.

7.4 Scattering amplitudes

As the last step for completing the list of similarities between non-gravitational saturons

and black holes, we discuss relation with scattering amplitudes. As we have shown, the

saturation of entropy bound (1.4) by a bubble (or any other soliton) is in one to one

correspondence with the sturation of unitarity by the respective 2 → n scattering process.

We wish to point out that this connections carries over into black holes. The idea that a

black hole can be produced in a collision of few particles of center of mass energy E ≫ MP

is not new and goes back to [37–41] and many subsequent papers. However, only relatively

recently [42–44], this process has been connected to 2 → n graviton scattering amplitudes.

The actual detailed computation of the amplitude was performed in [43] and [44]. The

study was motivated by the microscopic picture of [6, 7] in which a black hole is described

as n-graviton state at the point of saturation λc = 1. However, in the present discussion

we would prefer not to have any microscopic bias.

So, we put ourselves in the position of Alice, who is making no assumption about

the microscopic theory of a black hole. Alice is simply observing a process of black hole

formation in a collision of two quanta of center of mass energy E ≫ MP and its subsequent

evaporation into n soft ones. It is obvious that the process that Alice identifies as a relevant

S-matrix process is 2 → n.

– 34 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

This is exactly the computation performed in [43]. The resulting cross section of

producing a particular n-graviton state is

σ2→n = n!(αgr)
n . (7.11)

The crucial point is that the above expression reduces to,

σ2→n = e
− 1

αgr = e−SBH , (7.12)

exactly when the softness of outgoing gravitons matches the Hawking quanta q = 1
R

. Now,

strictly speaking, we have no moral obligation to interpret these n-graviton states as the

black hole micro-states. However, intuitively the connection is clear. So, we can interpret

them as “relatives”. This relation carries the same meaning as the relation between the

saturon vacuum bubble in theory (6.1) and the n-particle state into which it decays. It

is then clear that the total cross section obtained by multiplying (7.12) by the number of

black hole micro-states, nst = eSBH , saturates unitarity.

In order to keep it sharp: in this discussion, we do not pretend to understand the

microscopic origin of SBH. Instead, we simply take it for granted and observe that the

structure of the 2 → n graviton amplitude matches what is expected from a black hole.

We are not going further than this. However, a complete similarity with the properties of

a non-gravitational saturon bubble — where we do understand the microscopic origin of

the entropy — must ring some bell.

The above concludes our check list. It is obvious from this list that we are dealing

with striking similarities between two types of objects. On one side, this are saturons in

a simple renormalizable theory. Their microscopic properties are as transparent as they

could be for a multi-particle state at weak coupling. On the other side, we have black holes

in a non-renormalizable theory. Yet, we see that essentially all known properties match.

As we have seen, the central source that defines these similarities is that both saturate

the bound (1.4). While the reader can decide for themselves how seriously to take this

connection, our view is the following:

We think that there is something fundamental about the connection between sat-

urations of unitarity and entropy encoded in the bounds (1.1) and (1.2). This

connection goes well beyond gravity or renormalizability. It is the saturation

point (1.4) that determines the behaviour of the system, including its decay pat-

tern, life-time, as well as the capacities of information storage and processing.

8 Saturons and classicalization

Few years ago [4] it has been suggested that certain theories — that lack sensible Wilsonian

UV-completions — can instead be UV-completed by classicalization. The key idea is

as follows. Consider a theory in which a coupling α(q) becomes strong above certain

cutoff ΛUV . In such a theory the processes with momentum-transfer q > ΛUV are out of

control. In certain cases the theory allows to be UV-completed above the scale ΛUV by

integrating-in new weakly-interacting degrees of freedom. These new degrees of freedom
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restore perturbative unitarity in processes with momentum-transfer q ≫ ΛUV . We call

such UV-completion Wilsonian. A nice example of this is the Higgs in the Standard Model

which restores unitarity in scattering of longitudinal W -bosons at high q. What happens

when the sensible Wilsonian UV-completion is not possible?

The idea of classicalization is that in such a case the theory can use its classical objects

for UV-completion. A classical object of mass M ≫ ΛUV and size R ≫ Λ−1
UV is composed

out of many soft quanta of momenta q ∼ R−1 ≪ ΛUV . Since q is below the cutoff,

the coupling is weak, α(q) ≪ 1. In this way, a would-be strong coupling is traded for a

high multiplicity. Such a classical object represents a coherent state of the sort (2.9) with

occupation number n ∼ α(q)−1.

Now, imagine that a scattering process at center of mass energy E ∼ M ≫ ΛUV is dom-

inated by production of a classical state. Such objects in [4] were referred to as classicalons.

In such a case, the momentum-transfer in the process will be q ≪ ΛUV . This is because the

constituent quanta of the classical objects are soft. Then, the process, despite being con-

ducted at energy much higher than the cutoff, never probes distances shorter than R. So

the theory shields itself from the strong coupling regime by becoming effectively-classical.

However, there is a tradeoff: the occupation number must be very high. Correspond-

ingly, the theory must find a way of compensating the exponential suppression of the cross

section (3.4). As explained in [22], this requires that the entropy of the classical object

is high. Thus, in the language of present discussion, the classicalons must be saturons.

Then, from the results of the present paper it follows that for classicalization to work, the

following two conditions must be satisfied:

• The theory must contain saturons (classicalons);

• Saturons must form an almost continuous spectrum for M > ΛUV .

The second requirement comes from our previous findings that each saturon dominates

the cross section only in a very narrow window of center of mass energy given by (5.6).

Therefore, a theory that is UV-completed by classicalization must deliver a saturon for

each value of the center of mass energy.

In a renormalizable asymptotically-free theory the saturons appear with very specific

masses (3.10) and sizes (3.11). These are determined by the scale q at which the running ’t

Hooft coupling reaches the critical value (5.3). So, such a theory cannot be UV-completed

by classicalization. But, also there is no need for this since asymptotic-freedom takes care

of UV-physics.

On the other hand, non-renormalizable theories can offer a continuous spectrum of

saturons in UV. The example of this is gravity. There saturons are black holes. This is why

gravity can be unitarized by black hole creation. In fact, the proposal of UV-completion

by classicalization [4] was based on a similar proposal for gravity [45].

Now, in order to avoid misunderstanding we must stress that unitarization by black

holes works for center of mass energies above the Planck scale MP . In fact, higher the

better. For processes with the center of mass energies MP in which the momentum transfer

is also of order MP , the coupling αgr is order one. The resulting resonances produced in

– 36 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
6

such collisions represent micro black holes. These cannot be described classically. This is

similar to production of QCD resonances around ΛQCD scale. In the language of [6, 7],

they are described as states with n ∼ 1.

9 Gravitational species bound

It has been shown [46–48] that black hole physics puts the following bound on the number

of particle species,

ΛUV .
MP√
N
. (9.1)

Here ΛUV represents the scale above which the quantum gravity enters the strong coupling

regime to which the semi-classical treatment does not apply.

Equation (9.1) is supported by several argument which can be found in [46–48] and will

not be repeated here. We just note that perhaps the physically most transparent one is the

following: a black hole of radius smaller than Λ−1
UV has no way to sustain Hawking’s thermal

evaporation self-consistently. Now, since Hawking’s derivation is exact in semi-classical

limit, its invalidity implies a breakdown of semi-classical gravity. Hence, the bound (9.1).

Because it relies exclusively on the validity of well-understood properties of semi-

classical black holes, the bound (9.1) is fully non-perturbative. The question therefore is

whether this bound can be understood in the language of scattering amplitudes.

The present discussion about the entropy saturation and unitarity answers this ques-

tion. The relevant processes are the 2 → n processes in which two initial gravitons produce

n particles of momenta q ∼ MP√
N

. The example is depicted on figure 3. Of course, the final

state quanta gravitate and must be properly dresses by infrared gravitons. This standard

dressing is independent of entropy of species and is assumed to be done. Again, as before,

by power of large-N physics, all non-exponential and non-factorial dependences on N play

little role in determining the saturation point. Such factors therefore will be set to one.

Now, the n final-state particles can belong to N different species and Einstein gravity

couples to all of them democratically. Due to this, the number of final states is exponentially

large. The counting is identical to the one given for a gauge theory with a minor difference

in a final degeneracy factor. We shall display the cross section for

n =
1

αgr(q)
, (9.2)

where, αgr(q) is the gravitational coupling given by (7.1). Defining the gravitational analog

of the ’t Hooft coupling,

λgr ≡ αgrN =
q2N

M2
P

, (9.3)

we can write the cross section in the form

σ =



e−1(1 + 2λgr)
1
2

(

1 +
1

2λgr

)λgr




1
αgr

. (9.4)
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Figure 3. Above, 2 → n process in which two initial gravitons produce n particles of different

species denoted by different colors. The process saturates unitarity at the species scale ΛUV ∼ MP
√

N
.

Below, Alice observing a smallest semi-classical black hole which carries the species hair (denoted

by colors).

This cross section saturates unitarity for,

λgr ≃ 1.1 . (9.5)

Obviously, the corresponding value of momentum-transfer q = MP√
N

marks the upper bound

on UV-cutoff of the theory. It is clear that this bound is exactly the same as the species

bound (9.1).

We thus learn that the physical meaning of the species scale ΛUV is the following. It

determines the value of momentum-transfer q that brings the gravitational ’t Hooft coupling

to the saturation point (9.5). For this value, the n-particle state becomes a saturon. That is,

it saturates both the entropy bound and unitarity. This saturon has a very clear physical

meaning. It represents a smallest possible semi-classical black hole. Such a black hole

carries a species hair [49]. Notice that the entropy derived due to micro-state degeneracy

of species, exactly matches the Bekenstein entropy of such a black hole.
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10 Outlook

In the present paper we have further explored the ideas about the connection between

entropy and unitarity that were introduced in [1, 2]. The central message is that unitarity

of the scattering amplitudes imposes two universal bounds on the entropy of a quantum

system. Namely, the maximal entropy is given by the area measured in units of a decay

constant f of a relevant Goldstone degree of freedom (1.1). At the same time, the entropy

bound is set by the inverse running coupling α−1 evaluated at the scale of the size of

the object (1.2). These bounds turn out to be more stringent and more general than

Bekenstein’s classic bound (1.3). In particular, they may be violated by the objects that

respect the latter bound. Of course, such systems are eliminated by unitarity. Also, since

these bounds have no explicit reference to the energy, they are applicable to the Euclidean

entities such as instantons for which the Bekenstein bound cannot be defined. On the other

hand, the objects that saturate/respect (1.1) and (1.2) also saturate/respect the Bekenstein

bound (1.3). That is, in a consistent theory all three bounds are saturated simultaneously.

We refer to the objects that reach this point as saturons.

We have seen that the saturation of both bounds (1.1) and (1.2) is mapped on the

saturation of unitarity by 2 → n scattering amplitudes with n = 1
α

. This saturation is

non-perturbative. Naturally, such processes are interpreted as the production of a saturon

in two-particle collision.

Now, the saturon is a multi-particle state which is approximately-classical. It therefore

appears to defy the standard field theoretic intuition that a production of a classical object

in a two-particle collision must be exponentially suppressed. We have explained what is

going on in reality. Fist, refining the analysis of [22], we gave a general argument showing

that the transition to each individual final state is indeed exponentially suppressed. This

is in full accordance with the previous studies [15]–[23]. However, in case of a saturon

the suppression is compensated by the exponentially large number of micro-states that

are classically-indistinguishable. In other words, the cross section is enhanced due to the

entropy of the final state. Due to this, with a properly chosen center of mass energy, the

saturon cross section can dominate the scattering process. However, the cross section is

very narrowly peaked at a resonant value of the initial energy. Away from this value the

cross section diminishes exponentially steeply.

Due to the above properties, saturons can play the role in UV-completion by classical-

ization [4], but only if they form a continuous spectrum above certain energy. However, it

is unclear how wide is the range of such theories.

We have observed that consistent theories dynamically resist to violations of the en-

tropy bounds. An especially interesting example is provided by SU(N) gauge theory. It

was already shown in [2] that an isolated instanton saturates the entropy bounds (1.1)

and (1.2) at the critical value of ’t Hooft coupling of order one. We have seen that any

further increase of the running ’t Hooft coupling would violate the entropy bounds. Corre-

spondingly, the scattering amplitudes would violate unitarity. In order to prevent this from

happening, the theory must become confining. This puts the phenomenon of confinement

in a new light. Namely, it appears that in SU(N) with pure glue the confinement represents

a necessary response that avoids the violations of the entropy bounds and unitarity. In
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other words, in order not to violate the entropy bounds (1.1) and (1.2) somewhere in deep

IR, the theory must eliminate the asymptotic colored states. The possible alternatives

would be that the theory either hits an IR fixed point or develops a mass gap via the

Higgs effect. However, none of the two options are feasible in pure glue. Thus, confinement

emerges as a direct consequence of the entropy bounds and unitarity.

Likewise, in [1] it was observed that a baryon saturates the above entropy bounds

when the numbers of flavors and colors are of the same order. At this point the baryon

entropy satisfies the relation (1.4). The violation of the entropy bounds would render

the theory asymptotically non-free. Simultaneously, the multi-pion scattering amplitudes

would violate unitarity.

Next, we have constructed an explicit theory that contains saturons. We deliberately

chose the example that is maximally distant from gravity. In particular, the theory is

renormalizable and not based on any gauge symmetry. The saturons there represent the

vacuum bubbles that house a large number of Goldstone modes in their interior. These

gapless Goldstone excitations create an exponentially large number of the bubble micro-

states. The resulting micro-state entropy saturates the bounds (1.1) and (1.2) for a critical

value of ’t Hooft coupling. At this point, the bubble becomes a saturon.

We have shown that on all counts the bubble saturons behave like black holes. It is also

clear that these properties are universal. They must be shared by saturons in other renoma-

lizable theories. The generalization of the constructions given in [1, 2] and in the present pa-

per is straightforward. In particular, for making contact with decaying black holes, we need

to construct saturons without any net conserved topological charge. The vacuum bubble

saturons discussed in this paper have this property. The construction can easily be general-

ized by creating saturons using pairs of topological or non-topological solitons with opposite

charges that are placed on top of one another. For example, one can pair up baryon-anti-

baryon (skyrmion-anti-skyrmion), monopole-anti-monopole and so on. The annihilation of

topological defect has been studied previously numerically. For example, monopole-anti-

monopole pairs were analysed in [54]. However, to our knowledge, no studies have been

done either for the saturated case or in the limit (7.6). The oscillating lumps of the scalar

fields, the so-called oscillons [50–52],1 can also be used as the building block for constructing

a saturon. However, one has to be careful to stay within the regime of weak coupling α.

A profound question for future studies is whether there are any implications of the

present results for AdS/CFT correspondence [55–57]. Perhaps a natural avenue to go

would be to ask whether AdS can be viewed as a saturated state of some gravitational

degrees of freedom, as it was suggested in [6, 7]. No real progress in this direction has been

achieved so far. Surprisingly, the analogous approach to de Sitter space turned out to be

more straightforward. In particular, the resolution of de Sitter patch in form of a saturated

coherent state of gravitons has been discussed in [33, 34].

Finally, our studies bring us to the point at which the properties of a black hole can be

understood through the prism of a fundamental connection between unitarity and entropy.

We observe that this connection is universal and is shared by saturons irrespective of their

origin. This strongly suggest that black hole is a saturon state of gravitons, as was originally

proposed in [6, 7].

1For implications for dark matter, see ref. [53].
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A Argument from effective S-matrix

We shall now give a fully non-perturbative consistency argument explaining why a properly

resummed matrix element of transition

| few〉 → | many〉 (A.1)

must be exponentially suppressed. This argument is a refined version of the one in [22] and

is based on effective Ŝ-matrix. Consider a process describing a transition between two sorts

of quanta, denoted by a and b respectively. During it, l particles of species b get converted

into n particles of species a. Here, the term species specifies all quantum numbers. For,

example a and b can denote the different momentum modes of the same quantum field, or

some modes of two distinct fields.

We assume that number eigenstates of a and b species represent the legitimate

S-matrix states over the time-scales of interest. Among other things, this implies that

the effective Hamiltonian is approximately diagonal in a and b modes throughout the

transition process. That is, the off-diagonal terms in the Hamiltonian must be subleading

as compared to the diagonal ones during the relevant time-evolution. This is a necessary

condition for having a well-posed transition process. It of course implies that the

underlying field theory stays within the weak-coupling regime throughout the transition.

The theory shall be otherwise unspecified.

We focus on the case when the occupation number n in the final state is much larger

then the analogous number l in the initial state, n
l

≫ 1. As we shall see, in such a case,

the transition matrix element is always exponentially suppressed. This is in accordance

with [21]. Therefore, for simplicity we first take l = 1.

Thus, the initial state is a one-particle state | in〉 = | 1〉b ⊗| 0〉a with a single b-quantum

present. Respectively, the final state | f〉 = | 0〉b ⊗ |n〉a is populated with n a-quanta. Of

course, we assume that the transition is kinematically allowed.

Now, consider a fully resummed Ŝ-matrix operator. The term that is responsible for

the above transition has the form

Ŝ1b→na = κ(â†)nb̂ . (A.2)

The form is unique since the operator has to destroy a single particle of species b and create

n particles of species a. Of course, the operator (A.2) is a result of resummation of infinite
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series. The information about this resummation is contained in the coefficient κ. We shall

now argue that by consistency κ is bounded as,

κ . n− n
2 . (A.3)

This upper bound is universal and independent of the details of underlying field theory. It

may come as a surprise because, naively, all we need to require is that the matrix element

satisfies,

| 〈f | Ŝ1b→na | in〉 |2 < 1 . (A.4)

The latter requirement would give a much milder bound,

κ <
1√
n!
. (A.5)

However, the correct bound is (A.3). Here is why: in order to have a well-posed scattering

problem, we must demand that the matrix element 〈ψ | Ŝb→na |ψ〉 is small over all the

states |ψ〉 that are physically close to either | in〉 or | f〉. The meaning of this requirement

we shall now explain.

We define the two normalized states | 1〉 and | 2〉 as physically close if they provide

comparable expectation values for a physical observable Ô,

〈1 | Ô | 1〉 ∼ 〈2 | Ô | 2〉 . (A.6)

Under comparable we mean the same order of magnitude. The role of the physical ob-

servable Ô can be played by an arbitrary measurable quantity. We choose it to be the

number operator of a-quanta n̂ ≡ â†â. The reader should feel free to explore other

choices. Then, according to above definition, a state |ψ〉 is physically close if, for ex-

ample, 〈ψ | n̂ |ψ〉 ∼ 〈f | n̂ | f〉. Our criterion is that on any such state |ψ〉 the expectation

value of Ŝb→na must be small. Why?

Here is one way to explain this. Think of the above transition process in terms of time-

evolution in the Hilbert space. Let the state vector at some initial time be | t = 0〉 = | in〉.
After a sufficiently long time t this state evolves into | t〉. The projection of 〈f | | t = ∞〉
determines the S-matrix elements. During the time evolution in any given process the state

vector explores only a finite portion of the infinite Hilbert space. With the states populating

this portion, vector | t〉 has a significant overlap. These are states that are physically-close to

| t〉. Our requirement then is equivalent to demanding that on all such states the off-diagonal

part of the effective Hamiltonian must be smaller than the diagonal part. A violation of this

requirement would imply that somewhere in the transition process a and b-modes stop to be

the valid weakly-coupled degrees of freedom. The Hamiltonian then must be re-diagonalized

by a large canonical transformation. This would contradict to our starting point.

Since the state |ψ〉 can be chosen arbitrarily, we take it to be the following coherent

state,

|ψ〉 = e
√

n(â†−â)+(b̂†−b̂) | 0〉 . (A.7)

Obviously, this state satisfies the criterion of the physical closeness since

〈ψ | n̂ |ψ〉 = n = 〈f | n̂ | f〉 . (A.8)
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Therefore, we must require,

| 〈ψ | Ŝ1b→na |ψ〉 |2 < 1 , (A.9)

which immediately gives (A.3). Taking this into account, we get

| 〈f | Ŝ1b→na | in〉 |2 < n!n−n ∼ e−n , (A.10)

where in the last step we used Stirling’s approximation. Thus, a transition matrix element,

describing the creation of any n-particle state | f〉 from a one-particle initial state | in〉,
must be exponentially suppressed. This is a non-perturbative result. This conclusion is of

course in full agreement with the previous studies [15]–[23]. However, it makes the origin

of the suppression transparent from very general perspective of S-matrix consistency.

Obviously, the above reasoning can be easily generalized to the case in which the

occupation number of b-particles in the initial state | in〉 = | l〉b ⊗ | 0〉a is larger than one.

As long as the difference between the occupation numbers in initial and final states is large,

n ≫ l, the exponential suppression of the transition matrix element takes place.

We shall now move to the case in which the final particles can belong to several different

species. That is, we allow the operators âj to carry a species label j = 1, 2, . . . , N . This

label can represent an arbitrary quantum number such as “color” or “flavor”. Thus, we are

looking for a transition matrix element between an initial state | in〉 = | 1〉b ⊗ | 0〉a and a

final state | f〉 = | 0〉b ⊗ |n1, n2, . . . nN 〉a, where |n1, n2, . . . nN 〉a =
∏N

j=1

(â†
j
)nj√
nj !

| 0〉a, with
∑N

j=1 nj = n. The occupation numbers nj are otherwise unconstrained. That is, the final

state | f〉 houses n-quanta with arbitrary color indexes. Of course, when only one color is

occupied, the story reduces to the case of singe a-species.

Correspondingly, the transition Ŝ-operator now has a form,

Ŝb→na = κ
N
∏

j=1

(â†
j)nj b̂ , (A.11)

with the constraint
∑N

j=1 nj = n.

In order to derive an upper bound on the coefficient κ, we shall repeat the previous

reasoning. Namely, we demand a relative smallness of the expectation values of Ŝ over all

the states |ψ〉 that are physically close to | f〉. Again, as a test observable we use the total

number operator of a-species, n̂ ≡ ∑N
j=1 â

†
j âj . Correspondingly, for |ψ〉, we use a simple

generalization of the state (A.7) to several species,

|ψ〉 = e
∑N

j=1

√
ñj(â†

j
−âj) | 0〉 . (A.12)

Here, we have introduced a notation tilde in order to distinguish between the coherent state

parameters ñj and the corresponding number eigenvalues nj . We shall take ñj ∼ nj . Then,

〈ψ | n̂ |ψ〉 =
∑

j

ñj ∼ n = 〈f | n̂ | f〉 , (A.13)

which ensures that the states |ψ〉 and | f〉 are physically close.
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Now, demanding the smallness of the expectation value (A.9) evaluated for the Ŝ-

matrix operator (A.11) over the coherent state (A.12), we conclude that the coefficient κ

must obey,

κ <
N
∏

j=1

ñ
− nj

2
j . (A.14)

We shall now consider the cases of large and small values of nj separately. We must

remember that nj-s are characteristics of the transition process, whereas ñj are parameters

of the probe state |ψ〉. The latter can be chosen at our convenience subject to ñj ∼ nj .

Now, for the case of large nj-s, we can simply take ñj = nj and use Stirling approxi-

mation in (A.14). Then, for the transition matrix element we get,

| 〈f | Ŝ1b→na | in〉 |2 <
∏

j

nj !n
−nj

j ∼ e
−
∑

j
nj = e−n . (A.15)

Regarding the case of nj ∼ 1, it suffices to take ñj slightly larger than nj . For example,

consider the case nj = 1 for all j. Of course, in this case n = N . Taking ñj = enj = e, we

see from (A.14) that the transition matrix element is suppressed as e−n = e−N .

In summary, we arrive to the universal suppression of a transition matrix element,

| 〈many | Ŝ | few〉 |2 . e−(many) . (A.16)

Here many=n denotes the total occupation number in the final state. This result fully

matches the physical intuition which tells us that the creation of classical states in colli-

sions of few quanta must be strongly suppressed. Indeed, the transition | few〉 → | many〉
represents a quantum-to-classical transition. The classicality of the final state is obvious

when the occupation numbers of the individual species, nj , are large. However, the same

is also true when the individual numbers nj are small, as long as the total occupation

number n is large and coupling α is sufficiently weak. The reason is that the species are

only distinguished by the quantum number j that is associated with the weak coupling.

To reiterate, if n is large, the state | f〉 is essentially classical, even if the individual

occupation numbers are minimal, nj = 1. This is because an observer (Alice) needs a very

long time in order to distinguish the individual “colors” of the constituents if their quantum

coupling α is extremely weak, α = 1
N

. Indeed, imagine that Alice wishes to distinguish

the state | f〉 with n1 = N,nj 6=1 = 0 from the one with n1 = n2 = . . . = nN = 1. In order

to read-out the color content of the state | f〉, Alice has to initiate an act of interaction

between the individual a-quanta and some color-sensitive external probe. However, the

rate of such interaction is suppressed by powers of α. Correspondingly, the minimal time-

scale required for the measurement per particle is t ∝ 1
α

. Thus, the detection of the species

quantum identities demands an investment of a macroscopically-long time-scale. On the

shorter time-scales, the only observable effects are the collective N -particle processes that

are controlled by the ’t Hooft coupling λt = αN . The latter effects do not vanish in the ’t

Hooft’s large-N limit, and therefore, are classically-observable.
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