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Entropy-Constrained Vector Quantization 
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Akfmct-An iterative descent algorithm based on a Lagrangian for- 

mulation is introduced for designing vector quantizers having mini- 

mum distortion subject to an entropy constraint. These entropy-con- 

strained vector quantizers (ECVQ’s) can be used in tandem with 

variable rate noiseless coding systems to provide locally optimal vari- 

able rate block source coding with respect to a fidelity criterion. Ex- 

periments on sampled speech and on synthetic sources with memory 

indicate that for waveform coding at low rates (about 1 bit/sample) 

under the squared error distortion measure, about 1.6 dB improve- 

ment in the signal-to-noise ratio can be expected over the best scalar 

and lattice quantizers when block entropy-coded with blocklength 4. 

Even greater gains are made over other forms of entropy-coded vector 

quantizers. For pattern recognition, it is shown that the ECVQ algo- 

rithm is a generalization of the k-means and related algorithms for 

estimating cluster means, in that the ECVQ algorithm estimates the 

prior cluster probabilities as well. Experiments on multivariate Gauss- 

ian distributions show that for clustering problems involving classes 

with widely different priors, the ECVQ outperforms the k-means al- 

gorithm in both likelihood and probability of error. 

I. INTRODUCTION 
ONSIDER the quantization or data compression C scheme of blocking a discrete-time stationary ergodic 

source into contiguous vectors of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, and represent- 
ing each vector by one of m reproduction vectors. For 
transmission of the source across a binary channel (or 
storage in a binary medium), the index of each reproduc- 
tion vector can be encoded into binary in a straightfor- 
ward manner requiring (log, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm )  / n  bits per sample. For 
this encoding scheme, the natural design problem for a 
fixed block length n is to find the set of m reproduction 
vectors, known as the reproduction codebook, which min- 
imizes the average distortion between the source and its 
reproduction, subject to a constraint on the maximum rate 
of bit transmission. Distortion-rate theory [ 11-[3] guar- 
antees that if n is sufficiently large, there exists a finite set 
of m reproduction vectors with transmission rate R = ( log, 
m ) / n  bits per sample, such that the average distortion per 
sample D is arbitrarily close to the minimum distortion 
D( R ) ,  over all possible compression schemes with aver- 
age transmission rate less than or equal to R bits per sam- 
ple. This provides a theoretical basis for the use of such 
vector quantizers; for sufficiently long block lengths, they 
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are theoretically optimal. Unfortunately, practical 
schemes cannot use arbitrarily long block lengths. For a 
fixed block length of practical size, a scheme that achieves 
the same distortion with lower average transmission rate 
than straightforward binary coding of the indexes is one 
that “entropy encodes” its index sequence. Entropy en- 
coding reduces the average transmission rate from (log, 
m ) / n  bits per sample to the index entropy or, with addi- 
tional effort, even to the entropy rate of the index se- 
quence. The key word here, however, is “average,” since 
known practical schemes for achieving this lower rate all 
have a variable rate nature, and hence, an additional 
amount of complexity. If we are willing to deal with the 
added complexity, the natural design problem is to find 
the set of reproduction vectors which minimizes the aver- 
age distortion between the source and its reproduction, 
subject to a constraint on the index entropy. 

This is a classic problem in the quantization literature, 
often developing in parallel with the sister problem of 
quantizer design for minimum distortion with a fixed 
number of indexes. One broad area of inquiry has been 
based on calculus approximations that can be made if the 
probability distribution of the source is smooth and the 
number of indexes per dimension is large. Investigations 
in this “asymptotic” or ‘‘high resolution” quantization 
theory began with the scalar case ( n  = 1 ), in which reg- 
ular quantizers composed of thresholds and scalar repro- 
ductions (the thresholds determining to which reproduc- 
tion a given source symbol will be mapped) are generally 
the systems of interest. Gish and Pierce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] showed, 
among other things, that the optimal high-resolution en- 
tropy-constrained scalar quantizer (ECSQ) i) has uni- 
formly spaced thresholds regardless of the source proba- 
bility density function and ii) for the Gaussian iid case 
and squared-error distortion has an index entropy only 
0.255 bits /sample greater than the rate-distortion curve. 
The combination of these results suggests that scalar uni- 
form quantization should be quite effective for this 
source-a result that had already been noted experimen- 
tally by Goblick and Holsinger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  Zador [6] developed 
bounds for the index entropy of a high-resolution entropy- 
constrained vector quantizer (ECVQ) ( n  1 1 ). Based on 
the fact that one of these bounds is optimized by a uniform 
distribution of reproductions, Gersho [7] conjectured the 
optimal high resolution ECVQ should have the form of a 
lattice (a  lattice in R“ is composed of all integral combi- 
nations of a set of linearly independent vectors which span 
the space). Investigations of the properties of lattices sug- 
gest that certain lattices should perform better than others; 
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Conway and Sloane [8]-[lo] have determined the best 
known lattices for several dimensions as well as useful 
encoding and indexing schemes, and Sayood et al. have 
applied lattices to transform image coding [ l l ] .  

A second avenue of investigation has centered on ef- 
forts to determine the optimal ECSQ directly (without 
high-resolution approximations). Expressions for the en- 
tropy and distortion performance of ECSQ typically also 
include as a parameter the number of reproductions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. 
Ideally, we would like to find the optimum performance 
over all m; however, in many analytic approaches and all 
practical implementations, it is in fact necessary to limit 
m to some maximum value. Wood [12] provided the first 
numerical ECSQ design, using a descent algorithm to 
show that the optimal ECSQ for the Gaussian iid case was 
only slightly superior to the uniform scalar quantizer even 
for moderate values of m. Berger [13] described the nec- 
essary conditions for an optimal ECSQ under squared-er- 
ror distortion (and later for the rth power distortion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141 ), 
and first presented the Lagrangian formulation that we will 
make use of in Section 11. Based on this formulation, he 
developed an iterative algorithm for determining thresh- 
olds of the ECSQ. Netravali and Saigal [15] presented 
another ECSQ design algorithm based on fixed-point con- 
siderations. No11 and Zelinski [ 161 applied Berger's al- 
gorithm to a variety of common probability density func- 
tions. Farvardin and Modestino [17] extended the 
necessary conditions for optimality to general distortion 
measures, and outlined two algorithms for ECSQ design. 
The first, which they actually used in their experiments, 
is similar to Berger's algorithm. The second is a fixed- 
point algorithm which can be considered the scalar ver- 
sion of the ECVQ design algorithm of this paper. Al- 
though they reported difficulties with the convergence of 
the algorithm, we encountered no such difficulties in the 
present investigation. For the squared-error distortion, Ziv 
[18] presented an interesting result which shows that a 
certain dithered uniform scalar quantizer followed by en- 
tropy coding of a block of n indexes will have index en- 
tropy (conditioned on the dithering variable) within 0.754 
bits/sample of the optimal ECVQ of block length n; Gut- 
man [19] extended the result to a variety of other distor- 
tions. Unfortunately, this bound is loose at low rates, and 
tighter bounds from the high-resolution theory are avail- 
able at high rates. 

In this paper we present a descent algorithm for the 
ECVQ design problem. The algorithm begins with a La- 
grangian formulation like Berger's, but in implementation 
is quite similar to the generalized Lloyd algorithm [20], 

[2 11 developed for the constrained number-of-indexes 
vector quantizer design problem. We conduct a variety of 
experiments based on the use of a training sequence rather 
than the integration of probability density functions char- 
acteristic of previous investigations. We discover that, 
generally at the cost of higher complexity, ECVQ outper- 
forms many other entropy-coded quantization schemes in- 
cluding scalar uniform threshold, lattice, constrained 
number-of-indexes vector quantization, and a recently in- 
troduced tree based variable rate vector quantization 

scheme [22] ; performance gains are especially significant 
for sources with memory such as speech. Finally, we ex- 
plore applications of the algorithm in clustering and clas- 
sifier design for pattern recognition. 

11. THEORETICAL BACKGROUND 

Consider the variable rate communications system 
shown in Fig. 1 .  In a typical implementation, the encoder 
blocks the source { X i }  into vectors of length n,  and maps 
each vector X" E X " into a variable-length codeword c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 
e. The codeword c is then sent through the channel, which 
is assumed to be noiseless, and the decoder maps the 
codeword into a reproduction vector Y" E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ". The repro- 
duction alphabet 3 is usually, but not necessarily, equal 
to the source alphabet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, but, in general, the two alpha- 
bets are arbitrary and need not be finite or even countable. 
The channel codeword alphabet C is finite, and is usually 
taken to be binary, C = { 0, 1 1. This shall be assumed 
throughout the remainder of the paper. The set of channel 
codewords C = { c ~ } ~ ~ ~  is known as the channel code- 
book, and is a subset of E*, the set of all finite length 
strings from C. Thus, C is finite or countable depending 
on its index set 9, and contains codewords of varying 
lengths, in general. 

Let a,: X" + C and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon: C --* y"  denote the encoder 
and decoder, respectively. It is possible to decompose the 
encoder into two parts, a, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 0 CY, where a: X" + 9 
and y: 9 + e,  and 0 denotes composition. Thefirst part, 
CY, maps a source vector into an index, and is many-to- 
one and information lossy, in general. The second part, 
y ,  maps the index into a channel codeword, and is one- 
to-one and information lossless. 

Similarly, the decoder can be decomposed as on = 0 0 
y-I, where y-': C --* 9 and 0: 9 + 3". The mapping 
y-' is the inverse of y, and maps each channel codeword 
back to its index. The mapping 0 outputs a reproduction 
vector for an index. 

The pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(an ,  on)  will be referred to as a variable rate 
block coder because a block of input is represented by a 
single codeword in e,  and the codewords in C? are gen- 
erally not all of the same length. 

To be information lossless, it is not enough that y be 
invertible; it must also be uniquely decoduble. This means 
that if c is a string in E*, and c is the concatenation of 
codewords y ( i l ) ,  * * - , y (i,) and also the concatenation 
of codewords y( i i ) ,  * * * , y(ik,),  then m = m' and i, = 

j ; ,  . . . , i, = i;. It can be shown [2, p. 491 that if the 
mapping y: 9 + C is uniquely decodable, then there ex- 
ists aprejx-free mapping y': 4 + C' with the same code- 
word lengths. That is, there is a codebook C' = { c , ! } ~ ~ ~  
in which no codeword is the prefix of any other codeword, 
and in which I c,! I = I ci I for all i E 9, where I c I denotes 
the length of the codeword c .  Without loss of generality, 
then, y will be assumed to be prefix-free. This places a 
constraint on the minimum average codeword length, as 
we shall see. 

Assume the source {Xi}  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(mz0 is a strictly stationary er- 
godic random process with process distribution P. In what 
follows, the strict stationarity condition could be replaced 
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Fig. 1. A variable rate communications system. 

The Blahut algorithm and more general convex pro- 
gramming algorithms rely on minimizing the Lagrangian 

J(P,",X.) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [ p , ( X " ,  Y" ) ]  + h Z ( X " ;  Y" ) ,  

where the Lagrange multiplier h has an interpretation as 
the slope of a line supporting the graph of D, ( R  ). 

The nth-order operational distortion-rate function 
d,(R) is nonincreasing, but it is unfortunately not nec- 
essarily convex or even continuous, particularly if P has 
a discrete component, e.g., if P is a sample distribution 
from a training sequence. (See Fig. 2.)AHence, La- 
grangian methods cannot be used to find D,(R) .  Pow- 
ever, they can be used to find the convex hull of D,(R)  
by minimizing the functional 

J(an, P n )  = E [ p n ( X " ,  Y " ) ]  + h E [ l n ( ~ " ) ] .  ( 1 )  
by an asymptotic mean stationarity condition, but strict 
stationarity will be assumed for simplicity. 

Let X "  denote the vector ( X o ,  , X n p 1 ) ,  and let Y" 
= P , ( a , ( X " ) )  be its reconstruction. If l , ( X " )  = 
1 a , ( X " )  I is the length of the codeword representing X " ,  
then 

1 
n 

R, = - E [  l , ( X " ) ]  

is the average rate, or average number of channel symbols 
(here, bits) used to represent each source symbol. If 
pn ( X " ,  Y " )  is the distortion between the source vector X" 
and its reproduction Y",  then 

Here, h has an interpretation as the slope of a line sup- 
porting the convex hull. 

Fortunately, any point on the convex hull can be 
achieved by timesharing between two variable rate block 
cFders (an, P n )  and (a:, PA), that achieve points on 
D, ( R  ). In practice, timesharing is usually not necessary 
because there often exists a single variable rate block 
coder (a,,  Pn ) that achieves a point on D,, ( R  ) and on its 
convex hull with average rate (or distortion) sufficiently 
close to the desired average rate (or distortion). 

In any case, our objective is to find the convex hull of 
b , ( R ) ,  and to find variable rate block coders (a, ,  O n )  
achieving points on the convex hull. These coders are in 
some sense optimal, and can be used in practical data 
compression systems. We solve this problem by explicitly 
minimizing the Lagrangian functional (1). 

is the average distortion between each source letter and 
its reproduction. 

According to distortion-rate theory [2], [3], [23], if the 
distortion measure p n  (x ", y " ) and the source distribution 
Pxn are fixed, then the nth-order distortion-rate function 

D,,(R) = inf [I E [ p , ( X " ,  Y " ) l l ,  I ( x " ;  Y")  5 R 

111. THE ECVQ ALGORITHM 

Recall that a, = y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 a and P n  = P 0 y-' ,  where a: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX" 
-+ 4 quantizes an input vector into an index, y: 4 -+ C 
noiselessly encodes the index into a binary string for 
transmission across the channel, y-l: C -+ 4 decodes the 1 1 

P~~~~~~ n 

string back into its original index, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: 4 -+ 3" repro- 
duces the index as an output vector which represents the 
original input vector in a minimum distortion sense. 

is a lower bound to the nth-order operational distortion- 
rate function 

Hence, we may rewrite the coder (a , ,  P n )  as (a, y, P ) ,  1 
b , ( R )  = inf [I E [ p n ( X " ,  Y" ) ]  E [ l n ( X " ) ]  5 R I -  and reexpress the Lagrangian functional (1) as 

(an,pn) n 

If pn is a single-letter fidelity criterion, that is, if p n ( x n ,  

y " )  = ZrZd p l ( x i ,  y i ) ,  then as n -+ 00, the bound becomes 
tight, so that the distortion-rate function 

D ( R )  = lim D,(R) 

characterizes the region in the distortion-rate plane 
achievable by some deterministic variable rate block code 

The nth-order distortion-rate function D, ( R  ) is nonin- 
creasing and convex, and its computation is a straightfor- 
ward convex programming problem. In the case where the 
source and reproduction alphabets are finite, the elegant 
Blahut algorithm [24] can be used to compute D,(R) .  

n + m  

(an, Pn) .  

J h b Y ,  y, P >  = E [ P " ( X " ,  P ( 4 X " ) ) )  + h / y ( a ( X " ) ) I ] .  

(2 )  

Our objective is to find the coder (a, y, 0) which mini- 
mizes this functional. 

We employ an iterative descent algorithm similar to the 
generalized Lloyd algorithm. Starting with an arbitrary 
initial coder (cy"), y"), P' " ) ,  we repeatedly apply a 
transformation 

I )  y ( t +  1 )  ~ ( t + l ) )  = T( a( f ) ,  y ( t ) ,  p") )  
3 7 

such that Jh (  a('), y('), p'")  is decreasing in t. 
Since Jh (a ,  y, 0) is bounded below by zero, the se- 

quence of real numbers J ( ' )  = J h  (a('), y('), P ' " )  is guar- 
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'0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 0.5 1 1.5 2 2.5 3 3.5 4 

Average Rate (bits) 

Fig. 2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA typical operational distortion-rate function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ( R )  when the un- 
derlying probability measure is discrete. Each circle is a (rate, distortion) 
pair; the dashed line is their convex hull. The solid staircase line is the 
operational distortion-rate function. 

anteed to converge. As a convergence criterion for the 
algorithm, we use the simple stopping rule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(J'" - J ( f + l ) ) / J ( t + l )  < E ,  

where E = 0.005 is typical. 
Following the lines of argument of Sabin and Gray [25], 

it appears that under suitable regularity conditions, the 
convergence of the coders (a('), y('), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP' " )  themselves (to 
a set) is also guaranteed, in a well-defined sense. This 
aspect, however, will not be investigated in this paper. 

The transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT operates as follows. For fixed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
? ( r )  and p( f ) ,  a ( r + l )  IS . chosen to minimize Jx (a(' + I ) ,  

y('), P " ) ) .  Then, for fixed a('+ I )  and P(f), y'f + I )  is chosen 
to minimize Jh(a( '+ l ) ,  y'"'), P ( ' ) ) .  Finally, for fixed 
a('+') and y('+l),  P ( ' + l )  is chosen to minimize 
J h  ( a(' + I ) ,  y(f  + I ) ,  P" + I ) ) .  This procedure guarantees that 
.I(') is nonincreasing. 

Let us consider the minimizations in more detail. 
Fix y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, thereby fixing the reproduction codewords 

and the lengths of their associated channel codewords. A 

mapping a: X" -+ 9 that minimizes (2) is one that mini- 
mizes the integrand pn(xn, @ ( a ( x " ) ) )  + X l y ( a ( x " ) ) l  
almost everywhere. That is, a maps X"  to the ith cell if 
the distance from X" to P ( i  ), biased by the length of y ( i  ), 
is minimized. Thus, 

a ( x n )  = argmin [pn(xny ~ ( i ) )  + ~ I y ( i ) l ] .  ( 3 )  

This a need not be unique since ties may be broken ar- 
bitrarily and (3) need hold only for almost all x". Equation 
(3) is analogous to nearest neighbor encoding in standard 
vector quantization. 

i c4  

Next express (2) as 

J A ( Q ~ ,  Y, P >  = C p ( i >  E[pn(XnT ~ ( i ) )  
1€4 

+ X l y ( i ) l l a ( x n )  = i ] ,  (4) 

For fixed a and 6, and hence for fixed p ,  a prefix-free 
code y: 5 .+ e that minimizes (4) is one that minimizes 
the expected codeword length R = CiEg p ( i  ) I y ( i  ) I .  A 
prefix-free code of minimum expected codeword length 
can be found, in the case of finite 5 ,  by the Huffman al- 
gorithm [26], for example. The Huffman algorithm could 
be incorporated into the design algorithm at this stage. 
However, for simplicity, we allow the fiction that code- 
words can have noninteger lengths, and assign 

Ir(i)l = log2 ( M i ) ) .  ( 5 )  

The "average rate" of the resulting code is exactly equal 
to its index entropy. Experiments have shown that follow- 
ing this system with a Huffman code produces an overall 
system nearly identical in performance to a system pro- 
duced by a procedure that includes the Huffman algorithm 
within the design loop. Indeed, the average rate of a Huff- 
man code must satisfy bounds such as H (  p )  I R I H (  p )  
+ maxi p ( i )  + 0.086 [27], where H ( p )  = CiEg p ( i )  
log, ( 1 / p  ( i  ) )  is the index entropy. On the other hand, 
experiments have also shown that if the Huffman code is 
to be followed by a buffering scheme, it is best to incor- 
porate the code and the buffering scheme into the design 
loop, so that the resulting codebook will be optimized for 
the buffer. Normally, however, we use ( 5 )  so as not to tie 
our results to a particular entropy code, since there are a 
number of noiseless codes, e.g., arithmetic codes [28], 

[29] and Ziv-Lempel codes [30], that also achieve aver- 
age rates quite close to the codeword entropy. 

The last step in the transformation T is to fix a and y, 
and hencep. Then the mapping 0: 9 + y " that minimizes 
(4) is one that for each i E 5 ,  minimizes E [ p n  (X", ,!? ( i  ) ) 
+ Aly( i ) l  J a ( X " )  = i ] ,  i.e., 

P ( i )  = arg min E [  P,(x", y") I a ( x " )  = i ] .  

The reproduction codeword P ( i  ) is known as the centroid 
of the cell { a (X") = i } , and is the same as the centroid 
of a cell in standard vector quantization; it need not be 
unique. Computing the centroid can be performed easily 
for a number of common distortion measures [21]. For 
example, if p n  is the squared-error distortion p n ( x n ,  y") 

averageP(i) = E[X" la (X" )  = i ] .  

y " E y "  

- - Ci=0 n - l  (xi - yi),, then the centroid is the conditional 

A summary of the algorithm is given in Fig. 3 .  

When the distribution is unknown, it can be estimated 
from the sample XI, X;, - , X i - l ,  where the vector 
Xi! = (Xnk, Xnk+l, * . * , Xn(k + ) - ) is the kth block from 
the original source { Xi}Im=O. The sample distribution 

, N - l  

converges on events F almost everywhere since P is sta- 
tionary. Furthermore, if P is n-ergodic, P;n converges to 
P,, in distribution. Here, lF (x )  = 1 if x E F and 0 oth- 
erwise. The algorithm for this case is identical to the al- 
gorithm of Fig. 3, with probabilities and expectations re- 

wherep( i )  = P { a ( X " )  = i } .  placed by sample averages in the obvious way. For X = 
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(0) Initialization: Given 

a distribution P p ,  
a distortion measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApn ,  
a Lagrange multiplier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, 
a convergence threshold E ,  

an index set Z, 
an initial reproduction codebook zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ ~ ( ' ] ) ( z ) } , ~ ~ ,  
and initial codeword lengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ ~ ( ' ) ( i ) } , ~ z ,  

sct t = 0 and J(') = CO. 

(1) a(.") = argmin,EZpn(z", P ( i ) )  + Nr(i)l 

(2) IY(i) l  = - log*Px"{a(x") = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi )  

(3) P ( i )  = argrninvnEy.E [p.(X", y") ln(X") = 2 1  

(4) J( '+ ' )  = E[p,(S", ~"+"(o"+')(.Y"))) + X~y('+')(o('+')(X"))~]. 

(5) If ( $ 1 )  - J( '+ ' ) ) /J( '+ ' )  > E ,  

set t = t + 1 and go to (1) 
0 therwise, quit. 

Fig. 3 .  Descent algorithm to minimize the Lagrangian functional J X ( a ,  6 ,  
y)  over all variable rate block coders. 

0, the algorithm reduces to the generalized Lloyd algo- 
rithm [21]. 

When the algorithm converges, we obtain the variable 
rate coder (a, y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) that (locally) minimizes the func- 
tional 

whereD(a, y, 0) = ( l / n ) E [  p,(X", p ( a ( X " ) ) ) ]  is the 
average distortion per letter, and R ( a ,  y, 0) = 
( 1 / n  ) E  [ I y ( a (X" ) ) I ] is the average codeword length 
per letter. Thus, the line in the distortion-rate plane with 
slope -X that passes through the point ( R ( c Y ,  y, p ) ,  D ( a ,  
y, p ) )  supports the convex hull of the operational distor- 
tion-rate function (modulo the assumption that the min- 
imization was global). 

Therefore, to find the entire convex hull, it is necessary 
to repeat the minimization of JA (a, y, 0) for various A's. 

Two points on the convex hull are easy to find. The first 
point (R,, D, ) is obtained by minimizing Jx ( C Y ,  y , /3 ) in 
the limit of large X, hence, the notation R,  and D,. This 
point corresponds to the rate-zero codebook, in which 
there is only one channel codeword, the empty string. In 
this case, a(X") = 0, ( y ( O ) (  = 0, and p ( 0 )  = 
argminYnEy. E [  p , ( X " ,  y " ) ] .  Hence, R, = 0 and D, = 
( l / n ) E [  p , ( X n ,  p ( O ) ) ] ,  where p ( 0 )  is the centroid for 
the entire distribution. 

The second point (Ro,  Do) ,  obtained at h = 0, corre- 
sponds to the full-rate codebook designed by the gener- 
alized Lloyd algorithm. For this point to have a finite 
average rate and positive distortion, we insist that the in- 
dex set be finite, say 9 = (0, 1 ,  * - * , m - l } .  This 
constrains the rate (or resolution) of the code to be at most 
1 /n  log2 rn. The average length Ro, or the entropy, of the 
code will of course be less than this. One could say that 
our resulting codes are both rate and entropy constrained. 
The distortion Do for the code is computed by the gener- 
alized Lloyd algorithm. 

One of many ways to obtain the remainder of the points 
on the convex hull is to "walk up" the curve starting from 
the point (R,,, Do) ,  which corresponds to X = 0. The first 
point visited is the point ( R I ,  D 1  ) which minimizes Jh, = 
D + AIR, where -A, = € ( D o  - D , ) / ( R o  - R,) is some 
fraction of the slope between (R , ,  D, ) and ( Ro, Do).  The 
next point visited ( R 2 ,  D 2 )  corresponds to some slope h2, 
etc. Each X i  in the increasing sequence XI ,  h2, - , can 
be determined a priori ,  e.g., by a geometric sequence, or 
it can be determined from a prediction of the behavior of 
the convex hull up to that point. In our experiments, the 
formula used was 

with ho and X I  initialized as above, and M being the de- 
sired number of (equally spaced in R ) points on the curve. 
This procedure generally performed quite well, although 
in some experiments (on synthetic data such as the Gauss- 
ian memoryless source), R was extremely sensitive to X 
so that backtracking was necessary. A computational ad- 
vantage is accrued by using the final codebook for A,, as 
the starting codebook for A, + : in an experiment, we re- 
alized a savings in computation time of a factor of 2.4  

over the alternative of using the ho codebook to initialize 
the algorithm for each X. 

One issue of some importance is the complexity of the 
algorithm. Each pass through steps 1)-4) of the training 
sequence based algorithm of Fig. 3 requires roughly 3Nnm 
additions, Nnm multiplications, and m logarithms, with N 
the training sequence size in vectors, n the vector dimen- 
sion, and m the codebook size. For M of (6) chosen as 
20, we found that in the experiments reported in the next 
section, convergence for each h took an average of three 
passes giving a total effort of about 60 times the "per 
pass" figures. 

IV. EXPERIMENTAL RESULTS 

In this section we examine the implementation of the 
ECVQ design algorithm and compare its performance 
against several other entropy-coded quantization systems. 
Implementational issues include the effect of codebook 
size and the effect of placing specific entropy coding 
schemes inside and outside the design loop. Experimental 
comparisons were made against scalar uniform quantizers 
with entropy coding of single quantizer outputs and blocks 
of outputs, two- and four-dimensional lattice quantizers, 
full search, complete tree structured, and entropy -pruned 
tree structured vector quantizers (all with entropy-coded 

In Fig. 4 we show the signal-to-quantization noise 
ratio (SQNR) curves for squared-error distortion for an 
eight-dimensional ECVQ as we varied the codebook size. 
Not surprisingly, the algorithm performance improves as 
codebook size increases. The training sequence was 
20 000 samples of speech data, and the performance for 
this example was measured on the training sequence. 

outputs). 
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Fig. 4. ECVQ performance versus codebook size. Solid lines and circles 
are ECVQ performance as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is varied; the x’s are full search VQ per- 
formance without entropy coding. Codebook size is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. 

The algorithm itself generally reduces the codebook size 
as X is increased, since during the course of the algorithm, 
a particular cell (say the ith cell) may become unpopu- 
lated (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(Xt) never equals i during step 1) of the 
algorithm). In this case, step 2) will set 1 y ( i )  I = 00 so 
that the cell will never be chosen as the best codeword by 
an encoder, or equivalently will never become populated 
as the design algorithm continues. Unlike the generalized 
Lloyd algorithm, there is no convincing rationale for at- 
tempting to repopulate empty cells; splitting a highly pop- 
ulated cell may indeed reduce distortion, but it may also 
increase the entropy of the quantizer. Hence, we remove 
empty cells from the codebook and continue the algorithm 
with the smaller codebook size. Fig. 5 shows the effective 
codebook size versus average rate for the experiment of 
Fig. 4 with an initial codebook size of 256. 

In Fig. 6 we demonstrate the fact (mentioned in Section 
111) that not integerizing the codeword lengths inside the 
design loop leads to only a minor penalty in performance 
compared to the case where we replace step 2) of the de- 
sign algorithm with an actual Huffman code design to de- 
termine the best integral word lengths. Not integerizing 
the word lengths, which leads to a minimum output en- 
tropy for a, is simpler and also advantageous when con- 
templating other entropy coding algorithms for y. 

On the other hand, including an entropy encoding 
scheme within the design loop tailors the ECVQ quantizer 
to that particular scheme. Consider a system in which the 
variable rate code is used over a fixed rate channel, so 
that buffering becomes necessary. Although the decoder 
can track the encoder buffer state if the channel code is 
prefix-free, buffer overflows and underflows cause a de- 
crease in the effective average bit rate. This causes a de- 
crease in SQNR at the nominal bit rate. By explicitly in- 
corporating the overflow and underflow buffer strategies 
into the ECVQ design loop, the codewords can be de- 
signed to compensate for overflows and underflows. The 
standard strategy for handling overflows (for a zero mean 

8 r 200 2501 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Average Rate (bitdsample) 

Fig. 5. Effective codebook size for the speech coding experiment of Fig. 
4, with initial codebook size m = 256. 
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Fig. 6.  Effect of Huffman coding inside and outside the ECVQ design al- 
gorithm. The solid line is ECVQ performance without Huffman coding 
(i.e., with noninteger word lengths), the dashed line is performance with 
Huffman coding inside the design algorithm, the dotted line is perfor- 
mance with a Huffman code applied after the ECVQ algorithm has fin- 
ished. The dot-dash line shows a bound on Huffman code redundancy 
due to Gallager [27]. 

source) is to output a block of zeros instead of the repro- 
duction codeword whose channel codeword would have 
overflowed the buffer. A better strategy, due to Berger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer 
al. [31] and called buffer adapted Huffman (BAH) coding, 
is to output the best reproduction codeword possible from 
among those whose channel codewords fit into the re- 
maining buffer space. The standard strategy for handling 
underflows is.to pad the channel codeword with noninfor- 
mation carrying bits. A better strategy is to output the best 
reproduction codeword possible from among those whose 
channel codewords will underflow the buffer or empty it 
exactly. 

In Fig. 7 we show test sequence SQNR performance 
versus buffer length on speech data described later in this 
section, for several 256 codeword, %dimensional ECVQ 
systems with codeword entropies equal to 2.926 

bits/vector. All are Huffman coded, buffered, and at- 
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Fig. 7 .  Effect of buffer length on ECVQ with Huffman coding for a speech 
source. A fixed rate VQ and an "output zeros during overflow" standard 
strategy are compared to buffer adapted Huffman coding applied to an 
independently designed ECVQ (BAH) or included in the ECVQ design 
loop (BAH designed). 

tached to a fixed rate, 3 bits/vector channel. At any buffer 
size, the ECVQ designed with the BAH overflow strategy 
inside the design loop outperforms the usual ECVQ sys- 
tem followed by either the standard overflow strategy or 
the BAH strategy. A fixed rate, 3 bits/vector VQ is shown 
for comparison; it is outperformed by all the variable rate 
systems at moderate to high buffer lengths. 

We next compare, in a series of experiments, several 
quantizers in terms of their index entropy versus squared- 
error distortion. Table I shows several of the systems, 
giving a qualitative evaluation of their encoding complex- 
ity (source-to-index mapping) as well as noting m/n-a 
measure of the complexity of the required entropy coder 
for encoding the index. The scalar system considered is a 
simple uniform threshold quantizer with 17 thresholds and 
19 cells, whose centroids serve as the reproduction levels, 
as in [17, Section VI, B]. The quantizer outputs are in- 
dividually entropy encoded. The scalar system with block 
entropy coding is a scalar system with 4 thresholds and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
cells, whose output indexes have been blocked into four 
dimensions before entropy encoding the 625 possible in- 
dex blocks. This system is close in spirit to Ziv's univer- 
sal quantizer [18], although it is not dithered. The A,  lat- 
tice system employed has as its reproduction levels the 
innermost 37 points of a two-dimensional hexagonal lat- 
tice [32]. For high-resolution entropy-constrained two-di- 
mensional quantization, the hexagonal lattice is optimal 
[7], [33]. The D4 lattice system uses the 256 point Vo- 
ronoi code enumerated by Conway and Sloane [9], [ lo]. 
The D4 lattice, or the set of points in R 4  with integral 
coordinates whose sum is even, is the best-known lattice 
for high-resolution entropy-constrained four-dimensional 
quantization [8]. The outputs of both the A,  and D4 sys- 
tems are entropy coded as usual. Performance curves in 
the distortion-rate plane are traced out by scaling the var- 
ious lattices. The ECVQ systems of four and eight di- 
mensions were designed using the algorithms of Section 

TABLE I 
COMPARISON OF ENTROPY-CODED QUANTIZATION SYSTEMS FOR THE 

EXPERIMENTS OF FIGS. 8, 9, A N D  10 

Block Size Number of Encoding 
System zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( n )  Cells ( m )  m / n  Complexity 

Scalar 1 19 19 very simple 
Scalar with Block 4 625 156 simple 

A, Lattice 2 37 19 moderate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D, Lattice 4 256 64 moderate 
ECVQ 4 256 64 complex 
ECVQ 8 256 32 complex 

Entropy Coding 

111, with an initial codebook size of 256. All of these sys- 
tems were designed on training sequences rather than on 
the underlying distributions. 

Results for the Gaussian iid source are shown in Fig. 
8.  We use training and test sequences of 40 960 samples 
each. The rate-distortion function for this source is [3, p. 
991 

1 is2 
R ( D )  = - log2 - 

2 D  
bits/sarnple, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa* is the source variance and D is the average 
squared-error distortion. We note that, although ECVQ 
shows a slight improvement over the other systems, the 
gain is most likely not worth the additional complexity 
involved. Indeed, for this source our 8-dimensional ECVQ 
operating at 0.5 bits/sample with an SQNR of 2.3 dB is 
outperformed by several easily instrumentable codes of 
large blocklength such as the Golay code of length 24 
evaluated by Adoul and Lamblin 1341 as having an SQNR 
of 2.53 dB, and a length 32 Hadamard scrambling/per- 
mutation code due to Schroeder and Sloane [35] with an 
SQNR of 2.51 dB as measured by Adoul and Lamblin. 
Fischer's pyramid VQ represents a similar approach to the 
Laplacian iid source [36]. Observe, however, that in our 
results the D4 lattice quantizer is uniformly outperformed 
by all the other systems. This suggests that we should use 
high-resolution quantizer conclusions about optimal lat- 
tices with care when the number of indexes is small. A 
similar case, in which an ECSQ outperforms a lattice 
quantizer based on the A: lattice for the Laplacian mem- 
oryless source, was reported in Sayood et al. [ 111. (The 
fact that the ECSQ and uniform threshold scalar quantiz- 
ers have essentially identical performance for this source 
was demonstrated by Berger [14] and Farvardin and Mo- 
destino [ 171 .) 

Results for a Gauss-Markov source with correlation 
coefficient a = 0.9 are shown in Fig. 9. Again, the train- 
ing and test sequences were 40 960 samples each. The 
rate-distortion function for this source for R > 0.926 
bits/sample is [3, p. 1131 

1 0.19 
R ( D )  = - log, ~ 

2 D 
bits/sample. 

For R < 0.926 bits/sample, this is a lower bound on the 
rate-distortion curve (and hence the resulting SQNR curve 
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Fig. 8.  Performance of some of the systems of Table I on a Gaussian iid Fig. 10. Performance of the systems of Table I on a speech waveform 

source. source. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
16 

scalar system. Admittedly, direct vector quantization of 
waveform speech has had limited success in producing 
good subjective quality at such rates. More fruitful appli- 
cations of ECVQ to real sources will probably come in 
the form of transform, subband, and image vector quan- 
tization. Preliminary results indicate that the technique 
cannot be used to full advantage on LPC-VQ, however. 

Our second set of experiments compares ECVQ to full- 
search vector quantizers, complete tree-structured vector 

quantization, again for waveform speech coding. The full- 
search vector quantizers are designed by the generalized 
Lloyd algorithm [21] to have a minimum distortion sub- 
ject to a constraint on the number of indexes. However, 
the indexes are subsequently entropy encoded. Similarly, 
the binary tree+tructured vector quantizers are designed 
recursively using the generalized Lloyd algorithm, as in 
[38], but the output indexes are subsequently encoded. 

14 

12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10 

8 
B S  s 

6 
+ ECVQn=4 

4 - - D4 Lattice quantizers, and entropy-pruned tree-structured vector 
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Fig. 9. Performance of the systems of Table I on a Gauss-Markov source 

with correlation coefficient a = 0.9. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( D )  derived SQNR curve is 
an upper bound for R < 0.926 bits/sample. 

is an upper bound on the true rate-distortion derived 
SQNR curve). In this experiment, there is a clear advan- 
tage for the ECVQ coders over the other systems; in many 
cases, rate can be cut in half with no increase in distor- 
tion. At 0.75 bits per sample for a blocklength of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 4, 

ECVQ has a 1.6 dB advantage over the entropy-coded D4 
lattice-its nearest competitor. However, a predictive 
trellis code with SQNR as high as 12.58 dB at 1 
bit/sample has been designed for this source [37]. Note, 
however, that the memory inherent in both the state and 
the predictor gives such a code an effective block length 
much larger than dimension 8. 

In Fig. 10 we show results for a speech waveform cod- 
ing experiment. The training sequence was 20 s of 8 kHz 
sampled speech ( 160 000 samples) and the test sequence 
was 10 s (80 000 samples) from the same (male) speaker. 
Again, the ECVQ systems have a clear advantage over 
the other systems. At 0.75 bits per sample for a block- 
length of n = 4, ECVQ again has a 1.6 dB advantage over 
its nearest competitor-this time the block entropy-coded 

The entropy-pruned tree-structured vector quantizers are 
designed by a recent technique [22] that seeks to prune 
complete tree-structured quantizers so as to minimize the 
distortion subject to a constant on the index entropy. 

The training sequence for these experiments was lo- 
cally generated, consisting of 2 min of 8 kHz sampled 
speech from 3 males and 3 females. The test sequence 
was 40 s of speech from a male and female not in the 
training sequence. All vectors had 8 dimensions, so that 
the training and test sequences consisted of 120 000 and 
40 000 vectors, respectively. Generalized Lloyd algo- 
rithm and complete tree-structured vector quantizers were 
designed for a 1.5 bit /sample rate (4096 codewords ) and 
used as initial codebooks ( A  = 0) for the ECVQ and en- 
tropy-pruned tree-structured vector quantizers, respec- 
tively. Additional generalized Lloyd algorithm and com- 
plete tree-structured vector quantizers were designed for 
lower rates. The results, which again demonstrate a per- 
formance advantage for ECVQ, are shown in Fig. 11. At 
0.75 bits per sample, ECVQ has a 1.3 dB advantage in 
SQNR over entropy-pruned tree-structured vector quan- 
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Fig. 11. Performance of entropy-coded vector quantizers in a speech 
waveform coding experiment. 

tization, which in turn has a 1.6 dB advantage over other 
entropy-coded vector quantization systems. It is impor- 
tant, however, to note the advantage of the pruned tree- 
structured system in terms of complexity: like ECVQ, it 
realizes significant gains over the other vector quantizer 
systems, but it is much easier to search. For instance, the 
0.75 bit/sample system requires an average of 6 distor- 
tion calculations per input vector compared to 4096 for 
ECVQ. 

V. APPLICATIONS TO PATTERN RECOGNITION 

The generalized Lloyd algorithm has more than a pass- 
ing similarity to several clustering algorithms of the sta- 
tistical pattern recognition community, in particular, an 
algorithm due to Forgey [39], the k-means algorithm [40], 
and the ISODATA algorithm [41]. The basic operation of 
all these algorithms is to assign data to cluster centers on 
the basis of which center is closest (generally in Euclid- 
ean or Mahalanobis distance), next choose new cluster 
centers by centroiding, and then iterate these two steps 
until convergence is reached. In the context of clustering, 
we will refer to these collectively as k-means-type algo- 
rithms. In this section, we suggest that the ECVQ algo- 
rithm may be useful in applications where it is desired to 
separate clusters of widely varying population, since it is 
a k-means-type algorithm that adjusts the distance to a 
cluster center by a measure of its population. 

If the clusters are modeled by a Gaussian mixture, the 
optimal (minimum risk) classifier is straightforward to de- 
sign, at least in principle, using Bayes’ theorem. Let us 
assume that n-dimensional observed vectors xI , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2, - - - , 
are drawn independently from a Gaussian mixture: 

m - 1  

= r = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(+JJ,) P ( 4 ,  

where U,, i = 0, , m - 1 represents the class, P ( U,  ) 
is the prior probability of class i, and p ( x  I w, ) is Gaussian 
with mean p,  and covariance matrix E,. The minimum 
probability of error rule for determining w, from an ob- 

* 

servation x follows directly from Bayes’ theorem [42, ch. 
21 : 

Z = argmax [ p ( w , I x ) ]  
I 

= argmax [ logp(xJw,) + log ~ ( w , ) ] ,  
I 

which, under the assumption E, = E Vi, is equivalent to 

Z = argmin [ p M ( x ,  p , )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX log P ( w l ) ] ,  (7 )  

where p M ( x ,  p , )  = ( x  - p,)’E-’(x - p , )  is the squared 
Mahalanobis distance, p’ denotes the transpose of p ,  and 
X = 2. We recognize (7) as identical to the calculation 
(3) performed by a, the first stage of the ECVQ encoder 
of Fig. 1 ,  in mapping a vector to its index, providing we 
make the identification /3 ( i  ) = p,  and I y ( i  ) I = -log 
P (  u t ) .  (This is precisely the choice of 1 y ( i ) I determined 
by the ECVQ design algorithm in ( 5 )  if P( U,) is assumed 
proportional to the population of cell i. ) Hence, the ECVQ 
encoder first stage corresponds to an optimal classifier for 
a Gaussian mixture when the covariance matrices are the 
same for each class. If the prior probabilitlzs are also the 
same for each class, i.e., the prior probabilities are uni- 
form, then the standard vector quantizer encoder corre- 
sponds to the optimal classifier. For E = u2Z, we can fur- 
ther simplify (7) to write 

I 

/ = argmin [ p ( x ,  p i )  - A* log P ( w i ) ] ,  ( 8 )  
1 

where p ( x ,  p i )  is squared-error distortion and A* is 2u2. 

The question still remains as to how to determine the 
parameters of the probability model from a set of training 
data no, xI, * - - , x N -  A typical approach is to deter- 
mine the maximum likelihood estimate of the parameters. 
Necessary conditions for the estimate B = ( B o ,  - - * , 
Bm - of the prior probabilities and ji = ( bo, * - , 
b,,, - I )  of the means to be stationary points of the likeli- 
hood are [42, p. 1931 

. N - 1  

( 9 )  

where p ( x  1 bi) is the multivariate Gaussian density with 
mean f i i  and covariance matrix Ei. 

Equations (9), (lo), and (11) form the basis for an it- 
erative algorithm which attempts to find the maximum 
likelihood estimates of the means and prior probabilities 
by first fixing and f i  and determining the B ( wi I xk, b )  
from (1 l ) ,  then fixing p ( wi 1 xk, f i )  and determining B and 
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j l  from (9) and (10). This algorithm, which we will term 
the maximum likelihood algorithm, was first proposed by 
Wolfe [43]. Duda and Hart approximate (1 1) by 

This is indeed reasonable if the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi are well separated and 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i  are all equal. In this case, the resulting iterative 
algorithm is equivalent to the k-means-type algorithms. 
However, if we allow the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi to vary, then a more reason- 
able approximation is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 if P M  ( x k ,  b,) - log PI  
< P M ( x ~ ,  bJ) - log@,, j * i, 

0 otherwise. 

When applied to (9), (lo), and (ll), this leads to the 
ECVQ algorithm. Hence, the ECVQ algorithm is an ap- 
proximation to the maximum likelihood algorithm for es- 
timating means and prior probabilities in the same way 
that the k-means-type algorithms are an approximation to 
the maximum likelihood algorithm for estimating means 
with the classes assumed equiprobable. 

To compare the behavior of several of these algorithms, 
we simulated a 40 000 sample training sequence drawn 
from a four component bivariate Gaussian mixture with 
different prior probabilities but all covariance matrices 
equal to the identity matrix. Several thousand samples 
from the density are shown in Fig. 12. We used the max- 
imum likelihood algorithm, the generalized Lloyd algo- 
rithm, and the ECVQ algorithm (with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = 2)  to estimate 
means and prior probabilities. (The ECVQ algorithm and 
maximum likelihood algorithm used the final estimate of 
the generalized Lloyd algorithm as the starting point for 
their iterations.) We then used the Bayes’ classifier cor- 
responding to each algorithm to classify data for which 
we (but not the algorithms) knew the labels. The results 
of the experiment are shown in Tables I1 and 111. Not sur- 
prisingly, the maximum likelihood algorithm provided the 
best estimates of the prior probabilities and the best clas- 
sifier performance. It also provided the best estimates of 
the means (not shown). While not achieving the perfor- 
mance of the maximum likelihood algorithm, the ECVQ 
algorithm both provided better mean estimates and sig- 
nificantly outperformed the generalized Lloyd algorithm 
in classification accuracy. Although not shown, we were 
able to improve the ECVQ algorithm’s performance by 
varying X from the “optimal” value of 2. In fact, the 
choice X = 1 resulted in a slightly lower misclassification 
rate than the maximum likelihood algorithm. Coupled 
with the fact that X in general depends on knowledge of 
the cluster variances [see (S)], which may not be readily 
available, this suggests that a classifier design might con- 

Fig. 12. Four component bivariate Gaussian mixture. The component 
probabilities are nonuniform. 

TABLE I1 
TRUE AND ESTIMATED CLASS PROBABILITIES FOR A GAUSSIAN MIXTURE 

Maximum 
Likelihood 

True Estimated 
Class Probabilities Probabilities 

1 0.700 0.699 
2 0.050 0.052 
3 0.050 0.050 
4 0.200 0.199 

ECVQ 
Estimated 

Probabilities 

0.725 
0.041 
0.045 
0. I89 

TABLE I11 

CLASSIFICATION OF A GAUSSIAN MIXTURE 
PERFORMANCE OF VARIOUS ALGORITHMS FOR PARAMETER ESTIMATION A N D  

~~~ ~ 

Generalized 
Maximum Lloyd 

Algorithm Likelihood Algorithm ECVQ 

Log Likelihood -72459 -79504 -72633 
Misclassification Rate 0.0317 0. I640 0.0356 

sider several different A’s. The curve tracing algorithm of 
Section I11 would be useful for selecting such a set. How- 
ever, dependence of the ECVQ algorithm on the starting 
codebook, training sequence size, and choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh appears 
to be much more serious in pattern recognition applica- 
tions than in source coding applications, so that the al- 
gorithm should be applied with care, particularly in cir- 
cumstances where an appeal to maximum likelihood 
becomes even more difficult. 

VI. DISCUSSION AND CONCLUSION 

In this paper we have introduced an iterative descent 
algorithm for designing locally optimal variable rate cod- 
ers for use in a block quantization or data compression 
scheme. In essence, the algorithm designs vector quantiz- 
ers which are optimized to perform well when followed 
by a variable rate entropy coder, such as a Huffman, arith- 
metic, or Ziv-Lempel coder. The choice of which entropy 
coder to use is not made by the algorithm, but is instead 
left to the implementor. Any of these entropy coders will 
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produce an average rate approximately equal to the code- 
word entropy. The algorithm simply ensures that the 
codeword entropy and the distortion are low. 

For high rates (high resolution), asymptotic quantiza- 
tion theory predicts that, for the squared error distortion 
measure and other difference distortion measures expres- 
sible as the rth power of a seminorm, the advantage in 
performance of the optimum ECVQ system over simpler 
scalar and lattice systems will be small. Our experimental 
investigations have focused on the low-rate region (on 
the order of one bit per sample), where it is shown that 
for memoryless sources, such as the Gaussian iid source, 
the performance improvement of ECVQ over simple sca- 
lar quantization is indeed negligible. However, for sources 
with memory, such as the first-order Gauss-Markov 
source with correlation coefficient a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.9, as well as for 
real speech, the improvement in mean squared error is 
shown to be as much as 1.6 dB at 0.75 bits/sample. Gains 
in the performance of ECVQ over other forms of entropy- 
coded vector quantization are shown to be even more sub- 
stantial. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A real-time ECVQ implementation would most likely 
be no more complex than an entropy-coded VQ imple- 
mentation. The principal VQ encoder calculation for many 
interesting distortion measures can be simplified to an in- 
ner product. For such distortion measures, the first stage 
calculation for the ECVQ encoder also has an inner prod- 
uct form (with -A logz p ( i  ) added to the constant); 
hence, several new inner product based systolic array vec- 
tor quantizer architectures are also attractive for imple- 
menting the first stage of the ECVQ encoder, allowing 
large codebooks to be searched in real time [44], [45]. 
The remaining stages of the ECVQ can be implemented 
by lookup tables. Thus, ECVQ is an attractive option for 
a number of real-time low rate data compression systems. 

The ECVQ algorithm also plays a role in statistical pat- 
tern recognition, where it generalizes the “k-means’ ’ al- 
gorithm and its variants used in clustering, in that the 
mixture is not assumed to be equiprobable. That is, the 
ECVQ algorithm estimates both the means and the prior 
probabilities of the unknown mixture. It is shown exper- 
imentally that in the case of widely different priors, the 
ECVQ algorithm outperforms the equivalent k-means-type 
of algorithm in likelihood as well as in probability of er- 
ror. In addition, the estimated means and prior probabil- 
ities are close to their true values. It is conjectured that 
the ECVQ algorithm may be useful even in exploratory 
data analysis if it is suspected that the class probabilities 
may not be uniform. 
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