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Every evolutionary algorithm needs to address two important facets: exploration and exploitation of a

search space. Evolutionary search must combine exploration of the new regions of the space with exploita-

tion of the potential solutions already identified. The necessity of balancing exploration with exploitation

needs to be intelligent. This paper introduces an entropy-driven parameter control approach for explor-

ing and exploiting evolutionary algorithms. Entropy represents the amount of disorder of the population,

where an increase in entropy represents an increase in diversity. Four kinds of entropy to express diversity

and to control the entropy-driven approach are discussed. The experimental results of a unimodal, a mul-

timodal with many local minima, and a multimodal with only a few local minima functions show that the

entropy-driven approach achieves good and explicit balance between exploration and exploitation.

Povzetek: V članku je opisan adaptiven način krmiljenja raziskovanja in izkoriščanja v evolucijskih algo-

ritmih, voden s pomočjo entropije.

1 Introduction

Evolutionary Algorithms (EAs) [2, 12] are a common term

for solving problems with computers that uses models and

mechanisms from biological evolution. Such nature in-

spired EAs simulate evolution and its mechanisms such

as selection, crossover, and mutation. Most well known

examples of EAs are Genetic Algorithms (GAs), Evolu-

tion Strategies (ESs), Evolutionary Programming (EP), and

Genetic Programming (GP) [12]. They have been used

successfully for planning, design, simulation and identi-

fication, controlling, classification, and for solving many

other hard optimization problems. EAs are general purpose

search methods with good yet implicit balance between ex-

ploration and exploitation. Exploration is a process of vis-

iting entirely new regions of a search space and seeing if

anything promising may be found in the regions. Exploita-

tion is a process of using information gathered from the

previously visited points in the search space to determine

which regions might be profitable to be visited next. Ad-

ditionally, exploitation techniques are good at finding local

optima. However, how is the balance between exploration

and exploitation achieved in EAs? More importantly, how

can the balance be controlled?

In EAs, the selection process, operators (e.g., crossover

and mutation), and population size establish a balance be-

tween the exploration and exploitation of the search space

[6]. The selection process drives search towards the regions

of the best individuals. Hence, exploitation is done by se-

lection. However, Bäck [1] showed that the selection pro-

cesses can control the level of exploration or exploitation

by varying selection pressure. Higher selection pressure

pushes the search towards more exploitation and lower se-

lection pressure urges the search towards more exploration.
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A mutation operator randomly modifies individuals, with a

given probability, and thus increases the structural diver-

sity of the population. From this point of view, the mu-

tation operator is more an exploration operator. Such an

operator helps to recover the genetic diversity lost during

the selection phase and to explore new solutions avoiding

premature convergence. Conversely, mutation can also be

seen as an exploitation operator, because most of the ge-

netic material is preserved. However, note that in some

EAs (e.g., evolution strategies) mutation has a much bigger

exploration role than in genetic algorithms. The crossover

operator combines two or more parents to generate better

offspring. Such a combination can be derived from the idea

that the exchange of information between good individu-

als will generate even better offspring. From this point of

view, the crossover operator is more an exploitation op-

erator. However, a good crossover operator should also

generate individuals in the exploration zone. Directing the

evolutionary process towards exploration or exploitation is

also possible by population resizing [9]. With bigger pop-

ulation size, the search space is more explored than with

smaller population size. Therefore, good balance between

exploration and exploitation in EAs is achieved by selec-

tion, good mutation and crossover operators and by deter-

mining parameters (e.g., pm, pc, tournament size, popula-

tion size), which control mutation, crossover, and selection,

respectively.

There have been a variety of studies on determining the

best control parameter values [4, 5]. The main problem is

to find a set of control parameters, which optimally bal-

ances exploration and exploitation: if crossover and mu-

tation rates are very high, much of the space will be ex-

plored, but there is a high probability of losing good solu-

tions and of failing to exploit existing schema. If crossover

and mutation rates are low, the search space is not explored.

The population diversity is therefore rapidly decreasing and

ending up in a premature convergence to a non-optimal so-

lution. Despite that, many researchers believed that EAs

are effective because of a good ratio between exploration

and exploitation. In EAs, however, this ratio is implic-

itly controlled. In some other search techniques such as

reinforcement learning [18], one has explicit control over

exploration and exploitation. In EAs, one no longer has

explicit and respective control over exploitation and explo-

ration, because it is difficult to delimit exploration from ex-

ploitation.

In this paper, an entropy-driven exploration and exploita-

tion approach is presented. The exploration/exploitation of

the search space is adapted on-line based on the current

status of the evolutionary process. The on-line adaptation

mechanism involves a decision process as to whether more

exploitation or exploration is needed depending on the cur-

rent progress of the algorithm and on the current estimated

potential of discovering better solutions. This decision pro-

cess is described in a metaprogramming fashion using a

domain-specific language, PPCEA (Programmable Param-

eter Control for Evolutionary Algorithms) [10]. Because

of space consideration, the paper only presents the exper-

imental results using genetic algorithms. Experimenting

the mutation role for balancing between exploration and

exploitation in evolution strategies is our future work.

The paper is organized as follows. Section 2 describes

the related work. In Section 3, four kinds of entropy are

introduced to control exploration and exploitation. Section

4 shows the experimental results on the benchmark func-

tions. Finally, Section 5 presents the conclusion.

2 Related Work

Optimal balance between exploration and exploitation has

been mainly controlled by determining the best control pa-

rameter values. There are a variety of studies on this topic

[5, 8, 10]. Recommendations on control parameters for

a particular set of problems can be found in [4, 15]. In

[5], an overview of this problem has been given, where the

authors distinguish between parameter tuning and param-

eter control. Furthermore, methods for parameter control

have been classified into deterministic, adaptive, and self-

adaptive categories: the deterministic category adjusts pa-

rameters by deterministic rules; the adaptive category uti-

lizes the feedback of the evolutionary process to control

the direction and magnitude of parameters; and the self-

adaptive category encodes parameters into individuals and

undergoes mutation and recombination. An example of

how to balance between exploration and exploitation by

parameter control is described as follows. As soon as an

algorithm approaches the optimum, the mutation step size

must be decreased to balance the probability of generating

a new successful point. A simple idea is to decrease the

mutation step size s by a deterministic schedule such as

st = s0/t or st = βt · s0, where β ∈ (0, 1).

One of the earliest researchers that investigated entropy

in EAs was Rosca [14], whose experiments showed that

populations appeared to be stuck in local optima when en-

tropy did not change or decrease monotonically in succes-

sive generations. Rosca used fitness values in a popula-

tion to define entropy and free energy measure. Our work

extends Rosca’s in trying to find different ways to com-

pute entropy in EAs. Moreover, using entropy as a di-

versity measure and metaprogramming parameter control

by PPCEA [10], we are able to control exploration and ex-

ploitation in an adaptable manner.

The Diversity-Guided Evolutionary Algorithm (DGEA)

[17] uses a distance-to-average-point measure to alternate

between phases of exploration and exploitation. It can be

expressed easily as a PPCEA program. Moreover, DGEA

does not use entropy as a measure for diversity.

In [11], entropy is introduced into EAs for determining

the optimal number of clusters. However, in this case the

fitness function is entropy-based.
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3 Entropy in Evolutionary

Algorithms

Entropy is a concept in thermodynamics, information the-

ory, and statistical mechanics. The thermodynamic entropy

S is a measure of the amount of energy in a physical system

that cannot be used to do work. As such, it is also a mea-

sure of the disorder and randomness presented in a system.

The entropy depends not only on the current state of the

system, but also its history. Therefore, it is a state function

of the parameters (e.g., pressure and temperature), which

describe the observable macroscopic properties of the sys-

tem. The macroscopic state of the system is defined by a

distribution on the microstates that are accessible to a sys-

tem in the course of its thermal fluctuations. Entropy S of

the system is defined as:

S = −kB

∑

i

pi ln pi (1)

where kB is a physical constant known as Boltzmann’s

constant, i is the energy of microstate, and pi is the proba-

bility that it occurs during the system’s fluctuations.

The basic concept of entropy in information theory has

to do with how much randomness there is in a signal or

random event. Shannon [16] defines entropy in terms of a

discrete random event x, with possible states 1..n as:

H(x) =

n∑

i

pi log
2
(

1

pi

) = −

n∑

i

pi log
2
pi (2)

Statistical mechanics explains entropy as the amount of

uncertainty which remains about a system, after its observ-

able macroscopic properties have been taken into account.

For a given set of macroscopic quantities, such as tempera-

ture and volume, entropy is a function of the probability

that the system is in various quantum states. The more

states available to the system with higher probability, the

greater the disorder and thus, the greater the entropy. If

the system has only one possible state, there is no uncer-

tainty, and the entropy of the system is zero. If the system

has n possible states which are equiprobable (pi = 1

n
), the

entropy is the highest:

H = −n
1

n
log

2
(
1

n
) = log

2
n (3)

As such, entropy represents also a succinct measure of

diversity. Biological diversity refers to the differences be-

tween individuals in a population, which in nature im-

ply structural (genotype) and behavioral (phenotype) dif-

ferences. In EAs, identical genotypes produce the same

fitness. Thus, a decrease in genotype diversity will neces-

sarily cause a decrease in phenotype diversity. Hence, to

measure entropy/diversity, one needs to define some struc-

tural measures. Such measures, however, might be compu-

tationally intensive in some instances of EAs (e.g., genetic

programming) [3]. Fortunately, based on the described en-

tropy/diversity relationship between genotype and pheno-

type, such measures at the phenotype level are sufficient.
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Figure 1: The relationship between entropy and the num-

bers and sizes of classes

Figure 1 shows how the numbers and sizes of classes of a

population affect entropy. High entropy in EAs reveals the

presence of many unique fitness values, where the popu-

lation is evenly distributed over those values, as shown in

Figure 1 (a). Figure 1 (c) represents low entropy computed

from a population which contains fewer unique fitness val-

ues as many individuals have the same fitness.

Rosca [14] calculates entropy for a population by first

placing fitness values into fitness classes pi and counting

the size of each fitness class. pi is the proportion of the

population occupied by the population partition i. Entropy

is then defined as:

−
∑

i

pi log
2
pi (4)

This paper extends [14] to experiment with entropy, us-

ing different flexible cases of fitness classes, to facilitate

explicit balance between exploration and exploitation.
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Figure 2: Fitness classes of linear entropy

Figures 2, 3, and 4 show three new cases for defining

fitness classes:

– Linear: Assign a predefined yet changeable value to

the number of fitness classes, n. For each generation,

the interval between the best and worst fitness val-

ues is evenly partitioned into n sub-intervals as fitness
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Figure 3: Fitness classes of Gaussian entropy
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Figure 4: Fitness classes of fitness proportional entropy

classes (Figure 2). An individual whose fitness value

is occupied in a specific sub-interval is classified into

the corresponding fitness class. The concept of lin-

ear fitness classes is adapted from [14]. Changeable n
and various upper and lower bounds of each genera-

tion (i.e., the best and worst fitness values) are the two

key differences between our approach and Rosca’s.

– Gaussian: The partition of fitness classes in this case is

derived from Gaussian distribution, as shown in Fig-

ure 3. For each generation, fitness classes are “spread

out” from the average fitness value (average) with the

standard deviation (σ). For example, the upper/lower

bound of the first fitness class (P1 in Figure 3) is com-

puted as average +/- σ. The boundaries of the succes-

sive classes (P2 - P5) can be generalized as average
+/- i*σ, where i ∈ Z+ and i ≤ n/2. For each gen-

eration, the lower bound of the leftmost fitness class

is less than or equal to the smallest fitness value, and

the upper bound of the rightmost fitness class is larger

than or equal to the biggest fitness value.

– Fitness proportional: The fitness proportional ap-

proach is a variation of Rosca’ approach [14]. Rosca’s

fitness classes are partitioned by individuals having

the same phenotypes. pi is the proportion of a popula-

tion occupied in the ith partition. In our approach, pi

is formalized as fi/
∑Popsize

i fi, where fi is the fitness

value of an individual. pi is the criterion for categoriz-

ing fitness classes. As all individuals of a population

have different pi (namely, different fitness values), the

number of fitness classes n equals the population size

(Popsize). If more than one individual has the same

fitness value (i.e., pi = pj , where i 6= j), pj · log
2
pj

is eliminated in the Equation (1) and n < Popsize. It

is because two identical fitness classes are not needed,

and the elimination complies with the definition of di-

versity. Figure 4 shows 15 fitness classes sorted by pi,

each of which has one or more individuals occupied.

The next section exercises linear, Gaussian, fitness pro-

portional and Rosca entropies for the entropy-driven ap-

proach and compares the experimental results with the

Fogarty [7], Schaffer [15], and 1/5 success rule [12] ap-

proaches.

4 Experiments

Entropy-driven exploration and exploitation have been ex-

perimented with on the suite of test functions presented

in [19]. Due to lack of space, only examples of the

Sphere Model (f1), generalized Rastrigin’s function (f9),

and Branin function (f 17) are presented in this section. To

illustrate all the experiments easily, Best fitness value (B),

Average fitness value (A), Worst fitness value (W), Popula-

tion Diversity (D), Standard Deviation (S), Linear Entropy

(E), Gaussian Entropy (G), Fitness Proportional Entropy

(P), and Rosca Entropy (R) with respect to a population

from generations 0 to maximum generation (X-axis) are

included in the following figures. Curves B, A, and W use

the same definitions as all other EAs; curves E, G, and P

are defined in Section 3; curve S is the standard deviation

of the fitness values of all individuals; curve D is the Eu-

clidean distance between all individuals; and curve R is the

entropy defined in [14]. All but entropy curves (E, G, P,

and R) use the left Y-axis as the coordinate. Table 4 shows

the initial values setup (we used the same setting as in [19])

for the following experiments: f1, f9, and f 17 have differ-

ent maximum generation (Maxgen) settings; Popsize is

the population size; pm and pc are mutation and crossover

rates; Epoch is the stride of parameter adjustments during

the evolutionary process; and Round is the number of ex-

periments for each example, and the experimental results in

subsequent figures are the average values out of 50 rounds.

Sections 4.1, 4.2 and 4.3 respectively present f1, f9,

and f 17 with their experimental results of the Fogarty [7],

Schaffer [15], 1/5 success rule [12], and entropy-driven ap-

proaches. Only two figures of each function are selected in

the paper. All of the experimental results with the corre-

sponding figures may be found at the PPCEA website [13].
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Figure 5: 1/5 success rule approach for f1

Parameter Value Parameter Value

Maxgen (f1) 1500 Maxgen (f9) 5000

Maxgen (f 17) 100 Popsize 100

pm 0.005 pc 0.75

Epoch 50 Round 50

Table 1: Initial values of parameters in experiments on

functions f1, f9, and f17

4.1 The Sphere Model

The Sphere Model (f1) is a unimodal function as shown in

Equation (5).

f1(x) =

d∑

i

x2

i (5)

where xi ∈ [−100, 100], d (dimension) = 30, and min(f1)

= f1(0,...,0) = 0.

The first presented experiment is the parameter tuning

approach using the Schaffer parameter setting (pm = 0.005

and pc = 0.75). The mean best value and convergence

rate1 are 6.82 ·10−8 and 830, respectively. The Fogarty ap-

proach is a deterministic one that initializes pm = 0.11375

and adjusts the value using the Fogarty formula [7]. The

mean best value is 2.13 · 10−5 at generation 765. Figure

5 presents the results using the 1/5 success rule [12]. Such

a rule determines pm to be increased when the successful

permutation rate (ϕ) is greater than 1/5, and to be decreased

when ϕ is less than 1/5. In Figure 5, a good balance be-

tween exploration and exploitation (yet still more on ex-

1The point that curve Best becomes flat in the figure.

ploration) can be found before generation 900: curves E

and R are stable in the ranges between 1.4 and 1.65 and be-

tween 1.55 to 2.00, respectively; curves B, A, W, S, and D

are smoothly decreased; and pm is changed every 50 gen-

erations to adjust the mutation step. From generations 900

to 1220, curves E and R steeply decline, and curve G has

downhill move. Such curves show that the evolutionary

process is inclined from exploring to exploiting the current

regions with relatively small mutation steps. From genera-

tions 1220 to 1320, all entropy curves are getting flat and

curve D has a “saw-toothed” shape. Such curves imply that

the searching process is in the exploitation phase and is not

stuck in local optima. The best value found using the 1/5

success rule approach is 6.82 · 10−8 at generation 1274.

Before examining the last chart, an entropy-driven ap-

proach written in PPCEA is shown in Figure 6. When en-

tropy is greater than 0.5, pm is decreased to facilitate the

exploitation phase. Smaller mutation steps avoid the in-

crease of population diversity. As entropy is smaller than

0.5, more exploration is required to avoid local optima.

Therefore, pm is increased to diversify the search regions.

Such an example shows that balance between exploration

and exploitation can be adjusted in synergy of entropy and

pm. Figure 7 shows the result using this source code.

In Figure 7, curves E, P, and R steeply decline between

generations 0 and 450. Curves B, A, W, S, and D also diag-

onally traverse the plane. When curve E is between its mid-

point (at generation 350) and upper bound (0.74 to 1.68),

pm is decreased (line 9 of the PPCEA code) to balance ex-

ploitation against exploration. As curve E is between its

lower bound and midpoint (0 to 0.74), exploration outper-

forms exploitation by raising pm. This phenomenon can be

observed from curve D that declines more steeply and has a
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Figure 7: Entropy-driven approach for f1

1 genetic

2 g := 0;

3 while ( g < Round ) do

4 t:=0;

5 init;

6 while ( t < Maxgen ) do

7 callGA;

8 if ( Entropy > 0.5 ) then

9 pm := pm * 0.82

10 fi;

11 if ( Entropy < 0.5 ) then

12 pm := pm * 1.22

13 fi;

14 t := t + Epoch

15 end;

16 g:= g + 1

17 end

18 end genetic

Figure 6: Entropy-driven parameter control written in

PPCEA

drastic “saw-toothed” shape from generations 400 to 500.

Curve R is similar to curve E in terms of the shapes and

the balance between exploration and exploitation. The best

value found is the same as in the 1/5 success rule. How-

ever, please note that the convergence is much faster in the

entropy-driven approach (at generation 467). Hence, many

fitness evaluations after 467 generations can be skipped.

4.2 Generalized Rastrigin’s Function

Generalized Rastrigin’s Function (f9) is a multimodal

function with many local minima as shown in Equation (6).

f9(x) =
d∑

i

[x2

i − 10 cos(2πxi) + 10] (6)

where xi ∈ [−5.12, 5.12], d (dimension) = 30, and min(f9)

= f9(0,...,0) = 0.

For the Schaffer approach for f9 (figure in [13]), explo-

ration is still carried out energetically after generation 1000

in the search space comprising many local minima. Be-

cause of the late vivid exploration, the best optimal solu-

tion is still improved slightly (20.86) until the evolution-

ary process converges at generation 3988. Figure 8 (i.e.,

the experimental results of the Fogarty approach) is a good

example to represent that the process is stuck at the local

minima. The figure shows that pm may decrease too fast to

perform enough exploration. After generation 400, entropy

curves (i.e., curves E, G, P, and R) and fitness curves (i.e.,

curves B, A, and W) are nearly static, yet diversity curves

(i.e., curves D and S) exhibit extreme shakiness. This phe-

nomenon implies that even though the exploration is still

active, the relatively small pm does not provide enough ex-

ploration power to assist the evolutionary process to jump

out the local optima. Hence, the experimental results of the

Fogarty approach are the worst among the four approaches

(40.55 at generation 4079).

The characteristic of exploiting many local minima can

be also examined in the results of the 1/5 success rule

(figure in [13]). However, because of the inefficient ex-

ploration power determined by the small pm value at the

later stage, there is no exploration or exploitation activity
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observed. The mean best value and convergence rate are

25.24 and 1265, respectively. Figure 9 shows a good case

of balance between exploration and exploitation using the

entropy-driven approach in the case of multimodal func-

tion. In the chart, the evolutionary process starts at inclin-

ing from more exploration toward more exploitation driven

by declining pm before generation 320. From generation

300 to 850, the rising pm facilitates more exploration to

discover many local minima. In this phase, the same or

better values may be found and selected. Entropy curves

and diversity curves are therefore updated drastically. Most

importantly, because of the exploration on the search space

of local minima, fitness values are still slightly improved

(23.99) at the very late phase (generation 3023).

4.3 Branin Function

The Branin Function (f 17) is a multimodal function with

only a few local minima as shown in the following equa-

tion.

f17(x) = [x2 − (5.1x2

1
)/(4π2 + 5x1/π − 6]2

+10[1 − 1/(8π)]cosx1 + 10 (7)

where x1 ∈ [−5, 10] and x2 ∈ [0, 15], d (dimension) = 30,

and min(f 17) = f 17 (0,...,0) = 0.398.

Because there are only a few local minima in f 17 given a

small maximum generation number, the evolutionary pro-

cess cannot be guaranteed to discover all of the local op-

tima using the Schaffer approach (i.e., parameter tuning

problem). In Figure 10, diversity curves appearing again

after generations 30, 66, 76, 83 and 90 show that a few lo-

cal optima are found in this phase. Fortunately, the evolu-

tionary process still possesses enough exploration power to

improve the value of mean best value (0.421 at generation

90). Similar to the Schaffer results, the Fogarty approach

for f 17 also generates small refinements for the mean best

value (0.432) at the late stage (generation 80). However,

the slightly different results between the two approaches

may be derived from the early decreasing pm in the Foga-

rty approach. Please refer to [13] for the enlarged Figure

10 and the numerical improvement of mean best value that

may not be observed in Figure 10. For the 1/5 success rule,

because the success mutation ratio is always below an ideal

value, 0.2, the entire process inclines towards exploitation

by reducing pm. The mean best value (0.434) is close to the

Fogarty approach. However, because of different formulae

for adjusting pm, the 1/5 success rule converges at genera-

tion 59, which is much earlier than the Fogarty approach.

Although f 17 has a few local maxima, the entropy-driven

approach still performs a good balance between explo-

ration and exploitation as well as finding even better so-

lutions at the end of the evolutionary process. Figure

11 presents similar characteristics (i.e., rising pm, dras-

tic changing entropy curves, and decreasing fitness value

curves) as Figure 10. The mean best value is 0.398 at gen-

eration 100.

The experimental results on all benchmark functions in-

dicate that the linear and Rosca approaches for defining fit-

ness classes are superior to Gaussian and fitness propor-

tional ones in terms of providing the information for bal-

ancing exploration and exploitation.

5 Conclusion and Future Work

The opinions on the research on exploration and exploita-

tion are still widely divided [5]. In this paper, we intro-

duce a novel entropy-driven exploration and exploitation

approach. The balance between exploration and exploita-

tion is fulfilled by the synergy of pm, pc and entropy on-

line. The on-line adaptation mechanism involves PPCEA as

to whether more exploitation or exploration is needed de-

pending on the current progress of the algorithm and on the

current estimated potential of discovering better solutions.

The experimental results in all figures show that our ap-

proach can easily interpret the influence of exploration and

exploitation using curve E and auxiliary curves.

Experiments with the entropy-driven exploration and

exploitation approach for evolution strategies [12] are

planned. Additionally, a more generic PPCEA that manip-

ulates more similar related work (e.g., Harik’s parameter-

less genetic algorithm [9]) will benefit the community of

evolutionary computation.
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