Entropy estimation of symbol sequences

Thomas Schurmann and Peter Grassberger

Department of Theoretical Physics, University of Wuppertal, D-42097 Wuppertal, Germany

We discuss algorithms for estimating the Shannon entropy % of finite symbol sequences with long
range correlations. In particular, we consider algorithms which estimate 4 from the code lengths
produced by some compression algorithm. Our interest is in describing their convergence with
sequence length, assuming no limits for the space and time complexities of the compression
algorithms. A scaling law is proposed for extrapolation from finite sample lengths. This is applied
to sequences of dynamical systems in non-trivial chaotic regimes, a 1-D cellular automaton, and to

written English texts.

Partially random chains of symbols s;,s,,s3, ...drawn
from some finite alphabet (we restrict ourselves here to
finite alphabets though most of our considerations would
also apply to countable ones) appear in practically all
sciences. Examples include spins in one-dimensional mag-
nets, written texts, DNA sequences, geological records of
the orientation of the magnetic field of the earth, and bits
in the storage and transmission of digital data. An inter-
esting question in all these contexts is to what degree
these sequences can be ‘‘compressed’’ without losing any
information. This question was first posed by Shannon'
in a probabilistic context. He showed that the relevant
quantity is the entropy (or average information content)
h, which in the case of magnets coincides with the ther-
modynamic entropy of the spin degrees of freedom. Esti-
mating the entropy is non-trivial in the presence of com-
plex and long range correlations. In that case one has
essentially to understand perfectly these correlations for
optimal compression and entropy estimation, and thus
estimates of # measure also the degree to which the struc-
ture of the sequence is understood.

I. INTRODUCTION

Partially random chains of symbols s;,s,,53, ... drawn
from some finite alphabet appear in practically all sciences
(we restrict ourselves here to finite alphabets though most of
our considerations would also apply to countable ones). We
might just mention spins in 1-dimensional magnets, written
texts, DNA sequences, geological records of the orientation
of the magnetic field of the earth, and bits in the storage and
transmission of digital data. An interesting question in all
these contexts is to what degree these sequences can be
““‘compressed’’ without losing any information. This ques-
tion was first asked by Shannon' in a probabilistic context.
He showed that the relevant quantity is the entropy (or aver-
age information content) & which in the case of magnets
coincides with the thermodynamic entropy of the spin de-
grees of freedom.

Another application which we are particularly interested
in is chaotic dynamical systems. Assume we have a time
series x,, t=1,...,N, where time is discretized but x, is
continuous. In order to reduce this to the above case, we
discretize x, by defining some partition &, in the phase space

where all elements have diameter < e. We represent the time
series by the string s;,5, ... ,S;, ..., where s,=o means
that x, is in the o-th element of &°,. This induces what is
called a ‘‘symbolic dynamics.”” It was pointed out by Kol-
mogorov and Sinai*? that the entropy of such a symbol string
converges for e—0 to a finite non-zero value A g (the KS or
“metric’’ entropy) iff the system generating the time series
is chaotic. Thus measuring the entropy of a symbolic dynam-
ics is important for deciding whether the system is chaotic.

Moreover, it was shown in Refs. 2, 3 that it is in general
not necessary to take the limit e—0: there exist ‘‘generat-
ing”’ partitions (eventually infinite but countable) whose en-
tropy is exactly hgg. But for most chaotic systems such gen-
erating partitions are not explicitly known. The best known
exception are 1 —d maps where any partition into monotonic
laps is generating. Already for the Hénon map
(x,y)—(1.4—x%>+0.3y,x) no rigorous construction of a
generating partition exists, though there are strong
indications* that a heuristic argument based on homoclinic
tangencies® gives a correct result.

Even if we do not have any problems of finding a good
partition, estimating the entropy can be highly non-trivial.
This is always true if there are strong long range correlations.
Such correlations can help to achieve higher compression
rates (since they reduce the uncertainty of yet unseen sym-
bols). But finding them and taking them into account can be
very difficult because of the exponential increase of the num-
ber of different blocks (or ‘‘words’’) of symbols with the
block length.

For natural languages this can be partially overcome by
means of subjective methods® which use the fact that humans
know the structure of their own language sufficiently well to
be able to guess most of the information it provides on single
missing letters. Thus they often can guess letters even when
provided with less information than a machine would need.
Algorithms based on this idea have been improved
considerably,”® but they are still unreliable, slow, and re-
stricted to natural languages.

The most straightforward objective method consists in
counting the frequencies of all blocks up to a certain length
and estimating from them their probabilities. For an alphabet
with d symbols this usually breaks down when d"~N
(where n=block length) which gives, e.g., n~3—4 for writ-



T. Schurmann and P. Grassberger: Entropy estimation

ten English. It is obvious that in this case there are much
longer correlations (orthographic, syntactic, semantic) which
cannot be taken into account in this way, and which thus lead
to overestimation of A if sufficient care is used (with less
care one is likely to obtain underestimations, as discussed
below).

Improved methods take into account that one is only
interested in those long blocks which have high probability.
Thus also correlations should be considered only selectively,
depending on their importance. The best known such meth-
ods are those based on Lempel-Ziv coding.'®!! Here the
string is coded explicitly by breaking it into non-overlapping
““words,”” and the length of the code for specifying this
string of words is an upper bound for Nhi. Technically, this is
done most efficiently by preparing a ‘‘dictionary’’ of words
in the form of a prefix tree.!>! This is a rooted tree in which
each relevant word is attached to a leaf in such a way that the
branch common to any two leaves corresponds just to their
longest common prefix (a word y is a prefix of another word
x if x can be obtained by concatenating one or more letters to
¥). An estimator of & based on similar ideas and using simi-
lar trees (but not giving upper bounds) was studied in Ref. 13
(see also Ref. 14).

A final class of methods is based on what is sometimes
called “‘gambling,”’%1316 since it is related to a method for
earning maximal long time profit in a game where one has
d different options at any time step. The capital placed on
option i is multiplied by d if this option is indeed realized,
while the money placed on the other options is lost. It can be
shown that the optimal strategy consists in sharing the total
capital K, at time ¢t among all options a according to their
probability p(a). In this case, the expected gain depends on
the entropy: it is a factor d/e” per time step.

To see that the above is not just a superficial coincidence
but is indeed the basis of efficient algorithms for estimating
h we have to make one step back. While Shannon theory is
based entirely on probabilistic concepts and deals only with
average code lengths, modern literature on information
theory is mostly concerned with individual sequences and
estimating their shortest codes. It appears from this literature
that the main shortcoming of Shannon theory is that it does
not take into account the information needed to describe the
probability distribution itself. For the case envisaged by
Shannon, namely the transmission of very long sequences
with moderately complex constraints, this is irrelevant since
the description of the distribution is much shorter than the
description of the actual string. But in general, this is not
true.

Attempts to eliminate probabilistic ideas altogether have
led Kolmogorov, Chaitin, and others to algorithmic informa-
tion theory.'”'® A more practical point of view (but based on
essentially the same ideas) is endorsed in Rissanen’s mini-
mum description length (MDL) principle:'® a “‘good”” en-
coding of a string should be one which minimizes the fotal
code length. If this is applied to a string which itself is a
description of some physical phenomenon, this corresponds
essentially to Occam’s razor: a good theory is a short theory.

The MDL principle was applied to entropy estimation

and coding by Rissanen,”® who called the resulting method
the “‘context algorithm.”” This will be discussed in detail in
later sections. Here we will just point out that one need not
be as radical as Chaitin and Rissanen, and can merge these
ideas very fruitfully with probabilistic ideas. The best refer-
ence to algorithms following this spirit is Ref. 21. Indeed,
such algorithms are implemented in most modern text com-
pression routines.

Technically, these methods will be very similar to Ris-
sanen’s. In particular, we have to make forecasts p(a) of the
probabilities p(a) that s,=a under the condition that the
previous symbols (the ‘‘context’”) had been ...s, 5,5, .
This is most conveniently done by means of suffix trees simi-
lar to the prefix trees used in Lempel-Ziv type algorithms.

In Secs. II and IIT we treat more technically some con-
cepts of information theory which will be discussed in the
following, and alternative methods for estimating h. The
concept of gambling and the associated trees will be treated
in Sec. IV. Actual ansatzes for estimating p(a) will be dis-
cussed in Sec. V, while applications will be presented in Sec.
VL

In the first applications, we treat symbol sequences gen-
erated by chaotic dynamical systems (logistic map and Ikeda
map) in different chaotic regimes and a 1-D cellular automa-
ton (rule 150 in Wolfram’s notation??). We compare to alter-
native methods, in particular to block counting and Lempel-
Ziv-like schemes.

Finally we estimate the entropies of samples of written
English texts. By extrapolation to infinite text lengths, we
obtain entropies of ~1.5 bits per letter. This is consistent
with Shannon’s results,® but it implies that optimal text com-
pression algorithms should yield much higher compression
rates than presently available commercial packages. We
should also point out that other analyses using subjective
methods like that used by Shannon tend to give even lower
entropies.

Il. BLOCK ENTROPIES

We consider one-sided infinite sequences s§i,S,, ...
where s,€{0,1, ...,d—1}. In most examples we shall deal
with d=2, but everything holds also for d>2 with minor
modifications. We assume that these are realizations of a
stochastic process S ,S,, . .. with probabilities

Py oo ,85,)= prob{s, . | =S, ... ,S;4n =5} (1)

Usually it is assumed that these probabilities are station-
ary. In this case we can drop the index ¢ on
psi, ... ,s,), and define block entropies,

p(sy,...,s)log p(si,...,8,). 2)

Sps e oSy

They measure the average amount of information contained
in a word of length n. The differential entropies,
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hn = Hn - Hn* 1

- 3

Sps oo oSn

p(sl’ s ’Sn)logp(sn|sl’ s ’Sn—l)’

3)

give the new information of the n-th symbol if the preceding
(n—1) symbols are known. Here, p(s,|s;,...,s,_) is the
conditional probability for s, being s, , conditioned on the
previous symbols s, .. .,s,_;. The Shannon entropy is*

h=limh, . @)

n— o

It measures the average amount of information per symbol if
all correlations and constraints are taken into account. This
limit is approached monotonically from above, i.e. all £,, are
upper bounds on 4.

For the numerical estimation of / from a finite sequence
of length N one usually estimates all word probabilities
p(sy, ...,s,) up to some fixed n by the standard likelihood
estimate,

n
Sy...8,

’Sn): N s (5)

ﬁ(sl,...

where ng  is the number of occurrences of the word
Sis...,8,. (Strictly, the denominator should be N—n+1,
but this difference is in general negligible.) From these one
computes estimates H, by inserting them into Eg. (2) Fi-
nally, an estimator his obtamed either by computing h and
extrapolating, or simply as h—hm,HwH /n. The latter is
less influenced by statistical errors but shows slower conver-
gence.

In practice [unless N is very large and the limit in Eq. (4)
is reached fast] one is confronted with serious difficulties
because the number of different possible words of length n
increases exponentially with » and so does the necessary
minimum length N of the sample sequence if one wants to
determine p(sy, . . . ,s,) faithfully. This means that the prob-
ability estimates p(sy,...,s,) from which the entropies
I:In are determined undergo strong fluctuations already for
moderate block lengths n. As a consequence, the estimates
H , are usually underestimated. Formally this can be under-
stood by looking at the expected value of H .- By use of the
Kullback-Leibler inequality** this leads to

I:I E nxl ,,,,, Sy | nsl ..... Sy
< I1>_ _Sl ..... s N Og N

(6)

As long as fluctuations exist there will be a systematic un-
derestimation of H,, .

A detailed computation of the expectation value of I:In
up to second order in N was given by Harris> and reads

i H M-1 1
)=t~ N+ 1w

x| 1- +O(NT?),

p(sy, ... ,5,)>0 p(sl’ s ,Sn)
™)

where M is the number of blocks (sy,...,s,) with
p(sy,...,8,)>0. It is straightforward to correct for the
leading (?(1/N) bias in H . (the second term on the rhs), as
the number of different observed words is usually a good
estimator for M. This (7(1/N) correction term was also
found independently in Refs. 26, 27. The term of order
1/N? involves the unknown probabilities p(s, ... ,s,), and
can not be estimated reliably in general. In particular, it
would not be sufficient to replace them by p(s, ...,s,) in
this term.

An alternative approach where only observables appear
in the correction terms was attempted in Ref. 28. There it
was assumed that each R, ... 5, is itself a random variable
which  should follow a Poisson distribution if
p(sy, ...,s,)<<l. This leads to an asymptotic series where
higher order terms become useful only for increasingly large
N. The entropy estimate based on this assumptions [Eq. (13)
of Ref. 28, corrected by adding a factor 1/n; in the last term]
is

- 1 (—1)"
mf; | log N - W)= ) ®
Here the index j counts the blocks (s, ...,s,) for which

¢ >0, and ¢(x) is the logarithmic derivative of the

’’’’’’’’’

n&‘
gamma function. One easily sees that the leading “(1/N)
correction is the same as in Eq. (7).

We applied the estimate Eq. (8) and the naive estimate
based on Egs. (3) and (5) to the Hénon map with standard
parameters, x,,1=1+03x,_;— 1.4xi. To convert this into
a bit sequence, a binary partition was used as in Ref. 5. The
results are compared to the Lyapunov exponent determined
by iterating the dynamics. (From Pesin’s identity,”” we know
that the positive Lyapunov exponent of the Hénon map co-
incides with the entropy.) In Fig.1 we see that the conver-
gence of the truncated entropy fzn=IfI n—I:I n—1 1s faster than
the more conservative estimate »/n. For long block lengths
n, the underestimation becomes significant for small data
sets, even if Eq. (8) is used.

As a second application, we took a concatenation of ca.
100 English texts (including the LOB corpus and texts edited
by the Gutenberg project such as the Bible, Shakespeare’s
collective works, Moby Dick, etc.30) of altogether ~7 X 107
characters. We present in Table I estimates of &, for n=1 to
6 (in order to overcome the formidable storage problems, we
used the trick described in Ref. 31). In the first two columns
we give results for the original texts coded in 7-bit ASCII.
For the last two columns, the text was converted into an
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FIG. 1. Entropy estimates H ,/n (dotted lines) and H e H 1 (dashed lines)
based on Eq. (8), for the Hénon map (a= 1.4 and b=0.3) in dependence of
the length N of the data string. The solid lines show estimates of
H,—H,_, based on Egs. (2) and (5). The Lyapunov exponent (horizontal
line) is determined by numerical iteration of the tangent map. Block lengths
are n=20,22,24, and 25 (top to bottom).

alphabet of 27 characters (26 letters + blank) by converting
all letters into lower case; changing all punctation marks,
carriage returns and line feeds into blanks; and finally replac-
ing all strings of consecutive blanks by single blanks. This
was done in order to compare our results with previous esti-
mates, most of which were done that way.?! Columns 1 and
4 were obtained with the naive likelihood estimator Eq. (5),
columns 2 and 5 with Eq. (8). For n=5 we see a non-
negligible difference between these two methods, indicating
that this method would be rather unreliable for n=7, unless
much larger data sets were used. We also tried to extrapolate
the estimates observed for shorter texts to infinite text
lengths. Within the uncertainty, these estimates (given in col-
umns 3 and 6 of Table I) coincide for Egs. (5) and (8). We
should mention that the only previous non-subjective estima-
tors for 4, with n=4 of written English were given in Ref.
32. They are much higher than ours, and considered as not
reliable.”’

The corrections to the naive block entropy estimators
implied by Eq. (8) are useful only if the non-zero frequencies
n s, are >1 in average, i.e. if N> M. Estimators which

Spseens

should work also for N<M were proposed in several papers

TABLE I. Block entropy estimates i;,, in bits per character for written En-
glish, as estimated from a concatenation of several long texts of altogether
~7x 107 characters. See the text for details.

7-bit ASCIL 27 characters
n Eq. (5) Eq. (8) N—x Eq. (5) Eq. (8) N—®
1 4.503 4.503 4.503 4.075 4.075 4.075
2 3.537 3.537 3.537 3.316 3.316 3.316
3 2.883 2.884 2.884 2.734 2.734 2.734
4 2.364 2.367 2.369 2.256 2.257 2.257
5 2.026 2.037 2.043 1.944 1.947 1.949
6 1.815 1.842 1.860 1.762 1.773 1.781

by Ebeling er al.>* There, explicit assumptions are made on
those p(si,...,s,) which are too small to be estimated
through their occurrences. Although these assumptions seem
motivated by the McMillan theorem, we believe that this
method is not very reliable as there exist no ways to check
the assumptions and the results depend crucially on them. A
similar but presumably safer approach was proposed in Ref.
34 where it was found that simply neglecting the information
in the small N5 . s, leads to surprisingly robust results.

The fact that I:In underestimates H, is related to the fact
that we neglected the information needed to specify the prob-
ability distribution, but this relationship is not straightfor-
ward. If the distribution is simply given in form of the inte-
gers ny s the required code length can be estimated as

<d" log N where we have used the fact that all ng, are

<N. Including this in the total information will give a safe
upper bound on H,, but this bound will be rather poor in
general, since we did not make any effort to encode the
probability distribution efficiently. Thus we will not follow
this line of arguments any further. Instead, we shall discuss
in the following sections alternative methods which also give
upper bounds on % since they essentially give the complete
information needed for unique codings.

Finally we should point out that we could also replace
the likelihood estimator p by some other estimator. A natural
candidate would seem to be Laplace’s successor rule,35

n sn-l—l

Sl...

N+d" ©)

ﬁ(sh e »sn):
Inserting this into Eq. (2) gives always a larger estimate of
H, than does the likelihood estimate, Eq. (5). But it is not
always closer to the correct value, in particular if the true
probabilities are very far from equipartition. Just like Eq. (5),
also Eq. (9) in general gives a biased estimator of H,,, i.e.
(ﬁ 2y # H,. A better strategy seems to consist in using Eq.

(3), with p(s,|sy, ...,5,_) replaced by the Laplace estima-

tor,
ng s, 11
ﬁ(sn|sl""’sn—l)=ns1 ..... 5,:1+d’ (10)
but keeping the likelihood estimator for p(sy, ...,s,). Un-

fortunately, also this is not unbiased, and moreover it does
not give definite upper or lower bounds on 4,, .

If we have a good prior estimate for the (distribution of
the) p(s;, ...,s,), we can use the Bayesian estimate of £,
derived in Ref. 36. But notice that also this can lead to sys-
tematic errors in either direction, if bad prior estimates are
used.

lll. ZIV-LEMPEL AND SIMILAR METHODS

The most elegant upper estimates on & based on explicit
codings were introduced by Ziv and Lempel."' There, the
sequence {s;}»_, is broken into words w,w,, ... such that
w;=s;, and w;,; is the shortest new word immediately
following Wi . For instance, the sequence
S=110101001111 ... is broken into (1)(10)(101)(0)(01)
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X(11)(1... . In this way, each word w;, with k>1 is an
extension of some w; with j<k by one single symbol s". It
is encoded simply by the pair (j,s"). The encoder and the
decoder can both build the same dictionary of words, and
thus the decoder can always find the new word when given
jand s’.

This encoding is efficient because for sequences of low
entropy there are strong repetitions, such that the average
length of the code words w; increases faster, and the number
of needed pairs (j,s’) slower, than for high entropy se-
quences. More precisely, the expected word length L(w) in-
creases with the number of symbols N roughly like

log N

(L(w))~ (11)
where the logarithm is taken with base d, the cardinality of
the alphabet. Since the information needed to encode a pair
(j,s') increases like log N, the information per symbol is
~h.

This Ziv-Lempel (ZL) coding is indeed a simplification
of an earlier algorithm by Lempel and Ziv,'” called LZ cod-
ing in the following. There S is also broken up into a chain
of words w;w, ..., but a word w; is not necessarily an
extension of a previous word w; . Instead it can be an exten-
sion of any substring of S which starts before w (and maybe
overlaps with it).

In the above example we get the different parsing (1)
X(10)(10100)(111)(1 ... . This is obviously more effi-
cient than the ZL parsing in the sense that the average word
length increases faster and the algorithm can make better use
of long range correlations. But the coding/decoding proce-
dure is now more complicated, whence it is not much used in
practice. Also, the code length per word is slightly larger, so
that it is not clear whether its compression performance is
indeed superior to ZL for small N. In any case, the conver-
gence of the compression rate with N is not well understood
theoretically in either of these schemes.

For a more formal description we first need some more
terminology. We call s{ the substring of S starting at position
i and ending at j, s{zs[, CeS If i=1, i.e. for the prefix
of § of length j, we Write s’/. Let the word w, start at posi-
tion j, i.e. wk—sjk 71 for some L>0. Its length L is

determined as

L(wy)= min{p: sj“ P isf’f”*l, I=m<j.}. (12)
Then for both, the LZ and the ZL schemes, the entropy of

stationary ergodic sources is
h=lim ————~. (13)
w

Here L(w), the length of the word w, is essentially (up to a
constant) just the length of maximal repeats: of entire previ-
ous words in the case of ZL, and of arbitrary previously seen
strings for LZ.

We now ask whether we can generalize to arbitrary re-
peats. Let us define for each i,

FIG. 2. Prefix tree T(4) of the string 110101001111 ... up to n=4 (left),
and the tree T(5) (right). The set of strings assigned to the leaves of T(5)
are {11,10101,0101,10100,0100}. The S; are pointers to the positions i
where the substrings corresponding to the respective leaves end.

L'= min{p:s]" P~ #sIP71sj<i}, (14)

ie. L' is the length of the shortest prefix of s;,5;,.1, ...

which is not a prefix of any other s;,s;,;, ... with j<i.
Then it can be shown that the estimator,
.~ NlogN (15)
N— EN lLl ’

converges to £ if the source is a stationary Markov chain of
finite order.'* Unfortunately this is not necessarily correct if
the source is just ergodic but not Markov. A similar estima-
tor to (15) is that used in Ref. 13, and the same remarks hold
also for that. Thus it is not clear whether y or the estimator
used in Ref. 13 can be applied to cases like written English,
where it seems to give definitely smaller estimates than ei-
ther LZ or ZL.

The optimal data structure for the above estimation pro-
cedures is a so-called prefix tree construction.'® For its de-
scription we consider rooted trees which consist of branching
(or internal) nodes, and of leaves (external nodes) that store
keys (Fig. 2). The meaning of the keys will be explained
below. Internal nodes are drawn as circles and the leaves as
squares. The dot at the top denotes the root of the tree.

To each node, one assigns a substring by following the
path from the root to this node. For any i, 1<i<N, we
define wN as the shortest prefix of s;,s5;,, ... which is not
a prefix of any other s;,s;11, ... Withj<N and j # i. By
definition it follows that for fixed N, all w are distinct. The
minimal prefix tree of the string s=s" is the tree which
represents all words {w” :1<i<N} as paths from the root to
the leaves. In this way, each leaf of the tree corresponds to a
string §;,8;44, ..., for | <<i<N.

The construction of the tree is done recursively. For
N=0, i.e. before any symbol has been received, we start with
the empty tree 7(0) consisting only of the root. Suppose the
tree T(N) represents the string s. One obtains the tree
T(N+ 1) adding a leaf as follows. One starts from the root of
T(N) and takes right or left branches corresponding to the
observed symbols sy 1,5y+2, ... . This process terminates
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FIG. 3. Convergence of the Lempel-Ziv like estimate i ~ of Eq. (15) for the
logistic map in a typical chaotic regime a =1.8 in dependence of the length
N of the string.

when the path of the actual prefix differs from the path al-
ready in the tree, or when a leaf is reached (remember that
we assumed the sequence to be one-sided infinite!).

In the first case a new leaf is generated and the pointer
(key) to the position N+ LN*! is stored in it. [For the defi-
nition of LY see Eq. (12).] If we reach a leaf before termi-
nation, we replace this leaf by an internal node. Using the
position in the string stored in the old leaf, we follow both
substrings forward. We add further internal nodes as long as
they coincide, and add leaves when they first disagree. Fi-
nally we store both keys in these leaves. In Fig. 2 we see the
prefix trees T7T(4) and T(5) for the example
110101001111 ... .

We have applied Eq. (15) to the logistic map
Xp1=1 —axi with a binary partition at the critical point
x=0. There a suitable symbolic dynamics is defined as
s=0 if x<0 and s=1 for x>0. Interesting cases are the
typical non-trivial chaotic range represented by a= 1.8 (Fig.
3), and at the Feigenbaum point a=1.40115518 . .. 37 where
the entropy is zero, but the block entropies diverge logarith-
mically (Fig. 4).

IV. “GAMBLING” AND SUFFIX TREES

Another class of entropy estimates is related to
gambling.>!® Let s, . .. s, be again a sequence of random
variables taking values in a finite set {0, ... ,d—1}, and sup-
pose a gambler is allowed to bet on these random variables
according to his individual strategy. Knowing the past out-
comes s, ...,S,_1, he distributes his limited wealth at the
beginning of every round ¢ over the possible outcomes of
s,. The gambler will collect the return of his investment at
the end of each round when the outcome s, is revealed, and
start the next round. The return of the bets at the end of the
round 7 is d times the amount that was invested in the actual
outcome s,. If the gambler starts with initial wealth Ky=1

08— T — T

Feigenbaum point ——
0.7

0.6
0.5

04

Entropy
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0 st aaaannl s 1 aaenl
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FIG. 4. Convergence of the estimate h y for the logistic map at the Feigen-
baum point in dependence of the length N of the string. The cusps indicate
the beginnings of long repetitions in the data string.

and places the fraction ¢(s,|s’ ") on every possible outcome
s, during round ¢, then his wealth after » rounds amounts to

K,=d"q(s"), (16)
where
q<s">=£I, q(s|s™h. (17)

In order to maximize his long term wealth, the gambler
should not maximize the expectation value of K, /K,, but
that of log (K,,,/K,). When using the strategy g(s,|s' "),
this is

<log K

K,
If the gambler knows the true distribution of the process, to
maximize the expected grow rate log (K, /K,) of his wealth,
he thus should place the bets at the beginning of round ¢
proportional to the conditional probabilities p(s,|s’~!) on
every outcome s,.'° In the case of stationary ergodic pro-
cesses, the expected logarithmic maximum growth rate of the
capital is then equal to

>= log d+(log g(s+1]s"))- (18)

K,
log = logd—h,. (19)
Kn* 1

An interesting question is how to gamble on a stationary
sequence whose distribution is unknown and has to be esti-
mated on the basis of the past sequence s;, ... ,s,_;. For-
mally, a gambling scheme ¢q(s,|s'™") is called universal if
for any stationary ergodic process

1
lim - log K,,= log d—h, (20)
with probability 1.
For binary sequences Cover'” exhibited a scheme for
gambling with growth K,=2""¢¢" Here C(s") denotes
the length of the shortest binary program on a Turing ma-
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chine which computes s”, when no program is allowed to be
the prefix of any other [ C(s") is also called algorithmic com-
plexity of string s"'*]. Thus, the growth rate of the gambler’s
wealth is related to the ability of the gambler to compress the
sequence from n to C(s") bits so that he can double his
wealth at least n — C times. Unfortunately this scheme is not
computable because it requires the evaluation of the com-
plexity C.

Alternatively, gambling schemes can be used for the
purpose of data compression via arithmetic coding.?'*® For
any set of probabilities g(s,|s’~!) used in arithmetic coding,
the average code length — which is an upper bound on the
entropy — is given by ~ — log g(s") for data strings of
length n. Notice that we do not need necessarily either sta-
tionarity or ergodicity. But we do need the existence of a
probability measure p. If this is non-stationary, we do not
have any guarantee that any entropy estimate converges, and
if it is non-ergodic, we measure just the entropy of the par-
ticular sequence. Again, the main problem in practical appli-
cations consists in estimating this p, since optimality is
reached when ¢=p. The construction of ‘‘universal’’ esti-
mators p for which the average code length actually con-
verges to the entropy % is in general an unsolved problem.

The simplest class of models for which universal coding
schemes can be found are Markov chains of known order.
Let us call, following Ref. 20, the conditioning string s;:,‘ in
p(sr|s§::) as the context of order r in which s, appears. A
Markov chain of order r is defined such that all contexts of
order >r are irrelevant since p(s,|s;:i,)=p(s,|s§:i) for all
r’>r. Here, the Laplace estimator, Eq. (9), with n=r is
universal. But in practice r can become very large. Since the
number of relevant blocks increase exponentially with r, us-
ing Laplace’s estimator becomes unfeasible in this case. The
situation is even worse if the order r is not known.

A less trivial case is that of ‘‘finite state sources.”” These
are sequences emitted by Markovian (i.e., finite memory)
sources. But in contrast to Markov chains, the state of the
““memory’’ is not seen from the context but is hidden to the
observer. A special subclass for which efficient universal
coding schemes have been proven in Refs. 20, 41, and 42 are
‘““finite memory tree sources.”’ Technically, these are Mar-
kov chains, but they are of such high order that a straight-
forward approach using contexts of fixed order is practically
useless. Instead, here the order of ‘‘relevant’ contexts de-
pend strongly on the symbol to be forecasted. As we shall
see, this can substantially reduce the complexity of the
model. Heuristically, similar algorithms had been used in
Ref. 21 and in the papers quoted there. We will not give here
a formal definition of finite memory tree sources, since we
do not have any proof that our applications are of this type
(all indications are to the contrary). Nevertheless, we shall
see that the concept of using context of variable length is
extremely useful.

Algorithms for estimating p(s,|s§:,l.) will be given in the
next section. Irrespective of any specific algorithm for the
estimation of p(s,|s'~ ') or 0fp(s,|s§:l), this means that we
have to prepare the data such that we have easy and fast

FIG. 5. (Left) Suffix tree for the last 4 bits of the binary string
... 151010 with suffixes {11,110,01,010}. (Right) Tree after extending the
string by one symbol to ... 1;10101.

access to previous occurrences of variable length contexts,
and to the symbols followed them. The natural construction
for a complete count of the repetitions in the data string is a
suffix tree. It is similar to the prefix tree in the previous
section, but is read in the reversed direction. Therefore, in-
stead of moving forward in the string as in constructing the
prefix tree, one moves backward into the past. Correspond-
ingly, we assume that the string is left-sided infinite. In prac-
tice we can achieve this by attaching an arbitrary but fixed
aperiodic precursor (e.g., the binary digits of 1/ V2 in re-
versed order, ...01101), indicated in the following by a
semicolon. Moreover we shall assume for simplicity d=2,
though all constructions work for arbitrary d. In the left of
Fig. 5 we see the tree T(4) for the last N=4 bits of the string
s*=...1;1010. In contrast to the prefix trees, here each of
the N leaves corresponds to a suffix of the string which end at
position k, k=1,...,N. At each leaf is stored a pointer to
the start positions of its suffix. The tree T(5) of the string
... 1;10101 extended by one symbol is shown in the right
of Fig. 5.

Finally, in each internal node we store how many times
it was visited during the construction of the tree. The con-
texts for s,=0, 1<<¢t=<N, are paths on the left part of the tree
(with the numbers in the internal nodes indicating their fre-
quencies), while the contexts for s,= 1 are parallel paths on
the right half of the tree. For an estimate of p(sy.|s") we
thus want to access pairs of paths which are parallel except
for the last step. The frequencies in the left half of the tree
are those of contexts which had preceded s =0, while those
on the right half had been followed by s=1 (Fig. 6).

By using the conditional frequencies read off the tree
T(N), one can thus determine the estimates p(sy.|s") for
the next outcome to be s, ;. Actually, the needed informa-
tion can be stored most efficiently in a tree which is a super-
position of the left and the right branches of the above tree
(Fig. 7). Thus, each node of the modified tree is associated
with a set of d symbol counts, where d is the cardinality of
the alphabet.

In general a tree constructed in this way grows very fast
with the length of the data string and therefore also reaches
very fast the limits of the memory resources. A tree which
does not grow as fast, called Rissanen’s suffix tree in the
following, is used in Ref. 43. It works as follows.
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FIG. 6. Suffix tree of the binary string ...11010100. The internal nodes
contain conditional frequencies. Looking at the arrows in the left branch,
substring 11 is followed one times by 0, and symbol 1 is followed three
times by 0. In the right branch, 1 is followed one times by 1, and occurs four
times in all.

We start with the root, with its symbol counts set to zero.
Recursively, having constructed the tree T(z) from s’, read
the symbol s,, ;. Climb the tree according to the path de-
fined by s,,5,_, ..., and increment the count of symbol
s,+1 by one for every node visited until the deepest node, say

S;>8i— 15+ - - »8;—j+1, is reached. If the last update count be-
comes at least 2, create a single new node
SpaSi—1s o sSi—js and initialize its symbol counts to zero,

except for the symbol s,,;, whose count is set to 1.

Although Rissanen’s tree does not count all repetitions
of the contexts, it grows where repeated patterns occur fre-
quently. In the case of the suffix tree all repetitions of con-
texts and their corresponding counts are collected. But on the
other hand the suffix tree grows faster than Rissanen’s tree
and is thus not suitable for very long sequences or sequences
with extremely strong long range correlations. We should
point out that the memory needed to store either tree in-
creases linearly with the length N of the symbol sequence
(for h>0), whence available workspace often is a limiting
factor. Also, Rissanen’s tree mainly leaves out contexts
which had occurred in the distant past. For non-stationary
sequences this might be advantageous since such contexts
might lead to wrong estimates.

(s, 0) (s%,0)

FIG. 7. Superposition of the subtrees representing the string 11010100. For
simplification, all nodes are expressed by circles (left); compact version of
the superposed tree (right).

V. MODELING PROBABILITIES

In this section, we will present different strategies which
have been proposed for actually estimating p. There exists
no globally optimal strategy. As in the case of block entro-
pies discussed in Sec. II, even an estimator which is ‘‘opti-
mal’’ in being unbiased ({p)=p) does not give an unbiased
entropy estimator. But we shall arrive at one strategy which
we have found to be close to optimal in most cases.

A. Bayesian probability estimation

Let us assume that we want to estimate the probability
for the 7-th symbol s,, based on its contexts sii} of length
j=0,1, .... Suppressing in the following the index 7, we
denote by o; the context si:; and by n; the number of times
this context had appeared previously in the string, at times
ty, k=1,...,n;. Similarly, nﬁ»“) is the number of times that
o; had been followed by symbol a, ie. s, =a. These are
exactly the frequencies stored in the nodes of the suffix tree
T(t—1). Obviously, n;=X 2" .

A first guess for ﬁ(st=a|0'j) could be the likelihood
estimator ng-“)/ n;. Unfortunately, this would lead to p=0 if
nj»”)IO, and consequently to a divergent code length if a
symbol appears for the first time in the given context. Thus,
all symbols that possibly can occur must get probability es-
timators greater than zero. But which probability should one
assign to an event which did never occur? This so-called
zero-frequency problem is commonly treated from a Baye-
sian point of view.*> For an alphabet of d symbols, a consis-
tent (though not necessary optimal) class of estimators is
given by

nﬁ»“)+,8

m, with B8>0. (21)

pls,=alo))=
These include Laplace’s rule which is the Bayes’ estimator
for the uniform prior (8=1), and the Krichevsky-Trofimov
(KT) estimate*® which uses 8=1/2. A detailed justification
of Eq. (21) can be found in Ref. 39.

Within a Bayesian approach, each context leads to a pos-
terior probability distribution P(p|o ) where
p=(prob(s,=1|0;), ... ,prob(s,=d|o))). It is easily seen
that the optimal choice for p is the average value of p with
respect to P, denoted by p (for a uniform prior, this is just
the Laplace estimator). To see this, let us assume that we
have used the correct prior. Then P(p|o) is indeed the cor-
rect posterior distribution, and the average code length for
s, is [d'pP(p|o)Z{_ p; log p; = — ={_,p; log p,;. By the
Kullback-Leibler inequality this is minimal if p,=p;. As
usual in Bayesian approaches, the efficiency of the method
depends on the availability of a good prior. In the following
we will only use Eq. (21), with the understanding that this is
a major source of future improvements.

After having an estimator for p(s,|o ;), the next problem
is how to chose the most ‘‘successful’’ rank j which should
determine the actual estimate p. In general this is quite in-
tricate. If one prefers to use long contexts (i.e., those close to
the leaves in the tree), then these estimates are determined by
a very small number of events. In contrast, estimates based
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on nodes near the root (i.e. short contexts) are in general
statistically more reliable, but they only lead to lower order
entropies since they do not take into account long range cor-
relations.

In a Bayesian framework, one should indeed not choose
a single j for estimating p. Instead, since there will also be a
prior distribution for the ‘‘correct’ j, one must expect p to
be obtained from a posterior distribution over different j’s.
In the next subsections we shall first discuss a method which
is based on selecting a unique j, and then a (somewhat ad
hoc) method for averaging over different j’s.

B. Rissanen’s method

A strategy for estimating the optimal context length has
been suggested in Ref. 43. Let us denote by z; the concat-
enation of all symbols following previous appearances of the
context oj,

=S80 Sy (22)
The total code length for all these symbols, using estimates
based on context gj, is

"

I(Z.i|0'j):_§l log p(s,|a)). (23)

Any symbol which has occurred at a context o; in the tree
has also occurred at the context o;_; corresponding to the
parent node in the suffix tree. This suggests comparing the
context models based on o; and o by computing the code

length difference
Ai=1(zlo)—1(zjlo;-y). (24)

We should stress that z; contains only a part of the symbols
which followed after the context o;_; since the latter is
shorter and thus less specific, and /(z j|(rj_ 1) measures the
success of o;_; for those occurrences only.

When the sign of A; is positive, then o;_; has been
more efficient in the past than o ;. It is then a good guess that
it will be more efficient for the present symbol as well. The
most obvious strategy® is thus to take the shortest context
(i.e., the smallest j) for which A;<0 and A;,,>0.

Unless the source is Markov, the node o; will win
against its parent node o;_; in course of time, and A; will
finally become negative for t—oo. Thus finally longer and
longer contexts will be chosen for long sequences. This im-
plies the risk that the frequencies n; for the chosen contexts
are small. While the above rule for selecting j is certainly
reliable in the limit of large n i this is not necessarily so for
contexts which had occurred only rarely. To avoid selecting
too long contexts one can use at least two modifications.

In the first, one defines a minimal number n;,, and
discards any context with n;<n.;,. A better strategy is to
define a threshold 6=0, and to choose context length j only
if A ;<— 9. Otherwise said, the selected context has the
smallest j for which A;<—¢5 and A;;>0. If there is no j
for which this is fulfilled, the root (j=0) is taken.

To speed up the algorithm, the code length differences
A; are stored in the corresponding node of the tree and are

updated recursively while the tree is constructed. At the be-
ginning, all A; are set to zero, except for the root node for
which Ay=—1.

C. Superposition of probabilities

Indeed, it is not clear if strategies which use only single
nodes for the prediction will be most successful. Let us as-
sume that the largest context for which n;>0 has length
j=r. Several authors suggested to use weighted averages
over all context lengths <r,

Pla)=2 cblaloy. (25)
where the positive weights c( ) are properly normalized, and
P,(a) is the final estimator for the probability that s,=a.

(i) In Ref. 44, it was proposed to take the weights inde-
pendent of ¢, i.e. c(’)—c for all #, and to minimize & with
respect to them. But thlS seems too rigid, as we should ex-
pect the strengths of correlations to depend on the context.
For this reason we shall not discuss this further.

(ii) Another way to compute the weights is adaptively as
in Ref. 21 (Sec. VI). These authors consider the estimated
probabilities for encountering a symbol which had not ap-
peared previously after the context of length j,
e; —prob{n(s’) 0}. They argue that c(’) should be large if
e; is small (1 €., if context o; is statlstlcally relevant), and if
all e; with i>j are large (i.e., all longer contexts are irrel-
evant). More precisely, they chose

,

D—(1—

C; =(1 ej)'H €,
i=j+1

c(,’)z 1—e,.

0o=sj<r,

(26)

It is easily verified that these weights are properly normed,
> c(t)— 1. As is usual for estimated probabilities, there is no
general theory for the optimal determination of the e;. Of
course, they should be 1 if no symbol has been observed, i.e.
if n;=0. On the other hand, if there have been very many
observations (n;>1), then the e; should approach to zero.
Thus, the following ansatz was made in Ref. 21:

e; P q>0. (27)
In practice, entropy estimates ﬁN based on Egs. (21) and
(25)—(27) are remarkably good for written texts, and they are
very robust against changes in the parameter g. But we
found them to be much worse when applied to sequences
produced by chaotic dynamical systems. The reason for this
seems to be that this algorithm puts too much weight on long
contexts. Thus we will not use them in the following.

D. Global probability estimates

For all strategies discussed so far, we have to specify
certain parameters that can not be fixed a priori. Even if the
strategy can be shown to be universal, these parameters still
can have a big influence on the convergence of the entropy
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estimate. An estimator for binary sources which is supposed
not to be dependent on arbitrary model parameters is sug-
gested in Ref. 42.

In contrast to the above methods, all of which make
ansatzes for the conditional probabilities p(s /s’ ') and
compute the total probability estimator as a product
p(s")=I1,—,p(s;|s" "), these authors prove universality
for an estimator which gives p(s’) directly as a weighted
average. They did not show that this method gives good
estimates also for finite sequence lengths, and it is not clear
that this method converges faster than, e.g., Rissanen’s
method. Thus we have not studied it further.

In the next section we will apply Rissanen’s method
based on Egs. (21) and (24). Whenever it was feasible with
our computational resources, we used the full suffix tree in-
stead of Rissanen’s tree. To avoid too long contexts, we use
a threshold & as discussed above. The values of B used in
Eq. (21) and of & were chosen differently in different appli-
cations. This did not give always the smallest entropy for
short sequences. But even if it did not, it never gave a value
much larger than the minimum, and it improved in general
quickly with sequence length. In particular, it seemed to lead
in all cases to the smallest estimates for infinite sequence
length, when using the extrapolation discussed in the next
section.

VL. APPLICATIONS

In all non-trivial cases we observed that & y converged
very slowly with N. This suggests that a careful extrapola-
tion to N— is essential when estimating /. Unfortunately,
even in the case of known sources it seems not easy to derive
the N-dependence of h ~- This is obviously even worse for
sequences with unknown statistics such as written texts or
typical chaotic symbol sequences.

But we found empirically that the following ansatz
yields in all cases an excellent fit:

—, y>0. (28)

hy~h+ log N

NN c N b

As we said, we can not prove this, but we verified it numeri-

cally for several very different types of sources. A similar

ansatz, but for block entropy based estimates, was made in
Ref. 45.

A. Chaotic dynamical systems and cellular automata

We begin with the logistic map x,; ;=1 —axﬁ with a
binary generating partition at x=0. Interesting cases are the
typical non-trivial chaotic range a=1.8, the case
a=1.7499 (Fig. 8) where it is very strongly intermittent
(there is a Pomeau-Manneville intermittency point*® at
a=1.75) and at the Feigenbaum point (Fig. 9).

In all three cases, Eq. (28) gives very good fits. They
(and the fits in all cases to follow) were done as least square
fits. At the Feigenbaum point, we know that 4 =0, whence
Eq. (28) involves only 2 free parameters. In the two cases

shown in Fig. 8, the entropy & was used as a fit parameter.

These fits gave h(a=1.8)=0.404 and h(a=1.7499)
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a=1.8 : suffix tree —
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exact ----

a=1.7499 : suffix tree -
fitted —-—- =

0.5
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FIG. 8. Entropy estimation of the logistic map x,, ;=1 —ax,2l with param-
eter a=1.8 and a=1.7499 by using full suffix trees. The curves are aver-
ages over 50 samples, each consisting of N=10° symbols. The straight lines
are the Lyapunov exponents numerical determined by use of the dynamics.
The fit with Eq. (28) coincides very well with the estimated data.

= (.186. Due to Pesin’s identity,29 these values should coin-
cide with the Lyapunov exponents, which were found to be
0.405, respectively, 0.184.

Next we applied the algorithm to a sequence generated
by the Ikeda map*’ for standard parameters,

1= 1 +0'9Zte().4i* 6i/(1 +|Zt‘2). (29)

Again we used a binary generating partition.*® The conver-
gence of the entropy estimate is shown in Fig. 10. We can
again use Pesin’s identity to compare the fitted value of 4 to
the positive Lyapunov exponent, with excellent agreement.
Similarly good agreement is found with the N-dependence of
Eq. (28).

A quite different type of sequence is obtained by iterat-
ing a 1-D cellular automaton (rule 150 in Wolfram’s** nota-
tion) for a small and fixed number of times, starting from an

04 T

Feigenbaum point : suffix tree —
fitted ---

Entropy [bits/Symbol]

0 1

1000 10000
Number of Symbols

FIG. 9. Entropy estimation of the logistic map at the Feigenbaum point for
10* symbols by use of a full suffix tree. The exact value of the entropy is
zero.
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FIG. 10. Entropy estimate of the Ikeda (N=10°). The Lyapunov exponent
is ~0.508, the estimated asymptotic value for the entropy is 0.506. The fit
describes very well the estimated data.

input string with low but known entropy. Since rule 150 is
bijective, the entropy of the input string is preserved at every
time step. But after T iterations one needs context length
>2T to recover the correct value of the entropy. In particu-
lar, we started with random input strings with a ratio 1:19 of
0’s and 1’s. This gives an entropy of 0.286 bits. The conver-
gence of the algorithm for 7=2, 4 and 6 iterations is shown
in Fig. 11. As expected, the convergence becomes slower
when increasing the number 7 of iterations. In particular, the
fitted values of & were 0.286, 0.293, and 0.294 for T=24,
and 6. But the validity of the scaling law seems to be unaf-
fected.

B. Natural languages

These examples suggest already that the ansatz (28)
works very well, independently of the particular type of
sources considered. Our last tests were done for written natu-
ral languages. We will present only results for English texts.

0.7 T T T

0.65 |- T=21$ufﬁ§im :‘ .
T=4 : suffix tree ----

0.6 |- fitted -
A\, T=6: suffix tree —-—-

0.55 | fitted ---- -
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sk . _—
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FIG. 11. Entropy of the cellular automaton rule 150 for p,(t=0)=0.05 and
for a different number of iterations 7=2,4,6. Each data curve is obtained by
averaging over 50 samples, each consisting of N=10° symbols.
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FIG. 12. Entropy estimate of Shakespeare’s collected works,

(N=4791000 letters), LOB corpus (N=5625000), and the Bible
(N=4014000). All are estimated by using Rissanen’s tree. For the first two
texts the extrapolation yields the asymptotic entropies ~1.7 (Shakespeare)
and ~1.25 bits per letter (LOB corpus). An extrapolation of the curve for
the Bible seems difficult due to the large fluctuations.

Of course, any entropy estimate for natural languages is
much more delicate, since it is not clear a priori that lan-
guages can be described probabilistically, and that concepts
like stationary or ergodicity are meaningful.

Already from the work of Shannon and others®™® it ap-
pears that in ordinary literary English the long range statis-
tical effects (up to hundred letters) reduce the entropy to
something of the order of one bit per letter and that this
might still be reduced when structure extending over para-
graphs, chapters, etc. is included. Thus one can not expect a
saturation of the gambling entropy estimate with present-day
computer facilities. Notice that the longest structures
‘‘learned’’ by gambling algorithms are given by the average
height of the suffix tree, and this grows only logarithmically
with the text length.

The samples we consider are mainly the collected works
of Shakespeare (N~4791000 letters), the LOB corpus
(mixed texts from various newspapers; N=~5625000), and
the King James Bible with N~4014000." In order to be
able to compare our results with those in the literature,®
we modified the texts as described in Sec. II. Thus our al-
phabet {a,b, ... ,z,blank} consists of 27 letters. If no fre-
quencies were taken into account its entropy would be
log, 27~4.76 bits per letter. The entropy based on single
letter frequencies are ~4.1 bits per letter for all considered
texts.

As we have already said in Sec. V, a natural extension of
the Laplace estimate, Eq. (10) is (k+ 8)/(n+ Bd), where d
is the cardinality of the alphabet. We found numerically that
the best estimates were obtained with 8~ 1/d, whence

k+ 1/d

n+1 (30)

p=

yields better entropy estimates than the Laplace estimator.
For the first two samples we see that Eq. (28) again fits

the data very well (Fig. 12). The asymptotic estimates of the
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entropies are ~ 1.7 for Shakespeare and ~1.25 for the LOB
corpus. This is in good agreement with the experiments of
Shannon and others,6’9‘7’8 given the spread of the latter. The
curve for the third sample (Bible) is not very smooth, and an
extrapolation seems not very reliable. But it seems to give an
entropy similar to the other two samples.

In addition, we also studied the text called ‘‘bookl’’
(N=768771) in Ref. 21, coded in 7 bit ASCII (i.e., with
capitals and all punctation marks) as in that reference. For
this, our algorithm gave an entropy of 2.46 bits/letter without
extrapolation (1.5 with extrapolation), compared to the best
value of 2.48 bits/letter in Ref. 21.

The irregular behavior of the Bible is easily explained by
its linguistic inhomogeneity (this was also observed as a
large ‘‘random walk exponent’” in Refs. 49 and 50). For
example, compare the genealogical enumerations of Genesis
36 or Numbers 1 (abounding with proper names and with
endlessly repeated nearly identical phrases) with the intricate
philosophical discussions of Paul’s letters. Each time the sta-
tistical features of the text changes, the old tree becomes less
efficient, and the effective entropy increases. On the other
hand, the very long repetitive enumerations give particularly
low entropies.

The difference between the LOB corpus and Shakes-
peare’s works is explained similarly. Although the extrapo-
lated % is lower for the LOB corpus, the LOB entropy esti-
mates for finite N (10°<N<10%) are higher. The latter is
explained by the fact that the LOB corpus consists of short
unrelated pieces of text. After each such piece the algorithm
has to cope with new statistics, whence the entropy sz is
large on intermediate values of N. But ultimately, most sub-
jects will have been covered, and for very large N the fact
becomes essential that Shakespeare’s English is more rich
than that of average newspaper writers.

As an alternative strategy, suitable for extremely large
data sets, we can truncate the tree at a certain depth n. Thus,
all branches of the suffix tree are of length <n (original tree,
Fig. 6f) resp. <n—1 (modified tree, Fig. 7). Thus, the re-
quired memory becomes independent of the text length, and
is comparable to that for block entropies of length n. Nev-
ertheless, the estimates }AznzlimN_,mfz ~.n Obtained with such
truncated trees are different from the block entropy estimates
of Sec. II. In contrast to the latter, they are strict upper
bounds to the true block entropies. Using the same data as in
Table I, we obtained h,=2268, hs=1982, and
ﬁ6= 1.851. This is compatible with Table I. It shows that
hg, and thus also 4, is indeed less than 2 bits/character. Thus
the truncated tree yields, given sufficiently large data sets,
better exact estimates than the full tree. But it seems not easy
to extrapolate these estimates to n— .

To illustrate the working of our method and its main
strengths and weaknesses, we finally present some examples
showing how the forecasting inherent in the gambling strat-
egy works in detail. We will present two different kinds of
forecasting strategies. In both cases, we first trained the al-
gorithm to ‘‘learn’” the structure of some long text. Then we

present it with a new short piece of the same text, and ask it
to continue it.

In the first test, we always accept the letter with the
largest p, and continue with it, irrespective whether it is right
or wrong. In this way we generate random texts which have
similar statistics as the original one, but will differ from it
due to ‘‘errors’’ in estimating the probabilities. In the second
test, we just register the letters with largest p, but we con-
tinue with the original text anyhow. In this way we see for
each letter how stringent the forecast was, and how correct it
was if it was stringent. For all these tests, we used the LOB
corpus.

Three artificial texts produced by the first method, after
training on texts of increasing lengths, are the following:

Trainings set 10° letters:

ON GATHE PRESIDE POLAFIC GAMENTUNIST CLE VI-
GOUGHT WOULDS ALSO THE HAS ON BALL LIKE SEPARATION
ALTATESTIONS OPPOSED FLAMMELL I MUST OBS PART ONLY
CO AND CHANGHAMOST THAT VEYREE TERRY BEATING DAILY
THE AS IN IS A IN WERE ROBERT HAND TALKS GVISED HE IS-
STROY THESE MORE GENCYERSHI INVE BING PARD LEAD AND
ALLORKEOPLE IS NEGOTIATELY AIR LEFT PLACED A AIMEDI-
TATION IN AFTER NEGRESFALLE AND NO GOOD.

Trainings set 10° letters:

ONE THOUGH HEC POLICE THAT EVEN OPENLY WITH BY
HOT IS IMMIGRANTS DOWN THE FORMANCES AND SEE AL-
VANGELICAN MR LIFESSIONALISM WHICH OCH PART OF CRED
AND CHANGING THE LAST DIENCY AS WHATEVER VENGE DRAL
ARE BUT THE CIVIL FORTUNATELY TOKOU OF THANHAM HICK
PRIVATE THE COMMENTARY S HAND BLOWERED WITH THE
EASY DALMATTHAT LADIEFENBOW SIR MAIDEN HALL BE
SMALLY INCLE A CANNOT A PROFESSION IN HE HAD LA-
BORISM.

Trainings set 5.5X 10° letters:

FAILURE LINES AND HAD PAIN IN THE CAPACITIES OF A
QUICK OF THE MAJOR ALL ASPECT TO LEAVE THEM AND ITAL-
IAN REWARDS TO TWO SUCH AS MY CERTIFICATES AGAIN
MANY ENOUGH DRAUGHINGS BEEN THERE ARE NEITHER
BANDA AND MINUTES FOLLOWED WITH THE STAMPS BOX PUT
IT GILLINGED CHANGED FOR THE GOING IN ACQUIRED EAR THE
EXACT AT JUDGES BETWEEN THE EVENING THE MADE AND
THAN HIS BREAK TOUR OF AS THE SOCIAL IN MONARCHING
RIVER.

It seems that at least for the latter case the algorithm is
nearly perfect on the orthographic level. Using the UNIX
spell checker on the last example, it gave only two error
messages (see the underlined words). But it seems that it
hardly learned any grammatical rules, and any ‘‘meaning’’
related to correlations with even longer range was lost com-
pletely.

The same conclusion that intra-word constraints are
much easier learned than constraints between words can be
drawn from the second kind of forecasting test. In Table II
we show the letters with the highest estimated probabilities.
We see that letters at the beginning of words are much harder
to predict than the following ones. This suggests again that
the algorithm had the most difficulty in learning interrela-
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TABLE II. After training the tree on the entire LOB corpus, we presented to it the text shown in the first lines. In the lines below it, we show those letters
which had estimated probabilities p=0.6 (bold face), =0.25 (sans serif), and =0.1 (italic).

T HEY W E R E A L L A RME D

a OE _ _ a ERE a LL _ T NEYD

i H a h i s 0 s s

0 0 _ _

t

N EARE ST O F T HEM C A M

s EWRERT _ i _ THE _ _ t ON
a a _ S o n a a r
o e t i h 1
u v a o m

s

W I T H R I F L E S A S T H E

I TH
a h a

Q=
w o @
=
=
w
pz4

_ N D _ HE _ s a ODK
a u g a o a t ER &

0 t i e a p

m

tions between words, while it had learned easily how to con-
tinue a word once its first few letters had been given.

This conclusion was confirmed by several subsequent
investigations. First of all, we ‘‘scrambled’’ the entire text by
permuting all words randomly. Thus we generated a surro-
gate text which had exactly the correct statistics on the word
level, but no correct grammatical and syntactical structure at
all. We found that its entropy was surprisingly close to the
entropy of the original text. Both for the LOB corpus and for
Shakespeare, the difference was not more than 0.1-0.2 bits/
letter.

Finally, we estimated for every n the average informa-
tion carried by the n-th letter of a word. Here, a word is
defined as any string of letters following a blank and ending
with the next blank. Results for Shakespeare’s collected
works, both in the scrambled and in the unscrambled version,
are given in Fig. 13 (very similar results were found for the
LOB corpus). We see that indeed the first letter in each word
carries in average ~6 times more information than the let-

4.5 T T T T T T T T T

+ unscrambled -©—
4 scrambled —+- ]

Entropy [bits/Letter]

0 2 4 6 8 10 12 14 16 18 20
letter position in a word

FIG. 13. Average estimated information carried by the n-th letter of each
word, versus its position n. The full line is for the original (unscrambled)
version of Shakespeare’s collected works, while the dashed line is obtained
after scrambling it by permuting its words at random.

ters at positions n=5"! Although some such effect was to be
expected, we consider its strength as very surprising. Also,
the effect is hardly changed by scrambling.

VIl. SUMMARY AND CONCLUSIONS

We have presented estimates for entropies of symbol
sequences drawn from several sources, ranging from chaotic
dynamical systems to Shakespeare’s works. We believe that
our estimates are at least as good as the best ones available in
the current literature. In particular, we concentrated on esti-
mates which are based on (implicit) loss-less data compres-
sion. For sequences with long range correlations (such as
natural languages), these estimates converge very slowly
with the sequence length. Hence, realistic estimates of the
true entropy requires long sequences and large computational
resources. Even if these are available, it seems necessary to
extrapolate the estimate obtained for finite length N to
N—, We propose an universal ansatz for the latter which
seems to work well for all sequences investigated in the
present paper.

For written English, our estimates of the entropy con-
verge particularly slowly with N. This was to be expected
from previous work, and is related to the existence of very
long range correlations which are very hard to capture by any
algorithm of the sort discussed here. Indeed, ‘‘subjective’’
algorithms based on guessing letters by native speakers typi-
cally found entropies comparable to ours, and block entro-
pies seemed to converge in these investigations with rates
similar to one found in the present paper.

The fact that entropy estimates for finite length texts are
too high is related to difficulties in compressing these texts.
Indeed, commercial text compression routines (such as
UNIX ‘‘compress’’) yield considerably worse compression
rates. It is also reflected in the very poor ability of the algo-
rithm to produce artificial texts which resemble real texts, as
seen in the last section. A more detailed investigation of the
source of these problems showed that relationships between
words are the main culprit, as they are much harder to learn
than orthographic rules. We believe that systematic and de-
tailed investigations such as that shown in Table II and in
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Fig. 13 can be extremely useful in developing more efficient
entropy estimators and more efficient text compression algo-
rithms.
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