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Abstract Direct integration of the Riemann–Stieltjes integral has been used to com-

puting convolution integrals. This approach has been established to be simple and

accurate with good convergence property. In this paper, we used some numerical

methods to estimation of entropy of a continuous random variable and then some

estimators are introduced. Bounds on the error terms are derived for some direct

Riemann–Stieltjes integration methods. Consistency of estimators is proved and by

simulation, the proposed estimators are compared with some prominent estimators,

namely Correa (Commun Stat Theory Methods 24:2439–2449, 1995), Ebrahimi et

al. (Stat Probab Lett 20:225–234, 1994), van Es (Scand J Stat 19:61–72, 1992) and

Vasicek (J R Stat Soc B 38:54–59, 1976). The results indicate that the proposed esti-

mators have smaller mean squared error than other estimators.

Keywords Entropy estimator · Riemann–Stieltjes integration · Midpoint rectangle

RS-integration · Mean-value rectangle RS-integration · Generalized Simpson rule

1 Introduction

The entropy H( f ) of the random variable X with distribution function F(x) and

continuous density function f (x) is defined by [23] to be

H( f ) = −
∫ ∞

−∞
f (x) log f (x)dx . (1.1)
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Estimation of entropy from a random sample has been considered by many authors. For

discrete random variables, References [8,15,29] have proposed estimators of entropy,

while [5,9,11,14,16,27,28] have proposed solutions for the problem of estimating the

entropy for continuous random variables.

Vasicek [28] expressed (1.1) as

H( f ) =
∫ 1

0

log

{

d

dp
F−1(p)

}

dp, (1.2)

and then by replacing the distribution function F by the empirical distribution function

Fn, and using a difference operator instead of the differential operator proposed an

entropy estimator. He also estimated the derivative of F−1(p) by a function of the

order statistics. Assuming that X1, . . . , Xn is a random sample, Vasicek’s estimator is

HVmn = 1

n

n
∑

i=1

log
{ n

2m

(

X(i+m) − X(i−m)

)

}

, (1.3)

where the window size m is a positive integer smaller than n/2, X(i) = X(1) if

i < 1, X(i) = X(n) if i > n and X(1) ≤ X(2) ≤ · · · ≤ X(n) are order statistics based

on a random sample of size n. Vasicek proved that his estimator is consistent, i.e.,

HVmn
Pr.−→ H( f ) as n → ∞, m → ∞, m

n
→ 0.

Van Es [27] using spacings introduced an estimator of entropy and proved the

consistency and asymptotic normality of this estimator under some conditions. Van

Es’ estimator is given by

HVEmn = 1

n − m

n−m
∑

i=1

(

n + 1

m

(

X(i+m) − X(i)

)

)

+
n

∑

k=m

1

k
+ log(m) − log(n + 1).

Ebrahimi et al. [9] modified Vasicek’s estimator and then proposed the following

estimator.

HEmn = 1

n

n
∑

i=1

log

{

n

ci m

(

X(i+m) − X(i−m)

)

}

,

where

ci =

⎧

⎨

⎩

1 + i−1
m

, 1 ≤ i ≤ m,

2, m + 1 ≤ i ≤ n − m,

1 + n−i
m

, n − m + 1 ≤ i ≤ n.

They showed that HEmn
Pr.−→ H( f ) as n → ∞, m → ∞, m/n → 0. Then they

showed that their estimator has smaller bias and mean squared error than Vasicek’s

estimator, by simulation.

Correa [5] proposed a modification of Vasicek estimator as follows:
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He considered the sample information as

(

Fn

(

X(1)

)

, X(1)

)

,
(

Fn

(

X(2)

)

, X(2)

)

, . . . ,
(

Fn

(

X(n)

)

, X(n)

)

,

and written Eq. (1.2) as

HVmn = −1

n

n
∑

i=1

log

{

(i + m)/n − (i − m)/n

X(i+m) − X(i−m)

}

.

Then he noted that the argument of log is the equation of the slope of the straight line

that joins the points (Fn(X(i+m)), X(i+m)) and (Fn(X(i−m)), X(i−m)), and therefore

applied a local linear model based on 2m + 1 points to estimate the density of F(x)

in the interval (X(i+m), X(i−m)),

F
(

x( j)

)

= α+ β x( j) + ε j = m − i, . . . , m + i.

Via the least square method, he proposed an estimator of entropy as

HCmn = −1

n

n
∑

i=1

log

(
∑i+m

j=i−m (X( j) − X̄(i))( j − i)

n
∑i+m

j=i−m (X( j) − X̄(i))
2

)

,

where

X̄(i) = 1

2m + 1

i+m
∑

j=i−m

X( j).

He compared his estimator with Vasicek’s and van Es’s estimators and concluded

the mean square error (MSE) of his estimator is smaller than the MSE of Vasicek’s

estimator. Also for some m his estimator behaves better than van Es estimator.

Entropy estimators are used to developing entropy-based statistical procedures. See

for example, [1,2,10,13,20,21]. Therefore, new entropy estimators can be useful in

practice.

For many computational problems in applied probability and statistics, we have to

compute the Riemann–Stieltjes integral of the following form

∫ b

a

f (x)dg(x), (1.4)

where the function g(x) is usually a distribution function.

Direct integration of the Riemann–Stieltjes integral can be used to computing con-

volution integrals. This approach has been established to be simple and accurate with

good convergence property.
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The above integral can be approximated directly using the definition of the

Riemann–Stieltjes integral. The function f (x) may approximate by a piecewise con-

stant function f̃ (x) and by transforming the integration to a summation, we have

∫ b

a

f (x)dg(x) ≈
n

∑

i=1

f̃ (xi ) · (g (xi ) − g (xi−1)).

Therefore, a numerical algorithm can be obtained based on the above formula.

This procedure is used by [30] in solving renewal equation. Independently, a similar

idea is used by [26]. Numerical results in these papers show that direct RS-integration is

very simple and accurate compared with the existing algorithms ([6,19], for example)

that are more complicated. Some applications of this approach can be found in [4,

17,25]. Xie et al. [31] developed further methodologies of the Riemann–Stieltjes

integration under general conditions.

In Sect. 2, some direct integration methods and the bounds on the errors are given.

In Sect. 3, numerical methods are used to estimation of entropy of continuous random

variables. We show that the proposed estimators are consistent. Scale invariance of

variance and mean squared error of the estimators are established. In the last section

we present results of a comparison of the proposed estimators with the competing

estimators by a simulation study.

2 Some Direct Integration Methods

Let the interval I = [a, b] be partitioned into n equal length intervals denoted by

Ii = [xi−1, xi ], i = 1, . . . , n where x0 = a and xi = xi−1 + h, where h = (b −
a)/n is the length of each interval. By using the direct Riemann–Stieltjes integration

method ([30]), we approximate the function f (x) with a function f̃ (x) and then use

the definition of the Riemann–Stieltjes integral. Similar to the case of rectangle and

trapezoidal rules for the Riemann integral, Xie et al. [31] distinguished between the

midpoint and mean value RS-integration method, and described these methods as

follows.

2.1 The Midpoint Rectangle RS-Integration

By the rectangle RS-integration method the function f (x) is approximated by its value

at the midpoint

xi−.5 = xi−1 + xi

2
,

of each interval. Then
n

∑

i=1

∫ xi

xi−1

f (x)dg(x) ≈
n

∑

i=1

f (xi−.5) (g (xi ) − g (xi−1)).

Numerical accuracy and convergence are demonstrated in [30].
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2.2 The Mean-Value Rectangle RS-Integration

Another method to approximate f (x) is to use the mean value of f (x) at each interval.

We approximate the function f (x) at the i th interval by the mean value of the endpoints

( f (xi ) + f (xi−1))/2. In this case, the Eq. (1.4) is approximated by

Qn =
n

∑

i=1

∫ xi

xi−1

(

f (xi−1) + f (xi )

2

)

dg(x)

=
n

∑

i=1

(

f (xi−1) + f (xi )

2

)

(g (xi ) − g (xi−1)). (2.1)

Since the mean value of f (x) at points xi and xi−1 is used in approximating f (x), we

call the mean value rectangle RS-integration method or the generalized trapezoidal

rule. For the Riemann integral, this method is usually called the trapezoidal rule since

it is equivalent to the approximating f (x) by a piecewise linear function. This is not

the case for Riemann–Stieltjes integral unless g(x) is a linear function.

This method is a simple method that gives satisfactory results and it has been used

by [3,26].

2.3 The Generalized Simpson Rule

Xie et al. [31] generalized other integration method to Riemann–Stieltjes equation (1.4)

which is called the generalized Simpson rule.

Let the interval I = [a, b] be divided into 2n equal parts of length and let h =
(b − a)/2n. Now the Eq. (1.4) approximated by

∫ b

a

f (x)dg(x) ≈ 4Q2n

3
− Qn

3
,

where Qn is given by the mean-value rectangle equation (2.1) with respect to n subin-

tervals of length (b − a)/n and Q2n is the rule (2.1) for 2n subintervals of length

(b − a)/2n. Then

∫ b

a

f (x)dg(x) ≈ 4

3

2n
∑

i=1

∫ xi

xi−1

(

f (xi−1) + f (xi )

2

)

(g (xi ) − g (xi−1))

−1

3

n
∑

i=1

(

f (x2i−2) + f (x2i )

2

)

(g (x2i ) − g (x2i−2))

= 1

6

∑

{(−3g (x2i−2)+4g (x2i−1)−g (x2i )) f (x2i−2)−4 (g (x2i−2)

−g (x2i )) f (x2i−1)+(g (x2i−2)−4g (x2i−1)+3g (x2i )) f (x2i )} ,

is considered as generalized Simpson rule.
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2.4 General Bounds on the Truncation Errors

Numerical results show that all the mention methods can be used successfully, see, e.g.,

[4,7,26,30]. In [3] some convergence results are presented and then [31] derived some

further bounds on the truncation errors of the method under very general assumptions.

They only assumed that g(x) is an increasing function which is the usual assumption

used for defining the Riemann–Stieltjes integral ([22], p. 122). The following theorems

have proved by [31].

Theorem 1 For the midpoint method, the global truncation error | ε | may be bounded

by

(h/2) sup
x∈I

| f ′(x)|(g(b) − g(a)),

assuming f (x) is continuously differentiable and g(x) is an increasing function.

Remark The convergence of this method is thus of order 1. As the number of intervals

n increases, the error will decrease at least as fast as 1/n.

Theorem 2 Under the same conditions as in Theorem 1, the global truncation error

may be bounded by

h sup
x∈I

| f ′(x)|(g(b) − g(a)),

for the mean value method.

Theorem 3 Under the same conditions as in Theorem 1, the global truncation error

| ε | for the generalized Simpson rule may be bounded by

2h sup
x∈I

| f ′(x)|(g(b) − g(a)).

3 Estimation of Entropy

Suppose X1, . . . , Xn are order statistics of a random sample of size n from an unknown

continuous distribution F with a probability density function f (x).We use the methods

discussed in previous section to estimate the entropy H( f ) of an unknown continuous

probability density function f. Using these methods the following approximations for

entropy can be derived.

(1) H( f ) = −
∫

log f (x)d F(x) ≈ −
n
∑

i=1

log f (xi ){F(xi ) − F(xi−1)} = H1,

(2) H( f ) ≈ −
n
∑

i=1

log f
(

xi +xi−1

2

)

{F(xi ) − F(xi−1)} = H2,
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(3) H( f ) ≈ −
n
∑

i=1

log f (xi−1)+log f (xi )

2
{F(xi ) − F(xi−1)} = H3,

(4) H( f ) ≈ 4Q2n

3
− Qn

3
= H4.

Now, we replace F(xi ) and f (xi ) with i/n (the empirical distribution function) and

f̂ (xi ) (the kernel density estimate), respectively. Therefore, we obtain

H1 = −1

n

n
∑

i=1

log f̂ (xi ),

H2 = −1

n

n
∑

i=1

log f̂

(

xi + xi−1

2

)

,

H3 = −1

n

n
∑

i=1

log f̂ (xi−1) + log f̂ (xi )

2
,

H4 = − 1

6n

n
∑

i=1

{

log f̂ (x2i−2) + 4 log f̂ (x2i−1) + log f̂ (x2i )

}

.

The kernel density function estimator is well-known and is defined by

f̂ (X i ) = 1

nh

n
∑

j=1

k

(

X i − X j

h

)

,

where h is a bandwidth and k is a kernel function which satisfies

∫ ∞

−∞
k(x)dx = 1.

Usually, k will be a symmetric probability density function (see, [24]).

Here, the kernel function is chosen the standard normal density function and the

bandwidth h is chosen the normal optimal smoothing formula, h = 1.06sn− 1
5 , where

s is the sample standard deviation.

Using Theorems 1–3, the global truncation error | ε | can be obtained as follows.

We have

f (x) = − log( f̂ (x)) and g(x) = Fn(x),

therefore,

M = sup
x∈I

| f ′(x)| = sup
x∈[x1, xn ]

∣

∣

∣

∣

∣

− f̂ ′(x)

f̂ (x)

∣

∣

∣

∣

∣

= sup
x∈[x1, xn ]

∣

∣

∣

∣

∣

∣

− 1

h

∑n
j=1 k′

(

x−x j

h

)

∑n
j=1 k

(

x−x j

h

)

∣

∣

∣

∣

∣

∣

.
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So, for the midpoint, mean value and generalized Simpson methods, the global trun-

cation error | ε | may is bounded by

xn − x1

2n
M

(

1 − 1

n

)

,
xn − x1

n
M

(

1 − 1

n

)

,
xn − x1

2n
M

(

1 − 1

n

)

,

respectively.

The scale of the random variable X has no effect on the accuracy of H1, H2, H3 or

H4 in estimating H( f ). The following theorem shows this fact. Similar results have

been obtained for HVmn and HEmn by [18] and [9], respectively.

Theorem 3.1 Let X1, . . . , Xn be a sequence of i.i.d. random variables with entropy

H X ( f ) and let Yi = cX i , i = 1, . . . , n, where c > 0. Let H X
1 and HY

1 be entropy

estimators for H X ( f ) and HY (g), respectively (here g is pdf of Y = cX). Then the

following properties hold.

(i) E(HY
1 ) = E(H X

1 ) + log c,

(ii) V ar(H X
1 ) = V ar(H X

1 ),

(iii) M SE(H X
1 ) = M SE(H X

1 ).

Proof We have

f̂ (cX i ) = 1

nhy

n
∑

j=1

k

(

cX i − cX j

hy

)

= 1

nchx

n
∑

j=1

k

(

cX i − cX j

chx

)

= f̂ (X i )

c
,

where hy = 1.06syn−1/5 = 1.06csx n− 1
5 = chx .

Therefore, HY
1 = H X

1 + log c, and the theorem is established.

The above theorem is hold for the other proposed estimators.

The following theorem establishes the consistency of estimators.

Theorem 3.2 Let C be the class of continuous densities with finite entropies and let

X1, . . . , Xn be a random sample from f ∈ C. If n → ∞, then

Hi
Pr.−→ H( f ) i = 1, . . . , 4.

Proof It is obvious by consistency of f̂ (x) and continuity of f̂ (x).

4 Simulation Study

A simulation study is carried out to analyze the behavior of the proposed entropy

estimators, Hi , i = 1, 2, 3, 4. The proposed estimators are compared with some

prominent estimators, namely Vasicek’s estimator [28], van Es’s estimator [27],

Ebrahimi et al.’s estimator [9] and Correa’s estimator [5]. For comparisons, we consider

normal, exponential and uniform distributions which are the same three distributions
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Table 1 Root of mean square error (and standard deviation) of estimators in estimate of entropy H( f ) for

standard normal distribution

n m RMSE (SD)

HVmn HVEmn HCmn HEmn H1 H2 H3 H4

5 2 0.994 0.509 0.793 0.665 0.457 0.511 0.501 0.553

(0.413) (0.452) (0.418) (0.424) (0.397) (0.405) (0.408) (0.413)

10 3 0.618 0.366 0.470 0.402 0.287 0.317 0.318 0.327

(0.264) (0.283) (0.271) (0.265) (0.256) (0.254) (0.254) (0.259)

15 4 0.474 0.318 0.348 0.301 0.221 0.250 0.249 0.278

(0.211) (0.220) (0.213) (0.211) (0.186) (0.200) (0.201) (0.207)

20 4 0.373 0.276 0.265 0.247 0.186 0.208 0.215 0.205

(0.178) (0.185) (0.182) (0.178) (0.170) (0.168) (0.174) (0.171)

30 5 0.282 0.243 0.194 0.186 0.149 0.169 0.168 0.163

(0.144) (0.148) (0.146) (0.142) (0.136) (0.138) (0.136) (0.138)

50 7 0.198 0.212 0.135 0.128 0.110 0.125 0.126 0.120

(0.109) (0.110) (0.112) (0.109) (0.102) (0.103) (0.104) (0.105)

Table 2 Root of mean square error (and standard deviation) of estimators in estimate of entropy H( f ) for

exponential distribution with mean one

n m RMSE (SD)

HVmn HVEmn HCmn HEmn H1 H2 H3 H4

5 2 0.930 0.596 0.743 0.652 0.569 0.583 0.577 0.592

(0.559) (0.586) (0.554) (0.552) (0.569) (0.578) (0.572) (0.563)

10 3 0.570 0.392 0.435 0.401 0.390 0.386 0.378 0.376

(0.360) (0.373) (0.361) (0.358) (0.378) (0.381) (0.375) (0.375)

15 4 0.421 0.310 0.328 0.310 0.328 0.325 0.313 0.297

(0.282) (0.290) (0.290) (0.290) (0.301) (0.306) (0.302) (0.297)

20 4 0.356 0.274 0.272 0.261 0.294 0.287 0.276 0.271

(0.242) (0.250) (0.247) (0.242) (0.259) (0.261) (0.258) (0.256)

30 5 0.276 0.227 0.208 0.203 0.256 0.253 0.238 0.232

(0.198) (0.201) (0.197) (0.193) (0.204) (0.211) (0.205) (0.203)

50 7 0.194 0.179 0.155 0.151 0.223 0.218 0.204 0.202

(0.148) (0.149) (0.152) (0.148) (0.159) (0.162) (0.157) (0.155)

considered in [5]. For each sample size 10,000 samples were generated and the RMSEs

of the estimators are computed.

For competitor estimators, we chose value of m using the following heuristic for-

mula (see [12]):

m = [
√

n + 0.5].
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Table 3 Root of mean square error (and standard deviation) of estimators in estimate of entropy H( f ) for

uniform distribution on (0, 1)

n m RMSE (SD)

HVmn HVEmn HCmn HEmn H1 H2 H3 H4

5 2 0.774 0.407 0.566 0.456 0.326 0.343 0.343 0.382

(0.346) (0.407) (0.336) (0.343) (0.326) (0.336) (0.338) (0.359)

10 3 0.455 0.216 0.295 0.234 0.186 0.185 0.187 0.191

(0.166) (0.216) (0.169) (0.167) (0.172) (0.183) (0.184) (0.188)

15 4 0.343 0.155 0.208 0.160 0.153 0.146 0.146 0.148

(0.110) (0.155) (0.112) (0.111) (0.125) (0.134) (0.133) (0.142)

20 4 0.274 0.121 0.157 0.135 0.139 0.129 0.130 0.134

(0.087) (0.121) (0.088) (0.087) (0.101) (0.108) (0.108) (0.106)

30 5 0.210 0.086 0.110 0.097 0.126 0.115 0.116 0.122

(0.059) (0.086) (0.061) (0.060) (0.075) (0.079) (0.078) (0.079)

50 7 0.156 0.058 0.076 0.063 0.115 0.107 0.107 0.112

(0.037) (0.058) (0.039) (0.037) (0.052) (0.055) (0.055) (0.054)

Tables 1, 2 and 3 present the RMSE values (and standard deviation) of the eight

estimators at different sample size.

We can see from Tables 1, 2 and 3 that the proposed estimators compare favorably

with their competitors. Also, note that the proposed estimators do not depend on m.

In general, the proposed estimators have a good performance for small sample sizes.

5 Conclusion

In this paper, we first have described some direct integration methods and the bounds

on the errors have been given. We next have introduced some estimators of entropy

of a continuous random variable using numerical methods and the bounds on the

errors of estimators are obtained. We then have compared the proposed estimators

with some prominent existing estimators and observed that for small sample sizes the

new estimators behave better than the competitors. The advantage of the proposed

estimators were the fact that they do not depend on the window size m, unlike the

competitor estimators.
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