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Abstract. Topological entropy há(T) is defined for a uniformly continuous map on
a metric space. General statements are proved about this entropy, and it is calculated
for affine maps of Lie groups and certain homogeneous spaces. We compare hd(T)
with measure theoretic entropy h(T); in particular h(T) = hd(T) for Haar measure and
affine maps Ton compact metrizable groups. A particular case of this yields the well-
known formula for h(T) when T is a toral automorphism.

Introduction. We shall study topological entropy, concentrating on its relation
to measure theoretic entropy and algebraic examples. Our topological entropy
hd(T) is defined (in §2) for a uniformly continuous map F on a metric space (X, d).
In [1] a topological entropy h(T) was defined for a continuous map on a compact
topological space; if the space is compact metric then h(T)—hd(T). An essential
part of this paper is the computation of hd(T) for certain maps on noncompact
spaces.

Suppose p is a Borel measure on p(X) = l, and p is F-invariant (i.e. p(T~x(A))
=p(A) for every Borel set A). One can then define a measure theoretic entropy
hu(T) as follows: Call a={Au ..., Ar} a (finite) measurable partition of A" if the A¡
are disjoint measurable subsets of X covering X. Now set

Hja) =     2     -4mc\ T-kAik) iogp(mn t-*a\

Then the limit hß(T, a) = limm_00 (\/m)HJa) exists and one defines

hu(T) = sup {hu(T, a) : a is a finite measurable partition of X}.

(See [6] for details about measure theoretic entropy.)
Two points in X are separated by a = {A±,..., Ar} provided they lie in different

^i's. We shall use the following fact to compute entropy :
Fact (see [6]). Let {ak}k = 0 be a sequence of measurable partitions of X satisfying

the following property: If x, ye X are distinct there is an n(x, y) such that ak
separates x and y whenever k S: n(x, y). Then hu(f) = supfc h(T, ak).

As is generally known, if T: G -> G is a surjective endomorphism of a compact
metrizable group, then F preserves Haar measure p. For such a F we show that the
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two entropies we have are equal (Theorem 9) : hß(T) = hd(T). For the case where G
is a Lie group we show that F and its derivative at the identity have the same
topological entropy (Corollary 11). We then calculate the topological entropy of a
linear map in terms of its eigenvalues (Theorem 15). This series of results yields the
formula for the entropy of an endomorphism (in fact of any affine map) of a Lie
group, a formula already well known for tori (see [7], [8], [9], [10] and [12]). Finally
we prove the formula for an affine map of a homogeneous space G/Y where T is a
uniform discrete subgroup of G (Theorem 20 and the remark following it).

Other results of some interest are noted along the way. This paper benefited
considerably from conversations with C. Bones, W. Parry and P. Walters.

1. Topological entropy. Let (X, d) he a metric space and T: X ^- X he uni-
formly continuous (abbreviated F e UC (X, d)). A set £c X is (n, e)-separated if
for any distinct x, ye E there is aj such that 0 ^ j< n and d(T'(x), T'(y)) >e. A set
F (n, e)-spans another set K (with respect to F) provided that for each x e K there
is a y e F for which d(T*(x), Tj(y)) ^ e for all 0 ¿j< n.

For a compact set K<=- X let rn(e, A') be the smallest cardinality of any set F
which (n, e)-spans K (with respect to F) and let sn(e, K) denote the largest car-
dinality of any (n, e)-separated set E contained in K. We write rn(e, K, T) or
s„(e, K, T) if we wish to stress the dependence on F. Finally define

fT(e, K) = lim sup - log rje, K)
n-» oo       n

and
sT(e, K) = lim sup - log Sn(e, K).

n-* oo      n

Lemma 1. (i) rn(e, K) ^ sn(<¡, K) ^ rn(^e, K)<co.
(ii) For ej < s2, rT(sj, K) ^ fT(e2, K) and sT(ej, K) ^ sT(e2, K).

Proof. A maximal (n, e)-separated subset of K(n, e)-spans K; so rn(e, K) ¡S sn(e, K).
Suppose £c K is (n, e)-separated and F (n, ^e)-spans K; by the definition of span-
ning, for each xe Kwe can pick a g(x) e F such that d(T'(x), Tj(g(x))) ¿ \e for all
0^j<n. If g(x)=g(y), then d(T'(x), T'(y))èe for all 0új<n; since E is (n, £>
separated, it follows that g is injective on E. Hence card Fäcard E and rn(%e, K)
^sn(e, K). As Te UC (X, d) there is a 8>0 such that d(T'(x), T'(y))<ie for all
0i£/<n whenever d(x,y)<8; then rn(\e, K) is at most the number of S-balls
needed to cover K (finite as K is compact).

(ii) is trivial.
By the lemma the following definition makes sense :
Definition 2. For Fe UC (X, d) and K<= X compact, set

hd(T, K) = lim rTti(e, K) = lim sTtá(s, K)
«-♦o «-»o

and
hd(T) =    sup    hd(T, K).

K compact
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Remark. In the above definition we stress the dependence on the metric d used.
Notice that hd(T, TO^max¡ hd(T, Kt) if K^ Ki u • ■ • u Km. If X is compact, then
hd(T) = hd(T, X). Also, in computing hd(T), one need only consider K with small
diameter.

Metrics d and cF on X are uniformly equivalent if idx: (X, d) -*• (X, d') and
idx : (X, d') -r*- (X, d) are uniformly continuous maps of metric spaces. In this case
FcUC (X, d) if and only if Te UC (X, d').

Proposition 3. Ifdandd' are uniformly equivalent metrics on Xand T e UC (X, d),
then hd(T) = hd.(T).

Proof. Given ej > 0, choose e2 ̂  e3 > 0 such that cT(x, y) ^ ex whenever d'(x, y) ^ e2,
and d'(x,y)-¿e2 whenever d(x,y)^e3. Let K<=X be compact. Then an (n, e2)-
spanning set for K with respect to d' is an (n, £i)-spanning set for K with respect to d.
Hence

rn(eu K, d) ^ rn(e2, K, d').

Similarly
rn(e2, K, d') ^ rn(s3, K, d).

Letting n-+ao,

frita. K) Ú fr.a (e2, K) S FT,d(e3, K).
Letting si -> 0,

hd(T, K) = hd(T, K).

Remark. When X is compact, all equivalent metrics on X are uniformly
equivalent; also any continuous F: X^- Xis uniformly continuous. The common
value in this case of all the hd(Tys is just the topological entropy defined in [1] (for
a proof, see [2]). For F: ßn ->■ ß" a linear map, we shall always take the metric cT to
be one arising from a norm; hd(T) is then independent of the norm used.

Proposition 4. (i) hd(Tm)=mhd(T) for any Te UC (X, d) and any m>0.
(ii) Suppose Tx e UC (Xx, cTi) and T2 e UC (X2, d2). Define d on Xx x X2 by

d((x'i, x2), (yu j2)) = max {a\(xi, yx), d2(x2, y2)}. Then hd(Ti x T2)=hdi(Ti)+hd2(T2).

Remark. For X compact, [1] has a proof of (i) and [4] of (ii).
Proof, (i) Clearly rn(e, K,Tm)^rmn(e, K,T); it follows that hd(Tm)-¿mhd(T).

Given e>0, choose S>0 (since Fe UC (X, d)) such that d(T'(x), T'(y))^e for all
0^j<m whenever d(x,y)^8. One sees that an (n, S)-spanning set for K with
respect to Fm is automatically an (mn, e)-spanning set for K with respect to T.
Hence rmn(e, K, T)írn(8, K, Tm); we get mhd(T)^hd(Tm).

(ii) If F( (i= 1, 2) is an (n, e)-spanning set for Kt (compact subset of X¡), then
Fi x F2 is an (n, e)-spanning set for Kx x K2 with respect to Fi x T2. Thus
rn(e, Ki x K2, Ti x F2) ^ rn(e, Klt Tx) + rn(e, K2, T2) and so hd(Ti x T2, Kx x K2) ^
hdl(Tx,Kx) + hd2(T2,K2).
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If Fi<=Ki is an (n, e)-separated set with respect to T¡, then Fi xF2<=R~j xK2 is
(n, e)-separated with respect to Fi x T2. Hence sn(e, Kj x K2, Tj x F2) S: sje, Kj, Tj)
+sn(e, K2, T2) and hd(Tj x F2, K± x J^ = *fc(Ti. Kj) + hd2(T2, K2).

Let 77j : Xi x X2 -> X¡ be the projection map. If ATc A\ x X2 is compact, then
A'i=7ri(A') and K2=tr2iK) are compact and K<=KjxK2. It follows that

hd(Tj x T'a) = sup A^ x F2, #) =   sup  hd(Tj x F2, #1 x K2)
K Kj.K2

= sup Adl(Fi, A-J + sup hd2(T2, K2) = hdl(Tj) + hd2(T2).
Kj K%

2. Measures and groups. Standing hypothesis. For the rest of the paper (X, d)
will always be a locally compact metric space.

We shall now let measures enter the scene. The major result is due to L.
Goodwyn [3].

Theorem (Goodwyn). Let (X, d) be a compact metric space, T: X-^- X con-
tinuous and p a T-invariant Borel measure on X with p.(X) = 1. FAen A„(F) ^ hd(T).

We shall give a proof which only works for X finite dimensional ; our paper will
then be self-contained for such X. X has covering dimension at most m if every open
cover jé of X has a refinement 8$ such that each point of X is in at most m+\
members of SS. An zn-manifold satisfies this condition [5].

Proposition 5. Goodwyn's theorem is true for X having covering dimension at
most m.

Proof. Let SSe = {BX,..., Br} be an open cover of M with diam fi¡ less than e and
each point of Xinatmostw-f 1 members of SSe. Let cte = {Aj,..., AT} he a measurable
partition of X with Ä^Bi. For each xeXchoose an open neighborhood Cx of x
intersecting at most m +1 A^s (we can avoid At when x $ Bt). Let <€ = {CXi,..., Cx¡}
cover X. Let 8 > 0 be a Lebesgue number for t€, i.e. for each yeX there is a
C(y) e <6 such that B6(y) = {x e X : d(x, y)^o}cz C(y).

Let Sn he an (n, S)-spanning set for X with respect to F. Let Tn = {(i0,..., z'„_i):
yeSn such that Ah n C(Fi(>'))# 0 for all 0^/<n}. Now suppose xe^4(z'0,..., z'n_i)
= C\l=o T-^^. Pick yeSn so that diT'ix), T\y))Ú S for all 0^/<n. Then
T'ix) e Ah n CiT'iy)) and so (z0,..., i„ _ a) e Fn. Let £/„ = {(i0,..., i„ -1) :
^(z'0,..., z'n_i)# 0}; Un<=Tn. As C(FJ'(j)) can intersect at most m+\ Aks,

card Fn ^ (w+ l)n card 5n.
Hence

card [/„ ^ card Fn Ú r„(8, X, F)(m+1)B.

Now it is a basic fact that (see [6, p. 12] for example) that //„(«,,) = log card E/„.
Hence

A„(F, «,) = lim - Hn{at) Ú lim sup - log (m+ 1)%(S, X)
n-*<x> fí n-+oo        /Î

^ log(zn+l) + fr(3, X) ^ log(m+l) + Ad(F).
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Letting e -> 0, we get

hu(T) = sup hu(T,ae) ^ log (m +1)+hd(T).
E

Applying this inequality to Tn and using Proposition 4(i) :

K(T) = \hJ¡D S I log (m +1)+lhd(T") = \log(m + \)+hd(T).
"I fl il it

Letting n -> oo, hu(T) ^ hd(T).
Definition 6. Suppose Te\JC(X,d). Set Dn(x, e, T) = fykzl T~kBe(Tk(x))

where Be(y) = {ze X : d(z,y)<e}. A Borel measure p on X is T-homogeneous
provided that

(i) p.(K) < oo for K<= X compact,
(ii) p(K) > 0 for some compact K.

(iii) For each e>0 there exist 8>0 and c>0 such that

p(Dn(y, 8, T)) Ú cp(Dn(x, e, T))

for all n S: 0 and all x,y e X.
For such a p. we define

k(p, T) = lim lim sup-- log p(Dn(y, e, T)).
e-»0       n-»oo n

By (iii) this does not depend on the y used.
Remark. One easily sees that p. being F-homogeneous and k(p, T) depend only

on the uniform equivalence class of ci.

Proposition 7. Suppose T e UC (K, d) and p. is T-homogeneous. Then hd(T)
= k(p, T). If X is compact, p(X)—\ and p is T-invariant as well as T-homogeneous,
then hu(T) = k(p, T).

Proof. Consider K<= X compact. Using (i) and local compactness find a neighbor-
hood U of K with p(U)<co. Consider e>0 so small that Be(K)^ U. If EcK is
(«, e)-separated, then one checks from the definitions that {JxeE Dn(x, \e, F)c £/ is
a disjoint union. Choose S, c so that p(Dn(y, 8, T)) ^ cp(Dn(x, \e, T)) for all x, y.
Then p-(Dn(y, 8, T))sn(e, K)^cp(U) and so

sT(e, K) ^ lim sup-- log p(Dn(y, 8, T)).
n-»co       n

Letting e -+ 0, hd(T, K)èk(p, T). Hence hd(T)^k(p, T).
Now consider F with p(K)>0. If F (n, S)-spans K, then \JxeF Dn(x, 28, T)=>K.

Given e>0, choose S>0 and c>0 so that p(Dn(x, 28, T))^cp.(Dn(y, e, T)) for all
x, y and all n ̂  0. Then

cp(Dn(y, e, T))rn(8, K) 5; p(K) > 0
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and we get

rT(8, K) ^ lim sup -I \ogp.(Dn(y, », T)).

Letting « -> 0, Ad(F, K)^k(ji, T). Hence hdCT) = kip, T).
Now suppose A' is compact and the additional assumptions on /* of the second

statement hold. By Goodwyn's theorem

AU(F) =g Ad(F) = kip,, T).

Let e>0; choose 8 and c with piDnix, 8, F))^cpiDniy, e, T)) for all x, y and all
n ä 0. Let a={^4i,..., Ar} be a measurable partition of A with diam ,4¡ < S for all z.
If x e Aii0,..., in_j)=n% = oT-kAik, then /i(z0,..., in-j)^Dnix, S, F) and so
p(A(i0,..., in-j))úcp(Dn(y, e, T)). It follows that (see the introduction)

Atf(F) ä A„(7» £ lim sup-l-logp(Dn(y,e,T)).
n-*oo n

Letting s ̂  0, A„(F) ̂  k(p, T).
Example 8. Our prime example is X=G, a locally compact metrizable group. G

has a right invariant metric d (see [14, p. 34]) and a right Haar measure p. For
geG define Rg: G -> G by /?<,(*) = xg. We shall consider F of the form T=Rg° A
where geG and A is a continuous endomorphism of G. Such F include endo-
morphisms (g = e) and left translations (A(x)=gxg~1). One easily sees that such a
F is uniformly continuous.

p is F-homogeneous and k(p, T) = k(p, A).
Proof. It is enough to show that Dn(x, e, T) = Dn(e, e, A)x since p. is a right

Haar measure. We prove T'kBs(Tk(x)) = (A'kBe(e))x by induction. For A = 0 this
is obvious.

T-* + »Be(Tk + 1(x)) = T-1T-kB£(Tk(T(x))) = T~1[(A-kBe(e))T(x)]

= A-'o Rg-i[(A-kBE(e))A(x)g] = A-1[(A'kBe(e))A(x)]

= (A-<k + 1)Bs(e))x

where we use in the last step the fact that, since A is an endomorphism, A " 1(CA(x))
= A~ \C)x for any Cc G. Intersecting over 0 £ k < n we have what we desired.

Theorem 9. Suppose G is a compact metrizable group, A a surjective endo-
morphism, and p normalized right Haar measure. Then

hu(Rg o A) = hu(A) = kip, T) = hdiA).

Proof. In the above circumstance p is Rg ° A- and ^-invariant. Apply
Proposition 7 to Example 8.

Remark. hßiA) = hdiA) was proved for tori by K. Berg [12] and suspected in
general [1].
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Proposition 10. Suppose T:N^N, S: M'-*• M and it: N-*■ M=tt(N) are
differentiable maps of manifolds with it ° T=S ° 7r. Let d and d' be metrics on N and
M respectively. Suppose that p, is a (positive) smooth measure on N which is T
homogeneous (with respect to d) and p is a (positive) smooth measure which is S-
homogeneous (with respect to d'). Finally assume xeN with T(x) = x andtt\U is a
diffeomorphism of some neighborhood U of x onto a neighborhood V of tt(x). Then
hd(T) = k(n, T) = k(p', S) = hd.(S).

Proof. By Proposition 7 we need to show k(p, T) = k(p, S) only. Choose
tVi<= U a neighborhood of x such that F(t7i)<= U and t7xc jj. Consider e>0 with
Bs(x)<= Ux- There are a(e)>0 and b(e)>0 such that

Then
Dn(tr(x), a(e), S) C nDn(x, è,T)<= Dn(tr(x), b(e), S).

Since 7r| Z7 is a diffeomorphism, p and p (positive) smooth measures, and Ux a
compact subset of U, there are Cx, C2 > 0 such that for any F<= [/i we have
CxH-'(^(E))^p(E)SC2p'(tt(E)). It follows that

lim sup-- log p'(Dn(iT(x), a(e), S)) ^ lim sup-- log p(Dn(x, e, T))
n-*oo IÏ n-*oo fl

^ lim sup-- log p'(Dn(7T(x), b(e), S)).
n-* oo n

Now we can take a(e) -> 0 and b(e) -> 0 as e -> 0; thus

k(p', S) ^ k(p, T) ^ k(p', S).
Corollary 11. If A is an endomorphism of a Lie group G and d is a right in-

variant metric, then

hd(Rg°A) = hd(A) = hd(dA\TeG).

dA
Proof. TeG > TeG

exp
'       A

exp

+ G

commutes and satisfies the hypotheses, where p and p are right Haar measures (by
Example 8). See [16] for definitions.

3. Linear maps.

Proposition 12. Let T: Mm -> Mm be a differentiable map of an m-dimensional
Riemannian manifold. Then

hd(T) ^ max (o, m log sup \\dT\TxM
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Proof, d of course is the metric determined by the Riemannian metric. Let
a = supxeM ||c<T|F*M||. Ifa = oo, there is nothing to prove. Suppose a < oo and K<=- M
is compact. Let fi, ■ ■ .,fi: B3(0)<=Rm -> M he differentiable maps such that the
fi(Bj(Q)) cover K and choose A > 0 such that

d(fi(x),fi(y))ZAd(x,y)
for all x, y e B2(0) and all 1 ̂  i ̂  r. If a ^ 1, then F never expands distances ; in this
case an (1, e)-spanning set is an (n, e)-spanning set and we get Ad(F) = 0. Thus we
may assume a> 1.

For each 0< 8^1 let

F(3)={(/i8,...,rm8):r(EZ, |r,8| < 2}.

Then card F(S)^(5/8)m and there is a constant B>0 (depending on the metric d
used for Rm) such that for each y e Bj(0) there is an x e E(8) with d(x, y) s; B8.
(For better constructions than this see [11].) Now F(8) = (JiáiSr/iF(S) is clearly
an (n, aM58)-spanning set for K (with respect to T) and card F(8) ^ (5/S)"V.
Hence, considering S = e/anAB,

rn(e, K) = iSanAB/e)mr = [(5AB/e)mr]anm

and so rT(e, K)^m log a. Varying e and K, hd(T) ^ m log a.
We recover a result due to Kouchnirenko [17]:

Corollary 13. If T: Mm -*■ Mm is a differentiable map of a compact manifold
and p. is a T-invariant Borel measure with p(M)=I, then

hß(T) è max (o, m log sup ||¿zT|FxM|| j.

Proof. Use Goodwyn's theorem.

Corollary 14. IfT:Rm^- Rm is a linear map, then

hd(T) ^ max{0,nlog|A|}

where A is an eigenvalue of T with maximum absolute value.

Proof. By Propositions 12 and 4(i)

ha(T) = l- Ad(F«) Ik \ max {0, m log |7*|)

^ max {0, m log ||Fn||1,n}.

But ||Fn||1/n -*■ |A| and n -> oo is a well-known theorem in analysis (see [18]).

Theorem 15. IfT: Rm^ Rm is a linear map, then

Ad(F) =   2   log |A,|
|Zlil>l

vvAere Alf..., Am are the eigenvalues of T.
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Proof. By linear algebra we can decompose F=FiX-xFs and Rm =
Ex x • • • x Fs where the Fy are linear subspaces of ßm with T(E})^Et, Tj = T\Et, and
all the eigenvalues of T¡ have the same absolute value a¡. Then

2   log [Ail =   J dim F, log a,.
|A¡|>1 aj>l

By Proposition 4(ii) and Corollary 14 we need only to show that, for a¡> 1,

Ad(F,) ̂  dim E, log a, = log |det T,\.

Letting p be a Haar measure on E¡,

p(Dn(0, e, TfO Ú KTfnBe(0)) = n(Be(0))l\det T,\\
Hence

^F^^logldetF.I.
By Proposition 7 and Example 8, p is F^-homogeneous and hd(Tj) = k(p, Tf). We
are done.

Corollary 16. If A is an endomorphism of a Lie group G and d is a right in-
variant metric, then

hd(A)=   2   log lAil
|A,|>1

where Al9..., Am are the eigenvalues of dA\TeG.

Proof. Corollary 11 and Theorem 15.
Remark. With Theorem 9 the above result gives the formula for hu(Rg ° A)

when A is a surjective endomorphism of a compact Lie group G. For G a torus
this formula has a long history (see the introduction).

4. Quotients.

Theorem 17. Let (X,d), (Y,e) be compact metric spaces and T:X-^-X,
S: Y-> Y, it: X-+ Y (surjective) be continuous maps with tt ° T=S° it. Then

hd(T) ^ he(S) + suphd(T,7T-x(y)).
yeY

Proof. Clearly we may assume that a = supyeYhd(T,ir~1(y))<co. Consider
e > 0. Let a > 0 and for each yeY choose m(y) with

a + a ^ hd(T,7T-\y))+a Z j^logr^^TT-^y)).

Let Ey be an (m(y), e)-spanning set with the minimum number of members. Then
Uy = UzeEy Ancirtfo 2e. T) is an open neighborhood of n'1^).

Now

(X\Uy)r> fl "-1(ByTy))= 0.
V>0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



410 RUFUS BO WEN [January

By the finite intersection property for compact sets, there is a Wy = By(y) for which
Uy'^-n~1iWy). Let Wyi,..., WyT cover Y and S be a Lebesgue number for Y for
this open cover. Let En be an (n, 8)-spanning set for Y (with respect to S) with the
minimum number of elements. For xeEn and 0fíj<n pick c/x) from among
ylt..., yT such that

J4GS'(x)) = {w : eiw, S%x)) ¿S}c WCjix).

Define recursively r0(x)=0 and zs+i(x) = ís(x) + w(c(¡sJt:)(x)) until one gets a
tq+jix)~àn; set q(x)=q. For x e En and Zj. e ECtiucyM, ...,zqe F%(je)U) define

V(x; zj,..., zq) = {ueX: d(Tt+t^(u), T\zs)) < 2e

for all 0 ^ t < m(ct¿x)(x)) and 1 - s ¿ q(x)}.

Then \Jx,Zl.ZqM V(x; Zj,..., zq) = X and Fn V(x; Zj,..., zq) can have at most
one element when F is an (n, 4e)-separated set with respect to F.

For x e En the number of permissible (zl5..., zqix)) is

<;
Nx = Y~[ fetaMMCSüC«» T_1(Cts(X)W))-

s = 0

Let M=max {nz(_Vi), • • •. ™(}V)}- Then

log/Y* ^   Y log/-m(C(l<ät)(Ä))(e,7r-1(ct,w)(x)))
3 = 0

Q

= (« + «) 2 »(*«*>(*)) ^ (a + «)(« + M)
s=0

and Arx^e(a+aXn+M). By an observation we made above

sni4e, X, T) Ú card Ene<a+aXn + m

and  so sTi4e, X)^rsi8, Y) + a + a^heiS) + a + a.  But  a>0 was  arbitrary;  let
•Wo.

Corollary 18. Lei (X, í/), (T, e) Ae compact metric spaces and T: X ^ X and
tt: X-+ Y be continuous with n o F=7r. FAen

Ad(F) = supAd(F|7r-1(>')).
yeY

Proof. Theorem 17 gives an inequality in one direction since A„(idy) = 0. The
reverse inequality is obvious.

Remark. The above corollary answers a conjecture of [1]. R. Ellis and H.
Keynes helped to formulate the statement of Theorem 17. H. Keynes [15] contains
Theorem 17 for the case of an isometric extension.

Let iX, d), iG, d), and ( Y, d) he compact metric spaces. Assume there are
continuous maps -n: X^ Y and P: Xx G -> X (we write P(x, g)=xg) such that:

(1) -it is surjective,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] ENTROPY FOR GROUP ENDOMORPHISMS 411

(2) 7r-1(7r(x)) = xG, and
(3) xg=xg' only when g=g'.
Suppose F: X-^ X, S: F-> Y, and r;G->G are continuous maps so that

S°tt=ttoT and T(xg) = T(x)r(g). Then we say F is a (right) (G, r)-extension of S.
(Usually G would be a group and t an automorphism.)

Theorem 19. In the above situation hd(T)=he(S)+hd(r).

Proof. We first show that hd(T, *-1C#)£Ai(t)> Choose z e TT~\y) and £>0. As
(x, g) -> xg is uniformly continuous choose 8 > 0 such that d(xg, xg') ^ s whenever
<^(iT, g') ^ S. If F„ (n, S)-spans G with respect to t, then zFn (n, e)-spans ■rr~1(y) with
respect to F. For if ci(Tfc(g), Tk(g'))^ 8, then

d(Tk(zg), Tk(zg')) = d(Tk(z)rk(g), Tk(z)rk(g')) ^ e.

Thus rn(e, Tt-^y), T)èrn(8, G, t) and we get hd(T, TT-\y))^hd(r). By Theorem 17,
hd(T)ihe(S) + hd(r).

Let e > 0. Choose S > 0 so that
(i) d(n(x), tt(z)) ̂  £ when d(x, z)^8 and

(ii) d(xg, xg') > 8 when xeX and d(g, g') > e.
By uniform continuity (i) holds for sufficiently small S. If (ii) did not hold for

some small 8, then we would have xne X and gn,g'neG with d(gn,g'n)>e but
d(xngn, xngn) -> 0. Choosing subsequences we may suppose gn-*g, gn~*-g' and
xn -*■ x. Then d(xg, xg') = 0 but d(g, g') 3: e > 0 ; this contradicts condition (3) above.

Suppose Gn<=G is (n, e)-separated (w.r.t. t) and Fn<= F is (n, £)-separated
(w.r.t. 5). Choose Xn<=X with tt a bijection from Xn to F„. We claim XnGn is
(«, S)-separated (w.r.t. F). Consider xg^x'g' from XnGn. If x^x', then 7r(x)#7r(x')
are elements of Yn and so there is a Ä: for which 0^k<n and e(irTk(xg), trTk(x'g'))
= e(Sktr(x), Sk7r(x'))>e. By (i) we have d(TK(xg),Tk(x'g'))>8. We need to con-
sider now x = x', g#g'. There is then a 0^k<n with d(rk(g), rk(g'))>e. By (ii) we
have

d(Tk(xg), Tk(xg')) = d(Tk(x)rk(g), Tk(x)rk(g')) > 8.

Since XnGn is (n, S)-separated,

sn(8, X, T) è S*(ft T, 5K(£, G, r).

It follows that hd(T)^he(S) + hd(r) and the theorem is proved.
Let G be a locally compact metrizable group with right invariant metric d and

right Haar measure p. Suppose T is a uniform discrete subgroup of G, i.e. Y is
discrete and G/Y is compact. Assume A is an endomorphism of G with ^4(r)<=r
and g e G; then T(x)=gA(x) induces a map S on G/Y by S(xY)=gA(x)Y. We have
S o ir = 7T o T where 7r(x) = xr. One can define a measure ¿i* on G/Y by requiring
P*(tt(E)) = p(E) whenever E<=G is a measurable set and v is one-to-one on E (this
definition works because of the right invariance of p and the discreteness of Y).
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Theorem 20. p.* is S-homogeneous and k(p*, S)=k(p, T).

Proof. We define the metric on (7/r by

d(xY, yY) = inf d(x, yh).
iier

(This is indeed a metric [14, p. 36].)
As T is discrete, Nn Y = {e} for some neighborhood N of e. Consider xeG.

There is a 8>0 such that x~1Biô(e)x n Y = {e}. We claim that if y, z e Bô(x)
= Bö(e)x, then d(yY, xY) = d(x, y). Clearly d(yY, xY) ̂  d(y, z) ; suppose d(y, zh)
á d( v, z) < 28 for some A e Y, A # e. Then

d(x,xh) ^ d(x,y) + d(y,zh)+d(zh,xh)
< 8 + 28 + 8 = 48.

Hence xh e Bi6(e)x and A e x_12?4d(e)x, a contradiction.
If 6?(xr, jT) < 8, then ¿(x, j/z) < 8 for some A e Y and jT =jAr e 7r5d(x). Hence

^^¿(x) is an isometry of B6(x) onto Bó(xY). The same 8 works for xh; for if

A' e(xh)-1Blö(e)(xh)n Y

and A' # e, then
AA'A^Ex-^/Me^nT

and AA'A_1^e. Thus, for each xr e G/Y, there is a 8 = 8(xr)>0 such that -n maps
B6(xh) isometrically onto Bö(xY) for each A e T.

As G/Y is compact, let BâlXir)(xjY),..., 5ó(^rr)(xrr) cover G/Y and let e be a
Lebesgue number for this cover. Then, for every y e G,n maps Be(y) isometrically
onto BeiyY).

Consider a>0 so small that a<e and TBa(y)<^Bs(T(y)) for all y e G (uniform
continuity). We claim that

TtDn(y, a, T) = Dn(yY, a, S).

This is clearly true for n = 0. Suppose it is true for n — 1 ̂  0. If z e Dn(y, a, T), then
d(Tk(z), Tk(y)) <a<efor0^k<n,andso d(Sk(zY), Sk(yY)) = d(Tk(z)Y, Tk(y)Y) < a ;
hence zr e Dn(yT, a, S) and nDn(y, a, T)<=-Dn(yT, «, S). Consider

zr e Dn(yY, a, S)<=Dn-j(yY, a, S).

By inductive hypothesis, zhe Dn_j(y,a,T) for some A e Y. We claim that
zA e Dn(y, a, T); otherwise d(Tn-2(zh), Tn-2(y))<a but d(Tn-1(zh), Tn-X(y))^a.
In this case, Tn~1(zh) e Bs(Tn~1(y)) (by the choice of a) and, since -n is an isometry
on B^T»-1^)),

d(Sn-x(zY), Sn~1(yY)) = d(Tn-1(zh), Tn-\y)) ^ a.

This contradicts zr e Dn(yY, a, S). Thus zr e nDn(y, a, T) and we have shown
that Dn(yY, «, S) = -nDn(y, «, F).
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We have u-*(Dn(yY, «, S)) = p(Dn(y, a, T)). Now

F(x) = gA(x) = (gA(x)g-1)g = i?9o(Adgo A)(x)

falls under Example 8 in §2. Hence p is F-homogeneous. It follows that p* is S-
homogeneous and k(p*, S) = k(p, T).

Remark. For the above case it of course follows that hd(S)=hd(T); this can be
generalized to (uniform) isometric coverings without using any measures. The
statement of Theorem 20 comes from a suggestion of W. Parry. In [19] Parry has a
formula for hu,(S) in the nilmanifold case. This is obtained here for G any Lie
group by Theorems 9 and 20 and Corollary 16.

5. Flows.   In this section we verify a conjecture of [1].
Definition. A uniformly continuous flow on (X, d) is a family of maps

{<pt : 1^ X/t^O} with cps+t = cps o <pt and such that for any r0 >0 and £>0 there is
a 8 > 0 for which d(cpt(x), cpt(y)) < e whenever 0 ;£ 15i t0 and cT(x, y) < 8.

Proposition 21. In the above situation hd(cpt) = thd(cpx) for all t>0.

Proof. We show that hd(cpt) ̂ (t/s)hd(cps) for any s, t>0. Given £ > 0 choose 8 > 0
such that d(cpr(x), <pr(y)) < £ for all 0 ^ r ^ s whenever d(x, y) < 8. Consider K com-
pact. If F is an («, 8)-spanning set for K with respect to <ps, then E (m, fi)-spans K
with respect to <p( whenever mt^ns (this is analogous to the proof of 4(i)). Hence

rm(e, K, cpt) ^ r[mtis] + i(S, K, cps),

r„t(e, K) ^ r,.(8, K) lim^sup I ([2Í] +1) = *- f„(S, K)

^lh(cps,K).

Letting £ and F vary, hd(cpt)^(t/s)hd(cp$).
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