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Summary. We exhibit random strange attractors with random Sinai-Bowen- 

Ruelle measures for the composition of independent random diffeomorphisms. 

We consider in this paper compositions of independent random diffeomorphisms of 

a compact manifold M. This set-up occurs in the theory of stochastic differential 

equations (see [Ki] and [Ku]). It has been used as a model for studying the effect of 

noise on deterministic dynamical systems (see e.g., [Y]). It can also be thought of as 

a random walk on DiffM, the group of diffeomorphisms of M. Our aim here is to 

communicate some results on the ergodic theory of these random maps. 

Let (f2, v) be a probability space which is identified with DiffM, and let/~ be a 

stationary probability measure for the associated one-point Markov process, i.e.,/~ 

satisfies # = ~f~,# v(&o). We shall refer to this process as 3~ = 3s v;/z). For  ease of 

reference, we shall call the composition of a sequence of maps a composed  map. 

Given ~, one can associate with typical x in M Lyapunov exponents 21(x), with 

multiplicity mi(x) ,  i=  1 . . . .  , r(x) .  These numbers describe the asymptotic growth 

rates of the derivation at x of the typical composed map (see [Ki]). 

If all the exponents are negative and the stationary measure is ergodic, then the 

dynamics of 3~ is the dynamics of a random sink: a typical composed map send most 

of the measure into the neighborhood of a finite random set, usually a single point. 

In other words each of  the "sample measures" is supported on a finite set ("sample 

measures" are the conditional measures o fp  given past sequences of maps [ Y]. They 

are also called statistical equilibrium in [Le J]). Furthermore, the two-point Markov 

process associated to X is transient on M x M minus the diagonal. 

In this paper we are interested in the case when the largest exponent is positive. 

Under the hypothesis that the stationary measure is absolutely continuous with 

respect to Lebesgue, we exhibit what could be called a random strange attractor. 

* The research of this author is partially supported by the National Science Foundation and the Sloan 
Foundation. 
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Theorem B. Assume # ~ Lebesgue and 2~ > 0 for some i. Then the sample measures 

have the Sinai-Bowen-Ruelle (SBR)  property. 

Roughly speaking, we say that a measure has the SBR property if locally there 

exists a k-dimensional foliation (k is the total multiplicity of the positive exponents) 

such that the measure is the product of a transverse measure and a smooth measure 

along the leaves of this foliation. Theorem B reflects the fact that a typical composed 

map expands and smooths along some k-dimensional objects. It extends to the 

random context a classical property of hyperbolic attractors [Bo, S] and of measure 

perserving diffeomorphisms [Pe]. This property is believed to hold for a large class 

of attracting sets (see [ER]). 

One consequence of Theorem B is that the two-point process associated with 3E is 

positively recurrent off the diagonal. Furthermore, in the case when no exponent is 

zero, we deduce dimensional properties for the sample measures, and also mixing 

properties of the underlying process (see Theorem C). 

If the stationary measure # itself is invariant under v-a.e, map f~o (or equivalently 

if the sample measures are all equal to #, or else if Z21m i = 0 #-a.e.), then Theorem B 

can be proved directly by "relativizing" the arguments used for a single 

diffeomorphism, and the (relative) entropy is given by Pesin's formula (see [Ki], 

[KS]). The bulk of our work here consists in showing that this entropy formula 

holds when the stationary measure is smooth - without requiring that the maps 

individually preserve a smooth measure. 

Theorem A. Assume #~Leb . ,  and let h be the entropy of  Y.(M, v; #). Then 

h = ~ Z2i + mid#, where ~ + = max (~, 0). 

Theorem B is deduced from this entropy formula using the characterization 

of (relative) SBR-measures by a (relative) variational principle. This paper is or- 

ganized as follows: Sect. 1 contains some definitions and background information. 

In Sect. 2 we review the random version of some basic concepts from the ergodic 

theory of a single transformation. Much of the material in these two sections can be 

found in [Ki]. Precise statements of our results are given is Sect. 3. The next two 

sections are devoted to the proof  of Theorem A, while in Sect. 6 we indicate how the 

proofs of Theorems B and C are obtained. We include in the appendix a brief 

explanation of how the theory of stochastic flows is related to our study. 

Part I 

1. Preliminaries 

(1.1) General Setting 

Let M be a C ~ compact Riemannian manifold and let Diff2(M) denote the group 

of C 2 diffeomorphisms of M onto itself. Let (~2, ~) be a probability space which 

we identify with DiffZ(M) together with the Borel a-algebra generated by its 

C2-topology. For  co e (2, we denote the corresponding diffeomorphism by fo,. 
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Let v be a probability on (O, 5). For  technical reasons we shall assume 

throughout this paper that 

j 'L~ + Ifo, lc~ v(do)  < c~ 
(*) 

S Log + If~,llc 2 v(&o) < oo 

where Iflc2 denotes the C2-norm of f e  Diff 2(M). 

We are concerned with the ergodic theory associated with the successive 

application of randomly chosen maps in Diff 2 (M). These maps will be independent 

and identically distributed with law v. More precisely, let t2 ~ denote the bi-infinite 

product of f2 with itself and let v Z denote the corresponding product measure of v. 

For  each _oo . . . .  (.o_1 (o0(.o 1 . . .e l2  ~, we define for n>O 

f~=fo,._ o...f~,, ~ 
and 

fgn = fs . . . . .  f d _ ~ .  

Our goal is to study the asymptotic behavior of these compositions as n ~ o o  for 

v~-a.e. _09. This set-up will be referred to as 3~(M, v) in the rest of this paper. 

(1.2) Stationary and Sample Measures 

(1.2.1) Definition. A Borel probability measure # on M is called a stationary 
measure for 3~ (M, v) if 

#=~fo,# v(&o). 

Let 92l(3 0 denote the set of stationary measures for 3s (M, v). Since M is compact 

and x---~ 6r ) is continuous, ~J~(3E) is nonempty. In fact, ~(3s is a compact 

convex set with respect to the weak topology. Its extreme points are called ergodic. 

We will return to this notion of ergodicity later. 

One view of 3E(M, v) with stationary measure #-which we will henceforth 

abbreviate as ~(M,  v;#) - is the following skew product:  let v:O~*-~ be the 

shift operator, i.e., if (_~+), denotes the n th coordinate of _~+e~2 ~, then 
(~_~+). + =(_o9 ) , ,1-  It is easy to verify that F + �9 (2 ~ x M ~  defined by 

F + (~_ +, x) = (~_ +, f ,  oo x) 

preserves the measure v ~ x #. 

We shall consider an invertible extension of ( F + , v ~ x # )  as follows: let 

F:  g2 ~ • M ~  be defined by 

r(~_, x) = (T~_,fo, oX). 

Clearly, there exists a unique F-invariant probability measure on f2 ~ x M, the 

projection of  which on O N x M is the measure v N x #. We denote this probability 

measure by/~*. In most of  our arguments, we shall be working with (F, #*). We shall 

identify (F +, v n x kt) with the action of F on the decreasing o--algebra generated by 

{x, _o9,, n > 0}. Sometimes we also condition with respect to the invariant sub-a- 

algebra generated by {_o,, n 6 Z}, which amount  s to choosing _o) in f2 ~ and studying 

the action of {f~, n e Z} on M. This leads to: 
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(1.2.2) Definition. Given (M, v; #) and the associated measure #* on f2 ~ x M. We 

call the family of  conditional measures of #* on M-fibers the family of  sample 

measures. 

(1.2.3) Proposition. Let # be a stationary measure for Y-(M, v). Then the family of 

sample measures {#m,~sf2 ~} is the essentially unique measurable family of 

probability measures on M with the foIlowin9 three properties: 

(1) f~0#m---#~m v~-a'e" 

(2) #o_ depends only on ~_,, n < O, 

(3) 

Moreover, for v~-a.e, co, f~-.m#~#m as n-+ oo. 

Proof Property (1) is the invariance relation of #*, properties (2) and (3) express 

that #* projects on ~2 ~ x M into the measure v ~ x #. 

Conversely if {#m, co e ~2 ~} satisfies (1), (2), (3), the measure #m(dx)v ~ (do)) is F- 

invariant and projects on ~2 m x M into v m x #. 

Finally, the limit property is the approximation of conditional measures with 

respect to {_o0,,, m E 2~} by conditional measures with respect to {_~m, m > -n}.  

Sample measures are studied in e.g., [LeJ] and [Y]. 

(1.3) Other representation of Y-(M, v;#) 

We mention three more views of the object Y- (M, v;#). The first one is the Markov 

process with state space ~2 x M, initial distribution v • #, transition probabilities 

Q(Fl(o), x)) = v{o)' : (co',f(ox) ~ F} 

The standard representation of this process on (f2 x M) x ((2 x M) x ... with the 

shift operator in clearly isomorphic to F+ : (O m x M, v m x #). 

Another representation of Y- (M, v; #) is the Markov process with state space M, 

initial distribution #, and transition probabilities 

P(EI x) = v{co : fo, x e E} . 

This is a factor of the process above. Some readers may prefer to view Theorem C, 

for instance, in this context. 

A further representation of Y-(M, v; #) is the two-point Markov process with 

state space M x M and transition probabilities given by P2 (E x F/(x, y) = v {co :f~,x ~ E 

and fo~y~F}. The importance of this process comes from the fact that for 

continuous time models, it describes unambiguously the original process on Diff M 

([Ba]). From Proposition 1.2.3 follows: 

(1.3.1) Proposition. Let # be a stationary measure for Y.(M, v), {gin, cot f2 ~} the 

family of  sample measures, (M x M,/'2) the two-point Markov process. Then the 
measure #2 defined by 

#2 (E x F) = ~ #re(E) #~(F) vZ(d~_) 
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is P2-invariant and satisfies 

( # x # ) . P ~ #  2 a s  n ~ .  

(1.3.2) Corollary. Let  Y.( M,  v; #) be such that the sample measures are continuous. 

Then, the two-point Markov  process is recurrent outside the diagonal. 

This is clear since Proposition 1.3. t gives us an invariant probability measure #2 

such that 
#2 (Diagonal) = ~ (#~ • #~_) (Diagonal) ve(d~_) = O. 

(1.4) Ergodicity and Uniqueness o f  Stationary Measures 

Let 3~ (M, v; #) be as always. 

(1.4.1) Proposition. I f  A ~ (2 ~ • M is an F+-invariant subset, then there is a Borel 

subset B ~ M with the property  that 

(v ~ x #) (AA( f2  ~ x B))=0 .  

Proof. See [B] for a proof in the Markov chain setting. 

The fact that F+-invariant sets (and hence F-invariant sets) correspond 

essentially to subsets of M leads to the following characterization of ergodicity. 

(1.4.2) Proposition. The Jollowin9 are equivalent: 

(1) # is ergodic, i.e., it is an ex treme point ofgJt(3s 

(2) M cannot be written as a disjoint union C I u C z where f o r  i = 1,2 we have 

fo~ Ci c Ci 
f o r  v-a.e, o); 

(3) F + : (f2 ~ x M, v ~ x #) is ergodic; 

(4) F:  (f2 ~ x M, #*) is ergodic. 

Our next remark concerns a situation of particular interest. 

Remark .  Suppose P( ' lx)  as defined in (1.3) is ,~Leb. for every x e M .  (1.4.3) 

Then: 

(1) 
(2) 

Every stationary measure # is ~ Leb. 

If there does not exist two disjoint Borel subsets C1, C 2 of M, both with 

positive Lebesgue measure, s.t. 

f~  Ci = C i 

up to sets of Leb. measure 0 for v-a.e, co, then/~ is unique. In other words, 

with the hypotheses above, the family {#~_} is completely determined by 

3s (M, v). 

2. Basic Concepts from the Ergodic Theory of a Single Diffeomorphism 

(2.1) Entropy 

We define a notion of "fiber entropy" for the skew product (F, #*). Let a be the 

a-algebra of subsets of ~ x  M generated by cylinders of f2 ~, and let P be a 
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(2.1.1) 

to be 

measurable partition of f2 ~ x M with Hu,(P ) < oo. We define 

) hu,(F;Pla)= lim 1 H,, F-~Pla 
n--+ oo n 

The limit on the right exists by a relativized version of the Shannon-Breiman- 

McMillan Theorem. 

Definition. The entropy of ~(M, v) with stationary measure # is defined 

Sup hu.(F;P[a) .  
P wi th  

~,,(p) < co 

This number is denoted by h(Y,(M, v; #)), or simply h. 

In some ways it is more natural to define the entropy of random maps by taking 

a partition Q on Mwith  small diameter, a typical _oo e ~2 ~, and to compute entropy as 

approximately 

hu(fo,;Q)~fl im 1 ("Vo 1 -1Q) 
(2.1.2) Proposition. Let Q be a partition of M with Hu(Q)< oo. Then for a.e. ~_, 

hu(f~_ ; Q) = h u . ( r ;  Qla) 

where 0 = { Fat x A, A ~ Q }. In particular, 

Sup hu(f~_; Q)=h.  
Q 

See [Ki] for details. 

(2,2) Lyapunov Exponents 

For x e M, let TxM denote the tangent space to M at x. We consider (F, #*) and view 

(~_, x)--+ TxM as a bundle over ~2 ~ • M. Oseledec's Theorem then tells us that there is 

a measurable splitting of this bundle into 

E 1 (~, x) {~... @Er(~,x)(~ , x) 

such that at #*-a.e. (_oo, x), if v~=OsEi(~_,x), then 

lim 1 Log +" - [ D f ~  vl= __21(~,x). 
n ~ o o  n 

(See e.g. [Led3] Th6or6me 1.4.2). 

Moreover, the functions (_oo, x)--+r(~_, x), 2i(_oo, x) and dim E~(_m, x) 

i=  1 . . . . .  r((oo, x), are measurable and are constant along orbits of F. 

(2.2.1) Definition. The numbers 2~(_oo, x) with their respective multiplicities 

mi(_oo, x ) are called the Lyapunov exponents of 3E(M, v; #). 

Just as with entropy, it may be natural to define exponents by looking atf_~" for 

n > 0  and considering #-a.e .x.  
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(2.2.2) Remark 

(1) The set of Lyapunov exponents for F + is identical to that ofF, with the obvious 

correspondence. 

(2) It follows from Proposition 1.4.1 that there are functions r, 21, mi : M ~  IR s.t. for 

#*-a.e. (~, x), r (~, x) = r (x), 2 i (~, x) = 2 i (x) and dim E i (_c_m, x) = m i (x). 

(2.3.1) 

(2.3) Stable and Unstable Manifolds 

Let (~, x) e f2 ~ x M be s.t. 2i(x) > 0 for some i. 

Definition 

and 

. _ ( f l .  - .  } WU(~,x)= y ~ M  limsup 1 logd x,fs y)<O 
n - - *  oo n 

WS(~_,x)={y~M" lim sup,_~ n-l l~ -" 

are called respectively the unstable manifold and the stable manifold of F at (~, x). 
/ \ 

#*-a.e. (_~,x) with 21(x)>0 for some i, W"(m_,x)is a ( 2 dimEi(m-,x)) - At 
\,~i>0 / 

dimensional C 2 immersed submanifold of M. It is tangent at x to the subspace 

G Ei(~_,x). Analogous properties hold for WS(~_,x). This is proved by first 
3.i>0 

constructing local versions of stable and unstable manifolds. See [C1] or [Rue]. 

When using properties of#, it is important that no reference be made to the past. 

(Otherwise # becomes #,o_ !). Hence we stress the following dependence. 

(2.3.2) Remark. The definition of W~(O, x) and many of its properties depend only 

on x and co, for n=>0. By contrast, WU(~_,x) depends on x and co~, n<0 .  

(2.4) Inequalities Relating Entropy and Exponents 

Let ~(M, v; #) be given. 

(2.4.1) Proposition. (Ruelle's inequality). 

h <-S X2i + mid# . 
See [Ki] for a proof. 

(2.4.2) Proposition. Suppose # ~ Leb. Then 

(1) Z2i +m i=0  #-a.e., 

(2) Z2i+mi=0 #-a.e. iff f~#=# for v-a.e.~o. 

See [Ki]. 
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3. Precise Statements of  Results 

We assume throughout that 3E (M, v) is as defined in (1.1) with the C2-norms of the 

fo 's  satisfying condition (*) in (1.1), and that # is a stationary measure for 3C(M, v). 

(3.1) Entropy Formula 

Let h, 2~ and m~ be as defined In Sect. 2. 

Theorem A. Suppose l~ ~ Leb. Then 

h = ~ Z21 + m i d/~ 

where a + = max (~, 0). 

(3.2) Geometric Properties of Sample Measures 

Let {#~_} be the sample measures associated with # as defined in (1.2). To 

be completely accurate in the definitions and statements to follow, we set 

W"(_~, x) --- {x} when 2i(x ) < 0 for all i. If t/is a partition o f ~  ~ x M, we let t/o - denote 

the restriction of t / to  the fiber {~} x M and consider it a partition of M. 

(3.2.1) Definition. A measurable partition t /of  Y2 ~ x M is said to be subordinate to 

W" if for #*-a.e. (_~, x), t/~_(x) c W"(_~, x) and contains an open neighborhood o fx  in 

W" (~, x), this neighborhood being taken in the submanifold topology of W"(~, x). 

Confusing a-algebras with their corresponding partitions, recall that a is the 

partition of Q~ x M into sets of the form {~} x M. Let t/be a partition subordinate 

to W u. Then/~* disintegrates into a canonical system of conditional measures on 

c *, v,~ Identifying {~} x m elements of t /v  a. (See e.g., [Ro]). We denote this by ~P~,x)~. 

with M, we have *~ v o ,~ #~,x) -(#~_)x- for #*-a.e. (~, x). 

(3.2.2) Definition. We say that ~t*, or equivalently {#~_}, has absolutely continuous 

conditional measures on W"-manifolds if for every measurable partition ~/ sub- 

*~v,<~ for /~*-a.e. (~,x).  Here 2w~_.~) denotes the ordinate to W", #(~_,x)~Lw-(~_,~) 

Riemannian measure on WU(~_,x) that comes from its inherited Riemannian 

structure as a submanifold of M. 

Theorem B. Suppose #,~Leb. Then {#~_} has absolutely continous conditional 
measures on W"-manifolds. 

In the case of a single diffeomorphism, invariant measures with this property are 

sometimes called Sinai-Bowen-Ruelle measures. We generalize another geometric 

property of these measures. (See [Led2]). 

(3.2.3) Definition. Let Xbe a compact metric space, let m be a finite Borel measure 

on X, and let B(x, e) denote the e-ball about x. Then the dimension of m, written 

dim(m), is defined to be ~ if for m-a.e, x, 

lira LogmB(x,  ~) 
~-.0 Log e 

exists and equals ~. 
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We remark that finite Borel measures in general do not have a well defined 

dimension. 

Corollary to Theorem B. Suppose # ~ Leb. and is ergodic. Assume also that 2 i ~ 0 gi. 

Then dim(#~) exists for vZ-a.e. _oo and oo+dim(#~) is constant a.e. 

(3.3) Ergodic Properties of  ~(M,  v; #) 

Theorem C. Suppose # ~ L e b .  and that for #-a.e. x, 2i(x):#Ogi. Then 

(1) (F, #*) has at most a countable number of ergodie components," 

(2) each ergodic components is isomorphic to the product of  a Bernoulli shift and a 

finite system. 

In view of Proposition 1.4.1 we have 

Corollary to Theorem C. Suppose # ~ L e b . ,  is ergodic, and 21:t:0 Vi. Then either 

(1) (F, #*) is Bernoulli (and hence mixing) 

o r  

(2) 3n E ~ +, a permutation a : { 1, . . . ,  n} "-~ , and mutually disjoints subsets A 1 . . . . .  A,, 

of M each having positive Lebesgue mesure, s.t. 

focAl =A~(1) 

for v-a.e, co, and F~I(~2 ~ • Ai) is Bernoulli. 

Part II. Proofs 

As with Pesin's formula for diffeomorphisms, Theorem A is valid because of the 

existence of a smooth invariant measure. However, # is invariant only when one 

averages over all past histories. So to use the smoothness of  #, our constructions 

must essentially depend only on f~  for n > 0. We take a slightly different approach 

than in [M] or [Pc], for both of these proofs, as they stand, involve some knowledge 

of backward iterates. 

The discussion above does not apply to Theorems B and C, which concern the 

#~_'s. In fact, as we shall see, Theorems B and C follows readily from standard 

techniques for diffeomorphisms once Theorem A is proved. 

4. Technical preparations for the proof of Theorem A 

In (4.1) and (4.2) we write down the " random version" of some results that are 

known for maps. These proofs do not contain any new elements and will be omitted. 

In (4.3) we construct a partition subordinate to W * that will be used for estimating 

entropy. 

To stress the fact that all the constructions here are independent of  the past, we 

will work exclusively with F + : (f2 ~ x M, v vs x #) in this section. 
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(4.1) One-Sided Lyapunov Charts and Stable Manifolds 

Let A o = { ( ~ + , x ) e Q ~  x M:  (_(_o0+, x) is regular with respect to f~+ in the sense of 

Oseledec}. For (_o) +, x)eAo,  we let 

and 

E'(_oo +, x) = �9 Ei(_oo +, x). 
~,i<0 

For fixed 2 > 0 and 0 _< k _< dim M, we let 

A(2, k) = {(~+, x ) ~ A  o : 2(~_ +, x)>>_2, dim E~(_~ +, x) =k} 

and consider these F+-invariant sets one at a time. For definiteness we assume 

0 < k < d i m M .  

One sided charts for endomorphisms are treated in [KS], to which we refer the 

reader for details. We state the "random version": 

Let e > 0 be a number very small compared to 2. Then there is a measurable 

function I:A(2, k )~ IR  + s.t. for (o~_+,x)eA(2,k) and n=>0, we have 

(1) (a) veE*(~+,x)=~lDf~_+(x)vl<l(~_+,x)e-"(:~-*)lvI; 

(b) v ~ E ~ (co +, x) • =*. I Df~_ + (x) v[ > l(o_ +, x ) -  1 e -  ~"lvl 

(where V -L = orthogonal complement of V) ; 

(c) (Df~+ (x) E s (~_ +, x), Df~_+ (x) (E" (co +, x)) J-) 

> l ( ~ + , x ) - l e - ~ " ;  
and 

(2) There is a chart {qS,(~+,x)} s.t. qS,,(m+,x) is a diffeomorphism from a 

neighborhood off~_+x in M onto the l(_o) +, x ) - l e  - ~  - disk centered at 0 in 

IR ~ These charts have the following properties: 

(a) (i) r (m +, x) x--  0, 

(ii) D(qSo(_m +, x)) (x)ES(m_ +, x) = IRk x {0}, 

(iii) D (~bo (~ +, x)) (x) (ES(_o +, x)) l = {0} x IRaimM- k; 

(b) If y,(_m +, x) = ~b,+l(~ +, x) ~ ~ ~b,(_ e)+, x) -1 is defined wherever it makes 

sense, then 

(i) L(m+,x)(0)=0 
.. - + A . ( o ~ + , x )  0 

(11) Df,,(~_ , x ) ( 0 ) = (  -0 B,(~_+,x)) " 

where A,(_m +, x ) : l R k ~ I R  k satisfies 

IIA,,(~+,x)vl] <=e-(X-~)]]v]l, 

Bn(~_ +, X) : lRalmm-k-~ IR dimm-k satisfies 

(ll-tl = E u c l i d e a n  norm), 
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(iii) L(~,  (_~ +, x) - D~, (_~ +, x) (0)) < e 

where L ( . )  = Lipschitz constant  

(iv) L (D~, (_o) +, x)) < l(_c_o) +, x);  

(c) For  Z in the domain  of  ~b,(~+,x) and v e T z M  , 

_ x) e < [ <l(~_+,x)e ~". 

(4.1.1) Remark. We point  out  that  without  uni form bounds on the first and second 

derivatives of  f~o, co e f2, special care has to be taken to arrange for (2)(b)(iii) and 

(iv). This can be done by incorporat ing the funct ion 

11 (_~ +, x) = max IL~ e- ~" 
n>0 

into the usual definit ion of  l. 

Using the charts q~,(_o +,x), n = 0 , 1 , 2 , . . . ,  and s tandard graph t ransform 

methods,  we construct  a local stable manifold at (_~+, x). These and other  results are 

some fixed l o. We assume 

then #A~_+ > 0  for a set of  ~+  

summarized below. 

Let  A={(~_+,x)eA(2 ,k) : l (~_+,x)<lol  for  

(v H x #) A > 0, so that  if A~_+ = {x e M :  (_~ +, x) e A 

with positive v~-measure. 

(4.1.2) Proposition. Let A be as above 

(1) 

(2) 

I f  A~_+ 4= 0, then x ~ ES( ~_ +, x) is uniformly continuous on A~_+ for each f ixed ~_ +. 

3cr = ~(2, k, lo) s.t. for each (~_ +, x) e A, there is an embedded disk WS(~_ +, x) in M 

with the following properties." 

(a) W~(~_+,x)={yeM:dS(x ,y)<cr  where 

dS=distance along W~(~_ +, x) ; 

(b) exp~ -i W~(~ +, x) is part o f  the graph o f  a function 

g(~_+ ,x) :E~(_ ~+,  x ) ~  ES(o_ +, x) • 
with 

g (~ +, x) (o) = o 
and 

1 

[Dg(o +,x)[ =<i000 

(c) d~-radius of  f~_+ W~(~_ +, x) < e-  "(~- o for all sufficiently large n. 

The map x ~  W,(o_ +, x) is uniformly continuous on each A,o_+. 

(4.2) Absolute Continuity of  the Stable Foliation 

Let A c A (2, k) be as in (4.1), and let _(_(_m + with A~o + =t = 0 be fixed for now. For  x e A,o + 

and 6 > 0, let rt a ( A~_ +, x) = { y e A~_+ �9 d(x, y) < 6~. Suppose Ta and T z are codimexa- 

sion k disks embedded in M in a small-neighborhood of  x. Assume that  they are 
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transverse to W.~ (_oo +, x) and each intersects W~ (_(_oo +, x) in exactly one point. Then by 
Vg~s r~o + - Proposition 4.1.2 they intersect ~ ~_ ,y)  in the same way for all y ~ na(A~_+, x) 

provided 6 is sufficiently small. One can then define the Poincar6 map 0 from a 
~ s  + subset of T 1 to T 2 by sliding along { ~ (_coo 0 y), y ~ na (Ao_+, x)}. Recall that 0 is called 

absolutely continuous if 0 -  ~ of sets of Lebesgue measure zero in T 2 are sets of 

Lebesgue measure zero in T 1 . 

(4.2.1) Proposition. Let  A be as before. Then 3(~o, 61 "~2~--*IR + s.t. for  a.e. 

(_oo+,x)EA, i f  T 1 and T 2 are exp,- images o f  small disks in T~M that are roughly 

parallel to E~(o_ +, x) • and are < 61 (m_ +) distance away f rom it, then the Poincard map 

W~ (_oo , y), y ~ nao(~_+)(A~_+, x) is absolutely continuous. f r o m  T 1 to T 2 by sliding along ~ + 

We refer the reader to [BN] or [KS] for more precise estimates and for a detailed 

proof. The main difference between our situation here and that in these papers is 

that the modulus of continuity of x-+ Wg(_m +, x), x e A~_+, may a priori depend on 

_oo +. Hence we have written 60 and 6~ as functions of _m +. 

This absolute continuity property of the stable foliation will be used as follows. 

Let ~ be a measurable partition of f2 ~ x M subordinate to W ', i.e. for (v ~ x #) - a.e. 

(_co + , x), ~_+ (x) c W~(_m +, x) and contains an open neighborhood o fx  in W~(o) +, x). 

(4.2.2) Corollary. Assume I~ ~ Leb. and let m be a probability measure on f2 ~ x M 

s.t. m ~ v ~ x  #. Le t  ~ be a measurable partition subordinate to W ~. Then there is a 

measurable function ~ : f2 ~ x M--+IR s.t. m-a.e. We have 

m~x ~-+ -= 0 (~_ +, X))~(~ +, x) 

where 2(~_+,~) denotes the Riemannian measure on Ws(~_ +, x). 

See [Pe] for a proof  of a similar result. 

(4.3) Construction o f  a Partition 

Let a + denote the a-algebra of subsets of f2 ~ • M generated by cylinders of Q ~, and 

let a(~) be the a-algebra generated by elements of the partition 3. For  X c ~ ~ x M, 

we write W s ( x ) =  U{WS(~_+,x),  (_o0+,x)~X}. 

(4.3.1) Proposition. There exists  a measurable partition ~ on 

A = U WS(A()~,k)) s.t. 
L > 0  

0 < k < d i m M  

(1) Q+ =a(~), 
(2) ~ is subordinate to W s, 

(3) ~ is decreasing, i.e., ( F + ) - I ~ < ~ .  

Our construction essentially follows that in [LS], but since there are some 

differences we will go over the entire argument. 

Proof. It suffices to write A = ~) A,, where each A, satisfies (F+ ) -  I A , =  A,  and 

WS(A,)  = A, ,  and so construct a partition 4, on each A,. For  then we can set ~ = 4, on 

A, \i=1 Ai . These A,'s will be specified in the course of  the proof. 
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We fix 2>  0, 0 < k < dim M, /o>0 ,  andletA=A(2,k) c~{l<lo} be as in (4A). We 

assume (v~x #)A > 0 and let e be s.t. WS(_m +, x), (_m +, x )cA,  have the properties 

stated in Proposition 4.1.2. 

Next we choose rl ,  r 2 and fl with 0 < fl ~ r~ < r 2 < �89 c~, and let Pl,'",PN~ be a 

/?-dense subset of M. Letting Gr(m, n) denote the space of n-dimensional subspaces 

1 
of IR m, we choose a cover {Q1 . . . . .  QN~} of Gr(dimM, k) by balls of radius 100~" 

For eachp~ and Qj we will construct one of the ~ s  mentioned in the first paragraph 

of the proof. So let us fix p = somep~ and Q = some Qj. 
A number r r [rl, r2] has to be chosen carefully. We will come back to this later. 

Using this r, we now define a partition r/on f~ ~ x M with a(t/) D a + by specifying r/~_ + 

for each co+. First let 

S=S(A,p,Q)={(~_+,x)~A:x~B(p,~) and E~(~_+,x)~Q}. 

(Here B(p, fl) denotes the fl-ball centered at p in M, and using local coordinates 

around p, E~(o_+,x)r makes sense.). If S~_+=Sn({~_+}xM)=O, we let 

t/~_ + = {M}. If not, we define for x r So__+ 

~ +  (x) = w~(o +, x) n B@, r) 
and let 

%_+={rl~_+(x),xeS~_+}u{M- u ~/~_+ (x)}. 
x~S~+ 

We leave it to the reader to verify that ~/so defined is a measurable partition. 

Now let 

~'=a + v Q (F+)-" t / ,  
n = 0  

i.e., 

~ +  (x) = n ( ~ + ) - '  (th-~_+ (f~_+ x)). 
n > 0  

One checks easily that if A, = WS {(_m +, x) : (F+)"(_m +, x) e S(A,p, Q) i.o. for n >0}, 

then ~, = ~ [A, satisfies (~,)~_+ ix) c WS(m_ +, x). 
It remains to choose r in such a way that for a.e. (_co +, x) ~ A,, 3 6(~+, x) > 0 s.t. 

W~(~_+ ,x)(~ +, x) c ~_+ (x). We need only to do this for a.e. (_~+, x) e A c~ A, and here 

the situation differs slightly from that in [LS]. 

By Proposition 4.1.2, #(m_+,x) exists if 

ds(f_~ + x, 0B(p, r)) > e-"Z 

for all large n. We define the v-boundary of B(p, r) to be 

O,B(.p, r)= {xsM :r -7 <d(x,p) < r  +7}.  

Then the condition above is satisfied for (~+, x) if 

f~_+ x r 32e-.~B(p, r) 

for all large n. Or, equivalently, 

x r (f2 +)- ~ 02~ ~ r). 
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The Borel-Cantelli lemma tells us that this holds for #-a.e. x ~Ao+ if we can 

show that 

# [ ( f~+) - I  02 e ,~B(p, r)] < oe. (**) 
n=O 

Then {m~_+,~ +~Q~} is 

For  r 6 [rl, r2] , let 

To arrange for (**), we fix a number  a with e-~<a< 1 and define 

1 

a" (f2+ # ) . "  m ~ + - l _ a , = o  

a measurable family of  probabili ty measures on M. 

C(~  +, x) = sup e"~m~_+ 8e-,~B(p, r). 
n>-_O 

Then for each _(_o + , C(_~ +, x) < oe for Leb.-a.e. r (see [LS]). So by Fubini 's  theorem, 

Leb.-a.e. r~[rl,r2] has the property that C(_~+,x)< oo for a.e. m +. Select one 

such r. 

Now for a.e. ~o + 

(f~_+ #) 82e-,zB(p , r) < a-"(1  -a)m~_+ ~2e-,aB(p, r) 

<2(1-a)C(o_+,r)(~)" 

which is summable over n. Hence (**) holds. 

This completes the proof  of  Prop. 4.3.1. 

5 .  P r o o f  o f  T h e o r e m  A 

(5.1) Notations and Overall Strategy 

First, by Proposition 2.4.2 (i), # {x : 2 i (x) > 0 V i} = 0. The set {x : 2~ (x) __< 0 V i } can 

have positive #-measure, but nothing needs to be proved for these invariant sets. 

This together with Proposition 1.4.1 allows us to assume without loss of  generality 

that for #-a.e. x, 

0 < dim E s < dim M.  

Our proof  will be carried out using the 2-sided skew product F:  (Oe x M, #*). 

For  the convenience of the reader we now make a list of  the notations that will be 

used, including some that have been introduced before: 

�9 a = a-algebra of  subsets of  O e x M generated by e),, n E 2g 

�9 a + =sub-a-a lgebra  of  a generated by co,, n_-_0 

�9 ~3 = a-algebra of  subset of  O z x M generated by Borel subsets of  M 

�9 .3  = sub-a-algebra of a v ~3 consisting of F-invariant sets 

�9 I = information function (with respect to #*) 
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�9 E = e x p e c t a t i o n  (with respect  to #*) 

�9 )~ = R iemann ian  measure  on M 

�9 ~(~_,~)= R iemann ian  measure  on WS(_o3, x) 

I f  rn is a probabi l i ty  on a v ~B and ff is a sub-algebra  of  a v ~B, then 

= condi t ional  measure  given if; �9 m ( ~ , x  ) 

�9 rn]~ = m  restricted to if; 

In part icular ,  rn[~ is identified with a measure  on M. 

Let ~ + be a par t i t ion  on O ~ • M of  the type constructed in (4.3), and let ~ be the 

par t i t ion on ~2 ~ • M defined by  

~ ( o , x ) = ~ + ( ~ + , x )  

where _o3 + denotes the positive coordinates  o f ~ .  Tha t  is, ~ is a measurable  par t i t ion  

with 

( 1 )  a + ~ ~ ( ~ )  ~ a + v ~,  

(2) ~ is subordinate  to W ~, i.e. ~_ (x )~  W~(~_,x) etc. for  #*-a.e. (_o3, x), 

(3) F~ > ~,. 

En t ropy  will be es t imated via 

l im ~ i i (F ,~ l~vF ,  a+)d#, 
n__+ oo I"/ 

To see that  this gives the correct  number ,  suppose for  now that  ~ I(F~]~ v Fa +)dl2* 
< ~ .  Then  

1 
- I(F"~[r v F " a  +) (_o3, x) 
n 

=1 ~ i(Fi~lFi_l~vFna+)(o_,x) 
FI 1 

~ I( f~[~vfn-i+la+)f- i+l(oo,  x) 
l'l 1 

L ~ 
, E(I (F~ I~ v a ) [ - ~ ) .  

The integral of  this limit is < h  by a s tandard  argument .  The Ll -convergence  is valid 

because our  integrabil i ty a s sumpt ion  above  guarant ies  tha t  

sup I (F~I(~ v Fa +) v Fka +)dl ~* < ~ . 
k>o 

Wha t  we need to do then is to show: 

I(r~l~ v ra+) , /~  * < 
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and 

F.  L e d r a p p i e r  a n d  L. -S .  Y o u n g  

1 I(F"~Ir vF"a+)d~*=>~  Z2+mid~. lira ~ n 
n--+ oo 

Both  of  these est imates will come out  of  the same arguments .  

(5.2) Entropy Computation (minus a few details) 

By definition, 

Observe that  

( i i )  

and 

(iii) 

I(F"~I~ v F " a + )  (_o9, x) 

1 - *s - -  o g ~ & ~  t~' ~)(_~,x) .  

(i) F"a + is the a -a lgebra  generated by ok, k >  - n ,  so tha t  

+* F""+ I~B =f,o_~ ~ .. ~ CO I - -  

= (f$_ .~,) #. 
* ~ v F " a + ,  " . . . .  ((~), X)  #(~_,x) t r g) 

Since f~"-,~_/t ~ # ~ 2, Propos i t ion  4.2.2 says we can define 

d2(~_, x) 

y d(f~"_.~#f~ $"J*-"~- 

Moreover ,  we have 

(iv) " e~ . X 

We compute  X and Y separately.  

Since f~"-,~# ~/~ for  a.e. _a), we can write 

n ~ 
x=d(/ ;_~ du~- 

d ~ -  d,~(~,~' 

The first t e rm = d(f~-"~-#) . __1 where 
d# Z ,  

d(L"-~ (y) ~o(dy) Z,(~,x)=~ d~ 
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is the normal iz ing factor.  Writ ing 

+x O, 
0 (_o9, x) - d2(~_, ~)' 

we have 

d " Z (f;-- ,o#) 1 

d# Z ,  

Next,  by the change of  variables fo rmula  we have 

(i) 

where 

Thus 

where 

and 

1 
Y(c~, x) = "~(:;:"~ ~x. 

- dXv-.(,o,x) J,~F-"(~_, x) 

J~ (_m, x) = [Jac (f~)(x)JES(~,  x)l. 

1 
Y = ~ o F - ' .  

J~oF-""  

Combin ing  (i)  and (2) we have 

1 
- I ( F , ~ I { v F ,  a + ) = A , + B , + C , + D ,  
H 

(2) 

A,(_m, x) = I log d(f~-"'~ 
- n  ,/# (x) 

1 (m, x) 
B, (~ ,  x) = - - -  log 

n r o F - "  (co, x ) '  

C . ( ~ , x ) =  - - 1  l o g J ~ F - ' ( o , x )  
tl 

(5.3.2) 

(5.3.3) 

D,(_o), x) = 1 log Z,(co, x) .  
n 

We state two lemmas,  the proofs  of  which are pos tponed  to the next subsection. 

Lemma. (a) A 1 ~ L 1 (#*) ; 

(b) ~ A.d#* = ~ N21m,d # Vn. 

Lemma. (a) D1 e L  1 (#*) ; 

(b) ~D,  dg* =>0 Vn. 

Assuming  these l emmas  we now complete  the proof .  Note  tha t  

I(F{[~ v Fa +) =A 1 + B  1 + C 1 +D,  

and is always > 0. We know f rom the l emmas  above  that  A 1, D 1 ~ L 1 (#*). Also, 

(7, d#* = - ~ 2;2 i- m i (where a -  = min (a, 0)) for all n. This forces B1  ~ L 1 (#*), and 
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by a standard argument (which we have stated as Lemma 5.3.1) we have B a e L 1 (/~*) 

as well. 

In fact, it follows from Lemma 5.3.1 that ~ B 1 d#* = 0. Since B, = 1_ "- BI ~  -i, 
n o 

we have ~ B,d#* = 0 for all n. This together with part (b) of Lemmas 5.3.2 and 5.3.3 

gives 

Y nJ I(F,~L ~ v F% +) _> ~ S2~m,-~ S2:Z rn~ 

= S Zl~i+ mi"  

Letting n ~ ,  we arrive at the desired conclusion. 

(5.3) Details 

(5.3.1) Lemma. Let f : ( X ,  rn)~  be a measure preserving transformation. Let 

g" X~IR + be measurable and define 

G = - l o g  g 
g o f  

I f  G - e L 1 (m), then G ~ L 1 (m) and ~ G dm= O. 

Proof. Exercise. 

(5.3.2) Lelnma 

(a) Let 

qb (~, x) = log ~ (x). 

Then (o e L a (1~* ) and ~ O dl~* = - ~ N 2,midl~. 

1 log d(f~-'~#) =~S2,m, dl~. (b) ~ - ~  d~ d#* 

Let us write 

Proof. First, 

and let 

~ q ~ - d l z * = ~ I ~ ( l o g ~ t - d f ~ _ l l ~ l d v ( c o - 1 )  

= ~ I S ( ~ l o g % ~ ) - d t z l d v ( C ~  

> - - 0 ( 3 .  

0 = ~ ,  J =  ]Jac (fo~o)] 

FI : Y2 ~- x M-~ M 
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(5.3.3) 

be project ion onto  the second factor. Then  

) ~ b = l o g \  J ~  a 0217 . 

Since ~ qb- d~* > - ~ and ylogJ=SN2imi, we have 

log 0 o [IF-1_~- 
0 ~  ] eLl(#*) 

and Lemma 5.3.1 applies to give (a). 

To prove (b), observe that  

1 log df~"-.~_l* 1 ,~t 
- n  @ ( x ) = - n  o - 

(ao g-i(co, x). 

Lemma.  Let 

Z.(~_, x) = [d(f$-.~_l~) 

Then (a) l o g Z  l eL l (F t* ) ;  

(b) S log Z,,d#* >0 .  

Proof Observe that  

so that  

where 

and 

n d(f~ n~o#[g~) 
z.(m, x ) -  (x), 

1 logZ,,(e), x)= 1- ,,~1 log 
n -- ~ n 0 

d {  gi+l 
I, J r - ( i +  1)~ ILLI ~ )  

i 
d(~-,~lgo) 

1 n--1 

=-  ~, Xi~ x) 
n o 

X i (co, x )  = l o g  d(f~_, #[rli~_) 
- d (Ul<o)  (x)  

r / i=a  + vF- i~ .  

Note  that  S Xid#* can be writ ten as 

where 0(t) = t log t. Using the convexity of  0 and the fact that  a + < cr(t/i) < a + v ~3, 

we have 

o <= f x, d~* < flog ~ d~*, 

this last integral being < ao by Lemma  5.3.2. 
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6. Consequences of Theorem A 

Recall that for a single diffeomorphism preserving a Bore1 probability measure, 

Pesin's entropy formula implies a certain geometric property of the measure which 

in turn leads to other ergodic properties of the system. Indeed, in the case of a single 

diffeomorphism, Theorem B and C and their corollaries have been shown to be 

consequences of Theorem A (see Part I of [LY], [Led 1] and [Pe]). To complete this 

paper, we will adapt these proofs to the fiber transformations associated with 

(F, #*). This is fairly straightforward for the reader familiar with the techniques in 

the original papers. A few of the modifications needed are pointed out in this 

section. 

(6.1) Proof of Theorem B 

We recall the main steps in Part I of [LY], referring the reader to [LY] for details. 

Following [LY], we first reduce to the ergodic case. 

(6.1.1) Lemma. Consider the a-algebra ~" of measurable subsets A of(2 ~ • M such 

that for v~-a.e. _~, the section A~ is a union of global unstable manifolds. Let 91 be 
the a-algebra of #*-negligible subsets and .~ be the a-algebra of  F-invariant subsets 
of OZ • M. Then 

Proof Let C(M) denote the set of continuous real-valued functions on M. For  

9 ~ C(M), let ~ : f2 Z x M ~ I R  be defined by 

O(O,x)=l imsup I .-1 g(f~, ix). 
n ~ o o  n i = 0  -- 

Clearly, ~ is ~3"-measurable. It follows from Proposition 1.4.1 that the family 

{ g, g e C(M)} generates the a-algebra of F-invariant sets (up to g*-negligible sets). 

Lemma 6.1.1 allows us to assume that (F, #*) is ergodic, simplifying the proof  a 

little. Next, we observe that if ~ is an increasing partition subordinate to W" and 

satisfies 

H, , (~  [F~ v a) = Z2 + ml, 

then the argument in (6.1) of [LY] exactly as it is proves that #* is absolutely 

continuous on W". As with the diffeomorphism case, we will need to show that h can 

be attained using partitions subordinate to W". 

Now the definition of entropy says that there exists finite entropy partitions P on 

(2Zx M s.t. Hu,(P +]FP + v a) is arbitrarily near h. Using relativized versions of 

Lemma 3.1.2 and Lemma 3.2.1 in [LY], it suffices to construct 

1. a partition P on ~2 ~ x M with Hu(P ) < ~ ,  
2. an increasing partition ~ on s ~ x M subordinate to W" such that if 

t h -- ~ v P + and q2 = P + 

then 

H ~ . ( t l l [ F t ] l  V a) and H..(r/2lF~/2 v a) 
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are arbitrarily close. The constructions of  P and ~ follow essentially those in Sects. 2 

and 3 of  [LY]. The proof  that these two entropies are close in our case is identical to 

that in Sect. 5 of [LY]. 

Perhaps a remark concerning Lyapunov charts is in order. In [LY] we used the 

fact that chart maps are uniformly bounded to simplify some of our estimates 

(second to last paragraph of (2.1) in [LY]). This is true using any of the standard 

changes of  coordinates in the diffeomorphism case '~ but does not necessarily hold 

for random maps without a uniform bound on their Cl-norms.  One can, however, 

get this bound for random maps using new norms defined as in Remark  2 at the end 

of  the Appendix in [LY]. Remark  4.1.1 of this paper also applies. 

(ii) 

(iii) 

and 

(iv) 

(6.2) Proof of Corollary to Theorem B 

The idea is as follows : Suppose m is a Borel probabili ty measure on a manifold M 

and suppose W" and W s are two "foliations" on M defined m-a. e. and satisfying (i)- 

(iv) below: 

(i) W u and W ~ are transversal to each other m-a. e. with dim W u + d i m  W ~ 

= dim M; 

m has absolutely continuous conditional measures on W" in the sense of  

Definition 3.2.2; 

W s as a foliation is absolutely continuous in the sense of  Proposition 4.2.1 

the conditional measures of  m on local leaves of  W S have a well defined 

dimension 5 s in the sense of  Definition 3.2.3. 

Then m has a well defined dimension and 

dim (m) = dim W" + 5s. 

See [Led 2] for a proof. 

It follows from Theorem B and (4.2) that when none of the exponents is zero, the 

scenario above applies to a.e. #_~ - provided we can prove (iv). In the case of  a single 

diffeomorphism this is Proposition 7.3.1 in [LY]. The proof  here is completely 

parallel. 

(6.3) Proof of Theorem C 

First we explain why/~ has at most a countable number ofiergodic components.  As 

noted before, the o--algebra ,~ is contained in both o-(~", 9l) and o-(~3 s, g~), and a. e. 

/l_~ has properties (i), (ii) and (iii) in (6.2). These two observations put together imply 

that if A e ~ has positive #*-measure, then A m has positive Lebesgue measure for 

a.e. co. 

We assume from now on t h a t / l  is ergodic. Consider the relative Pinsker o-- 

algebra/7 of  (F,/z*), i. e., the o--algebra of  subsets A of f2 e x M with the property that 

hu,(F, {A, AC}la)=0.  

* The statement in [LY] that this followed from (ii) and (iii) of (2.1) is obviously inaccurate 
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Since there exists generating increasing and decreasing partitions subordinate to W" 

and W s respectively, F/is contained in both o-(~3 ", 9l, a) and a(~3 ~, 91, a). The same 

reasoning as above then tells us that F/is a countable extension of a. It is easy to see 

that ergodic countable extensions are in fact finite extensions. (See e.g., [Pa].) 

Next we quote the theorem from [Rud], which says that any ergodic finite 

extension of a Bernoulli shift is either a Bernoulli shift itself or it is the product of a 

Bernoulli shift and a finite system. In the latter case there is a partition {A 1 . . . . .  Ak} 

of Ms. t. Fpermutes the sets {~2~ x Ai} and that Fk](O ~ x A~) is Bernoulli (1.4 again). 

Thus we need only to consider the case where F:(s x M, F/, #*) is Bernoulli. 

To complete the argument we need to show that F :  (~?Zx M, a v~ , /~*)  is 

relatively Bernoulli with respect t o / / .  The proof  uses [T] and runs parallel to that in 

[Pc] or [Led 1 ]. 

Appendix 

We describe here two classes of examples to which the results of this paper apply. 

I. Stochastic flows 

Let M be a compact manifold. It is well known that if X is a C oo vector field on M 

then X generates a flow {~t :M--,M, t e IR} the asymptotic properties of which are 

captured by the iteration of the diffeomorphism ~ .  

We describe the analogous situation for stochastic differential equation. Let 

Xo, X1 . . . . .  X,, be C~176 vector fields on M and let B t = (Btl,..., Bt m) be a standard 

m-dimensional Brownian motion defined on some probability space (O, ~, P). 

Consider the SDE 

d~t=Xodt + ~ X,(~t)odB [ (1) 
i = 1  

(where o denotes the Stratonovich integral). It is proved that the solutions to (1) are 

Markov processes that can be represented by {~t,,o :M-*M, t>O, co~f2) where 

~t,,~ ~ Diff'~ (M) for each t and co, ~bt,,o varies continuously with t for fixed co, and the 

transition probabilities Pt (" Ix) are given by the distributions of co ~ ~t, o)(x)- We 

refer the reader to [E] or [Ku] for the precise meaning of a "solution" to (1) and for 

the theorem we have just quoted. 

Since the Xi's are time-independent, the law of this stochastic semi-flow from 

time s to time t (s < t) depends only on the number t - s .  Thus if v is the distribution 

of {~t.o),co~O) in Diff(M),  then for fixed n~7/+ the random diffeomorphisms 

r . . . .  co ~ f2, are simply products of n independent diffeomorphisms with law v. In 

other words, we are in the situation of 3r v) as defined in (1.1). 

Standard arguments in the subject show that the derivative conditions (*) in 

(1.1) are satisfied here. (See [C 1] or [Ki].) 

Furthermore, the kernels P~ (. Ix) are the time-one kernels of the PDE associated 

with (1), namely 

u~ = Au 
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where 

X, 1 A= 0+~ ~ X{. 
i = 1  

If  the o p e r a t o r  A is ell iptic - and  generical ly  this is the case when m is sufficiently 

large - then  the P1 (" Ix) 's have C ~ densit ies with respect  to Lebesgue and  the resul t  

of  this pape r  apply .  I f  M is connec ted  and A is elliptic, then  the s t a t ionary  

p r o b a b i l i t y  measure  # is in fact unique  (see R e m a r k  1.4.3, [IK]). 

We  men t ion  also tha t  c o m p u t a t i o n  o f  L y a p u n o v  exponents  (and hence e n t ropy  

and d imens ion  of  sample  measures)  in terms o f  the genera t ing  vector  fields have 

been successfully car r ied  out  for  cer ta in  s tochast ic  flows. (See e.g.,  [Le J] and  the 

references in [C 2]). 

k-Parameter Families of Maps 

Let  D k be a disk in IR k and  let v be a p robab i l i t y  measure  on D k s.t. v ~ L e b .  Let  

G : D k ~ D i f f  2 (M)  be a s m o o t h  map .  Then G induces a p robab i l i t y  f on  Di f f  2 (M)  

with which we can  define 3~(M, f).  Us ing  the implici t  funct ion  theorem,  one verifies 

tha t  P ( .  Ix) is C L e b .  if  the m a p  q~x :Dk---)M defined by  (?x(a)=G(a)x has the 

p r o p e r t y  tha t  Dgbx(a ) is surjective at  v - a . e . a .  

We  r e m a r k  tha t  this cond i t i on  is easy to meet  for  all x when k is large,  and  tha t  it 

holds  for open  sets o f  G ' s  because M is c o m p a c t  and  the r ank  o f  Ddpx(a) is lower  

semi-cont inuous  in x and  a. 
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