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Entropy generation in bioconvection 
nanofluid flow between two 
stretchable rotating disks
Noor Saeed Khan  1*, Qayyum Shah2,3, Amiya Bhaumik3, Poom Kumam  4,5,6*, 

Phatiphat Thounthong7 & Irajsadegh Amiri8,9*

Buongiorno’s nanofluid model is followed to study the bioconvection in two stretchable rotating disks 
with entropy generation. Similarity transformations are used to handle the problem equations for non-
dimensionality. For the simulation of the modeled equations, Homotopy Analysis Method is applied. 
The biothermal system is explored for all the embedded parameters whose effects are shown through 
different graphs. There exists interesting results due to the effects of different parameters on different 
profiles. Radial velocity decreases with increasing stretching and magnetic field parameters. Temperature 
increases with Brownian motion and thermophoresis parameters. Nanoparticles concentration decreases 
on increasing Lewis number and thermophoresis parameter while motile gyrotactic microorganisms 
profile increases with increasing Lewis and Peclet numbers. Convergence of the solution is found and 
good agreement is obtained when the results are compared with published work.

Natural convection has an outstanding applications in daily life. �ese applications are exist in petrochemical pro-
cesses, cooling of electronic components, geothermal engineering, crystal growth processes, in the annular gap 
between the rotor and stator, thermal insulation system, food industry, growth of single silicon crystals, packed bed 
chemical reactors, grain storage installations, rotating systems, porous heat exchangers, fuel cells, solar ponds etc. 
Researchers paid extensive attention to work on convection. Venkatachalappa et al.1 performed a study to analyze 
the role of rotation on the axisymmetric gravity driven complex �ow in a cylindrical annulus whose side walls rotate 
about their axis with di�erent angular velocities. �ey obtained the results for Grashof number, rotational speeds, 
Prandtl number, aspect ratio and compared the results with the existing data. Khan et al.2 treated the movement in 
heating prevailing system of a di�erential type dispersion on an expanding medium using series solution. Sankar 
et al.3 tested numerically the hydromagnetic �eld in�uence in axial or radial forms for natural convection of a low 
Prandtl number electrically conducting �uid in a vertical cylindrical annulus. �eir outcomes showed that in shal-
low cavities the �ow and heat transfer were suppressed su�ciently through an axial magnetic �eld and in tall cavities 
the radial magnetic �eld had an excellent output. Khan et al.4 tested the thermal disorder, heat and mass transfer tiny 
dispersion movement with gyrotactic microorganisms in porous medium using heating wall information. Using the 
Brinkman-extended Darcy equation, Sankar et al.5 investigated the natural convection �ows in a vertical annulus 
�lled with a �uid-saturated porous medium in which the inner wall was subjected to discrete heating, outer wall 
was subjected to isothermally at lower temperature and the adiabatic parts were the bottom and top walls including 
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the unheated regions of the inner wall. �ey applied the �nite di�erence method and observed that enhanced heat 
transfer exist by placing the heater in lower half of the inner wall. Zuhra et al.6 presented the work on gravity driven 
simultaneous �ow of Casson and Williamson nano�uids and heat transfer with homogeneous-heterogeneous 
chemical reactions. Sankar et al.7 attempted numerically the natural convection heat transfer in a cylindrical annular 
cavity with discrete heat sources on the inner wall whose purpose is to cool the chips in an e�ective way to prevent 
overheating and hot spots. Khan et al.8 followed the Buongiorno’s nanodisperion concept to model mathematically 
the biconvection in nanodispersion transmission in stretchable object persisting porous space, Arrhenius activation 
energy and binary chemical reaction. Sankar et al.9 documented a report on the double di�usive convection in a 
vertical annulus �lled with a �uid-saturated porous medium accompanying the e�ects of discrete source of heat 
and solute on the �uid �ow, heat and mass transfer rates in which the location of stronger �ow circulation is inde-
pendent of the higher heat and mass transfer rates in the porous region. Zuhra et al.10 used the OHAM solution to 
develop the special form of initial value problems to complex KdV equation in which three di�erent types of semi 
analytic complextion solutions from complex KdV equation have been achieved. Sankar et al.11 carried out the work 
on Brinkman extended Darcy equation for the natural convection heat transfer due to two discrete heat sources 
showing that the bottom heater is found to dissipate higher heat transfer compared to top heater. �e convection 
and saturation transferring studies may be consulted in the references12–24.

Nano�uids contain the suspended nanoparticles whose diameters are less than 100 nm, used for the enhanced 
thermal conductivity. Nano�uids have applications in solar water heating, improving transportation, heat transfer 
e�ciency of refrigerator and chillers, and optimal absorption of solar energy. Nano�uids are used for the cooling 
of machine equipments, nuclear reactor, transformer oil, and microelectronics. �ese are also used in drugs deliv-
ery and radiation in patients. �e �rst innovative work in this regard is due to Choi25 whose work pawed the way 
for researchers to investigate nano�uids. Irfan et al.26 presented the impact of chemical reaction and activation 
energy on dual nature of unsteady �ow of Carreau magnetite nano�uid owing to shrinking/stretching sheet in 
the presence of convective conditions, thermal radiation, viscous dissipation, Joule heating and heat source/sink. 
Hashim et al.27 provided a novel study to develop and understand a mathematical model for a non-Newtonian 
Williamson �uid taking into account the nanoparticles which described the thermal characteristics of nano�uid 
through Rosseland approximation to illustrate the nonlinear radiation e�ects. Moradi et al.28 projected an exper-
imental investigation on heat transfer characteristics of multi-walled carbon nanotube aqueous nano�uids inside 
a countercurrent double-pipe heat exchanger using porous media. �ey used the aluminum porous media due 
to the construction of the medium, with porous plate media at the center of the inner tube and with three porous 
plates on the walls of the inner tube for investigating the e�ects of parameters like �ow rate, mass fraction of 
nano�uids, and inlet temperature of nano�uids. Sadiq et al.29 inquired the properties of MHD oscillatory oblique 
stagnation �ow of micropolar �uid immersed with Cu and Al2O3 assuming magnetic �eld parallel towards the 
isolating streamline to model both of weak and strong concentration. In that paper, it is proved that magnetic 
e�ect is prominent on Cu compared to Al2O3. Benos et al.30 studied the laminar two-dimensional MHD natural 
convection in a shallow cavity using a carbon nanotube water nano�uid which is internally heated by volumet-
rically heat sources, exploring an interfacial nanolayer adjacent to solid particles and a nutshell where increasing 
the concentration of the carbon nanotube generated the decrement in �uid �ow. Ramzan et al.31 solved the prob-
lem of three dimensional MHD couple stress nano�uid �ow with Joule heating and viscous dissipation past an 
exponential stretching surface taking into account Brownian motion and thermophoresis e�ects with convective 
heat condition which distinctly introduced a realistic boundary constraint for nano�uid �ow model.

Rotating �ows have applications in computer disk drives, mass spectromentries, jet motors, electric power 
generating and turbine systems, and food processing. Rout et al.32 analyzed the axisymmetric �ows of copper 
and silver water nano�uids between two rotating disks in the presence of Hartmann number, porous medium, 
and drag coe�cient with thermal radiation. �ey used the Adomian Decomposition Method (ADM) to solve 
the coupled ordinary di�erential equations and proved that an enhancement in solid volume fraction decreased 
the velocity. Ahmad et al.33 investigated the Maxwell nano�uid �ow between two coaxially parallel stretchable 
rotating disks in the presence of axial magnetic �eld and variable thermal conductivity. �ey used the Buongiorno 
nano�uid model and showed the behaviors of upper and lower disks in the same and opposite directions. Li et al.34  
reported a three-dimensional unsteady mixed nano-bioconvection �ow between two contracting or expanding 
rotating disks using the passively controlled nano�uid model in which the Brownian di�usion and thermopho-
resis were considered as the two dominant factors for nanoparticles/base-�uid slip mechanisms. Hayat et al.35 
explored the �ow between two stretchable rotating disks in porous medium with Cattaneo-Christov heat �ux 
theory �nding that motion in y-direction decreased with in increase in rotational parameter. Ahmed et al.36 used 
the Von Karman similarity transformations for the Buongiorno’s nano�uid model and incorporated the revised 
condition for nanoparticle volume fraction implementing �nite di�erence technique known as Keller box method 
for the solution of the problem.

�ermodynamics second law is equally useful like the �rst law. �e second law analysis is e�ectively used in 
heat transfer mechanisms. It is used in minimizing the irreversibility of thermal systems. Various authors have 
discussed entropy generation. For example, Abbas et al.37 discussed the entropy generation in peristaltic �ow of 
nano�uids in a non-uniform two dimensional channel with compliant walls whose mathematical modeling was 
obtained under the approximation of long wavelength and zero Reynolds number. Khan et al.38 followed the 
Tiwari-Das model of nano�uid for the �ow of aluminum and copper nanoparticles between two rotating disks 
to discuss the entropy generation, statistical declaration and probable error in the presence of Joule heating and 
thermal radiation. Al-Rashed et al.39 investigated the nanoparticle shapes linked to entropy generation of boe-
hmite alumina nanoparticles of di�erent shapes (cylindrical, brick, blade, platelet and spherical) dispersed in a 
mixture of water/ethylene glycol �owing through a horizontal double-pipe minichannel heat exchanger to prove 
that platelet shape nanoparticles had the high entropy generation compared to spherical shape. Shukla et al.40 
presented the theoretical study of multiple slip �ow with entropy generation in mixed convection MHD �ow of 
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an electrically conducting nano�uid on a vertical cylinder with viscous dissipation, no-�ux nanoparticle concen-
tration resulting that entropy increased with second order velocity slip, magnetic �eld and curvature parameter. 
Rashidi et al.41 studied entropy generation on MHD blood �ow caused by peristaltic waves employing perturba-
tion method for the solution of the problem stating that the study is applied in �uids pumping for pulsating and 
non-pulsating continuous motion in di�erent channels structure as well as controlling the �ow. Madiha et al.42  
analyzed �ve nanoparticles namely silver, copper, copper oxide, titanium oxide, and aluminum oxide with water 
as base �uid for the entropy generation on stretching cylinder with nonlinear radiation, non-uniform heat source/
sink, convective conditions and Darcy-Forchheimer relation showing that entropy generation depended on 
Brinkman number, temperature di�erence parameter and Forchheimer number. Rashidi et al.43 compared the 
single and two phase modeling approaches for force convective turbulent �ow for TiO2 nanoparticles of spherical 
shape with water as base �uid in a horizontal tube with constant wall heat �ux boundary condition. �eir output 
showed that the entropy generation for thermal and turbulent dissipation were very close to single-phase and 
mixture models. Selimefendigil and Oztop44 worked on a vented cavity with inlet and outlet ports investigating 
mixed convection and entropy generation using an inclined magnetic �eld where the numerical simulation was 
performed for various values of Reynolds number, Hartmann number and solid volume fractions of CuO nan-
oparticles. �ey used the Galerkin weighted �nite element method to evaluate the solution achieving di�erent 
results for di�erent parts of the cavity, Hartmann number and entropy generation. Rashidi et al.45 considered the 
analysis of the second law of thermodynamics applied to an electrically conducting incompressible nano�uid 
�owing past a porous rotating disk in the presence of an externally applied uniform vertical magnetic �eld. �ey 
stated that the simulation of the problem has applications in novel nuclear space propulsion engines, heat transfer 
enhancement in renewable energy systems and industrial thermal management.

At present convection through motile microorganisms is growing high response on account of their uses in 
micro�uidic devices, like biogalvanic devices and biosciences dispersions and in the investigation of few species 
of thermophiles existing in springs having high temperature, in microbial oil recovery, and in formulation of oil 
and gas carrying sedimentary basins. Khan et al.46 reported a study to investigate the bioconvection due to gyro-
tactic microorganisms and nanoparticles which showed that conduction increases with increasing the buoyancy 
parameter in the presence of convective condition while at the same time nanoparticle concentration increased 
with the enhancement of Brownian motion parameter. De47 obtained the dual solutions for water based nano�uid 
and gyrotactic microorganisms with thermal radiation on nonlinear shrinking/stretching sheet. Using ��h order 
Runge-Kutta-Fehlberg method along with shooting method for solution, his �ndings revealed that motile micro-
organisms function decreased for the enhancement of bioconvection Lewis number. Palwasha et al.48 presented a 
study that considered the gravity driven nano�uid �ow containing nanoparticles and gyrotactic microorganisms. 
�ey solved the problem through Homotopy Analysis Method and explored that the simultaneous motion of 
Casson and Williamson nano�uids decreased with high magnetic �eld parameter. On the slip side, Khan et al.49  
obtained the results of �uid �ow, heat transfer containing nanoparticles and gyrotactic microorganisms in the 
presence of non-Newtonian nano�uids. �ey showed that nano�uids �ow, heat transfer, nanoparticles and gyro-
tactic microorganisms concentrations had realistic results for passively controlled nano�uid model boundary 
conditions compared to the actively controlled nano�uid model boundary conditions. Zuhra et al.50 analyzed 
gyrotactic microorganisms and nanoparticles along with second grade nano�uid �ow and heat transfer in which 
temperature increased with thermophoresis parameter.

Motivated from the above important investigations, the present study analyzes the entropy generation, �ow, 
heat transfer, nanoparticles and gyrotactic microorganisms concentration via Homotopy Analysis Method51 solu-
tion. Graphs are sketched to show the in�uences of all parameters on di�erent pro�les.

Methods
Problem formulation. �e axisymmetric motion of magnetohydrodynamic three dimensional, time inde-
pendent and an incompressible nano�uid between two parallel in�nite disks is considered. �e lower disk is sup-
posed to lie at z = 0. �e distance between upper and lower disks is H. It is important to note that the lower and 
upper disks have the angular velocities Ω1 and Ω2 respectively in the rotation of axial direction. �e stretching, 
temperature, concentration values on these disks are respectively a1, T1, C1 and a2, T2, C2. An intensi�ed magnetic 
�eld of strength B0 is applied in the z-direction (see Fig. 1).

�e water is taken as base �uid with nanoparticles. �e nanoparticles volume fraction on both of the disks 
are satis�ed with the actively controlled model i. e. there exist the nanoparticle �ux at the walls. �e distributions 
of motile gyrotactic microorganisms on the lower and upper disks are N1 and N2 respectively. �e dilution of 
nano�uid is assumed to prevent the bioconvection instability on behalf of dispersion viscosity. Assumption is 
also taken that the nanoparticles suspended in the base �uid are stable which have no e�ect on the swimming 
direction and velocity of the microorganisms.

Keeping in mind the aforementioned conditions, the following �ve �eld equations carrying the conservation 
of total mass, momentum, thermal energy, nanoparticle volume fraction, and microorganisms are given as in34
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Expanding Eqs. (1–5) in cylindrical coordinate system (r, ϑ, z), the driving formulations are as in32–36,38
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Figure 1. Geometry of the problem.
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Illustration of di�erent mathematical letters and notations used in Eqs. (1–17) are given in Table 1. Substituting 
the values from Eq. (17) in Eqs. (9–16), generate the following eight Eqs. (18–25) 
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�e various parameters in Eqs. (18–25) are given in Table 2.
Di�erentiating Eq. (18) w. r. t. ζ

f Re ff gg Mf[2 2 ] 0 (26)″″ + ″′ + ′ − ″ = .

Accounting Eq. (18) and Eqs. (24,25), the pressure term  becomes 
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Solving Eq. (20) for P using integration for the range zero to ζ
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Important physical quantities. Proceeding for the local skin friction, Nusselt number, Sherwood number 
and motile microorganisms �ux. On the lower and upper disks, the skin friction coe�cients are respectively C f

1
 

and C f
2
, de�ned as 
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Hence putting values in Eq. (29) from Eqs. (30) and (31), the lower and upper disks have the skin friction coef-
�cients as 
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[( (0)) ( (0)) ] ,
(32)

f
r

2 2 1
2

1
= ″ + ′

Symbols/Notations Illustration

v = (u, v, w) Velocity of the nano�uid

J Current density

B Magnetic �eld

C Nanoparticles concentration

P Pressure

DB Brownian di�usion coe�cient

DT �ermophoretic di�usion coe�cient

j Microorganisms �ux

N Density motile of microorganisms

Dn Microorganisms di�usion

b Chemotaxic constant

Wc Maximum cell swimming speed

(r, ϑ, z) Cylindrical coordinates

H Distance between disks (m)

u (r, ϑ, z) Velocity component

v (r, ϑ, z) Velocity component

w (r, ϑ, z) Velocity component

B = (0, 0, B0) Magnetic induction

T Temperature

D Di�usion of species

f Dimensionless velocity in radial direction

g Dimensionless velocity in tangential direction

Greek symbols/Notations Illustration

ρnf Density of nano�uid

µnf Dynamic viscosity of nano�uid

σnf Electrical conductivity of nano�uid

ρc( )p nf
Heat capacity of nano�uid

v Average swimming velocity vector of the oxytactic microorganisms

α �ermal di�usivity of nano�uid

θ (ζ) Dimensionless temperature

φ (ζ) Dimensionless concentration

νnf Kinematic viscosity of nano�uid

 Pressure parameter

Subscripts Illustration

nf Nano�uid

Table 1. Illustration of di�erent mathematical letters and notations used in Eqs. (1–17).
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C
Re

f g
1

[( (1)) ( (1)) ] ,
(33)

f
r

2 2 1
2

2
= ″ + ′

where Re rr
H

nf

1=
ν

Ω  represents the local Reynolds number.

�e local Nusselt numbers on the lower and upper disks are 

Nu
Hq

T T
Nu

Hq

T T( )
,

( )
,

(34)
r

w

z

r
w

z H1 2 0 1 2
1 2α α
=

−
=

−
= =

where qw is wall heat �ux and at lower disk it is 

q
T

z

T T

H
(0)

(35)
w

z 0

1 2α α θ= −
∂

∂
= −

−
′ .

=

Hence from Eq. (34), local Nusselt numbers on the lower and upper disks are 

Nu Nu(0), (1) (36)r r1 2
θ θ= − ′ = − ′ .

�e Sherwood numbers on the lower and upper disks are 

=
−

=
−

= =

Sh
Hq

D C C
Sh

Hq

D C C( )
,

( )
,

(37)
r

m

B z

r
m

B z H1 2 0 1 2
1 2

where qm is wall mass �ux and at lower disk it is 

φ= −
∂

∂
= −

−
′ .

=

q D
C

z
D

C C

H
(0)

(38)
m B

z

B

0

1 2

Hence from Eq. (37), local Sherwood numbers on the lower and upper disks are 

φ φ= − ′ = − ′ .Sh Sh(0), (1) (39)r r1 2

�e local motile microorganisms �uxes on the lower and upper disks are 

Sn
Hq

D N N
Sn

Hq

D N N( )
,

( )
,

(40)
r

n

n z

r
n

n z H1 2 0 1 2
1 2
=

−
=

−
= =

where qn is wall motile microorganisms �ux and at lower disk it is 

= −
∂

∂
= −

−
′ .

=

q D
N

z
D

N N

H
h (0)

(41)
n n

z

n

0

1 2

Parameter names Symbols/Notations De�ned values

Reynolds number Re
ν

Ω H

nf

1
2

Magnetic �eld parameter M
σ

ρ Ω

nf B

nf

0
2

1

Prandtl number Pr cP nf nf( )ρ ν

α

Eckert number Ec Ω

−

r

cP T T

2
1
2

( 1 2)

Schmidt number Sc
νnf

Dn

Lewis number Le
nf

DB

ν

Bioconvection Peclet number Pe bWc
Dn

Stretching parameter due to lower disk k1 Ω

a1

1

Stretching parameter due to upper disk k2 Ω

a2

2

Brownian motion parameter Nb
DB C C

nf

( 2 1)

ν

−

�ermophoresis parameter Nt
τ

ν

−DT T T

nf T

( 2 1)

1

Rotation parameter Ω 2

1

Ω

Ω

Superscripts Illustration

′ Di�erentiation with respect to ζ

Table 2. Various parameters in Eqs. (18–25).
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So from Eq. (40), local motile microorganisms �uxes on the lower and upper disks are 

= − ′ = − ′ .Sn h Sn h(0), (1) (42)r r1 2

Entropy Generation. Entropy generation for the nanobioconvection model is expressed as 

α µ

σ

=












∂

∂





+





∂

∂













+













∂

∂





+ +






∂

∂










∂

∂





+





∂

∂





+





∂

∂




















+ + +












∂

∂





+





∂

∂













+














∂

∂





+





∂

∂














+






∂

∂

∂

∂
+
∂

∂

∂

∂






+







∂

∂

∂

∂
+
∂

∂

∂

∂





 (43)

S
T

T

r

T

z T

u

r

u

r

w

z

v

z

u

z
r

r

v

r

T
B u v

RD

C

C

r

C

z

RD

N

N

r

N

z

RD

T

C

r

T

r

C

z

T

z

RD

T

N

r

T

r

N

z

T

z

2 2 2

( )

,

G
nf

2
2

2 2

2

2 2

2

2 2 2 2

2
0
2 2 2

2 2 2 2

2 2

where R is the ideal gas constant and D is the di�usivity.
Characteristic entropy generation rate is expressed as 

S
T

T

( )

(44)nf
0

2
1

2
2

α

ν
=

∆ Ω
.

Applying values from Eq. (17) to Eq. (43), entropy generation number =NG
S

S

G

0

 becomes 

ζ β θ γ φ γ

γ θ φ γ θ

= ′ + ′ − ′ ′ + ′ + ′ + + ′ + ′

+ ′ ′ + ′ ′ (45)

N Br f A f g B f M f g h

h

( ) ( ) [4( ) 4 ( ) ( ) ( ) ] [( ) ( ) ] ( ) ( )

,

G
2 2 2 2

1
2 2 2

1
2

2
2

3 4

where T

T2

β =
∆  is known as the temperature di�erence parameter, =

µ

α

Ω

∆
Br

r

T

( )
nf

2
1

2

 represents the Brinkman number,  

A
r

H2=  and B
r

H1

2

2=  are some dimensionless parameters, γ =
α

−

∆

RDT C C

H T C1
( )

( )

2
2

2 1
2 2

, RDT N N

H T N2
( )

( )

2
2

2 1
2 2γ =

α

−

∆
, γ =

α

−

∆

RDT C C

H T3
( )

( )

2 2 1
2 2

, 

and γ =
α

−

∆

RDT N N

H T4
( )

( )

2 2 1
2 2

 are the parameters due to di�usivity of nanoparticles and gyrotactic microorganisms.

�e Bejan number is represented as 

Be
Entropy generation due to heat mass and gyrotactic microorganisms flow

Total entropy generation

,

(46)
= .

A�er simpli�cation, Eq. (46) assumes the form 

(47)
Be

h h

Br f A f g B f M f g h h

( ) ( ) ( )

( ) [4( ) 4 ( ) ( ) ( ) ] [( ) ( ) ] ( ) ( )

2
1

2
2

2
3 4

2 2 2 2 2 2 2
1

2
2

2
3 4

β θ γ φ γ γ θ φ γ θ

β θ γ φ γ γ θ φ γ θ
=

′ + ′ + ′ + ′ ′ + ′ ′

′ + ′ − ′ ′ + ′ + ′ + + ′ + ′ + ′ ′ + ′ ′
.

Computation Methodology
Liao51 proposed Homotopy Analysis Method (HAM) to solve linear, nonlinear di�erential equations including 
algebraic, ordinary di�erential, partial di�erential and di�erential-di�erence equations. It provides the best solu-
tions and it has been proved that its solution is close to exact solution. HAM has a great variety and has some 
superior features over other used methods since the other used methods (for example perturbation methods) 
largely depend on small/large parameters where the convergence of series solution is not found easily or exactly. 
In HAM, a homotopy technique is used with an embedding parameter which is considered as small so the orig-
inal nonlinear problem is converted into an in�nite number of linear problems without using the perturbation 
methods.

Some superior qualities of HAM can be enumerated as
(i)        Perturbation methods do not work when both cases of small or large parameter occur while HAM works 

on homotopic deformation engaging initial guess leading to �nal outcome.
(ii)      In other methods convergence of solutions is very di�cult to achieve while HAM uses a proper mecha-

nisms for the convergence of solution (like in the present problem ħ is the convergence control parameter and the 
convergence of solution is achieved very easily in Table 3).

(iii)    HAM is adjusted i. e. if it is needed to generate solutions in the form of polynomials, exponential or of 
trigonometric forms, then the base function is adjusted accordingly.

Applying HAM, the initial approximations and auxiliary linear operators are chosen as 

ζ ζ ζ ζ ζ ζ ζ θ ζ ζ φ ζ ζ ζ ζ= − + + + = − + Ω = − = − = − (48)f k k k k k g h( ) (2 ) ( ) , ( ) 1 , ( ) 1 , ( ) 1 , ( ) 1 ,
0 1 1 2

2
1 2

3

0 0 0 0

θ φ= ″″ = ″ = ″ = ″ = ″
θ φL L L LL f g h, , , , (49)f g h

characterizing 
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L L L

L L

C C C C C C C C

C C C C

[ ] 0, [ ] 0, [ ] 0,

[ ] 0, [ ] 0, (50)

f g

h

1 2 3
2

4
3

5 6 7 8

9 10 11 12

ζ ζ ζ ζ ζ

ζ ζ

+ + + = + = + =

+ = + =

θ

φ

evidently Ci(i = 1–12) are the arbitrary constants.

Zeroth-order deformation problems. Considering 

f q g q
f q

Re f q
f q

g q
g q

M
f q

[ ( , ), ( , )]
( , )

2 ( , )
( , )

2 ( , )
( , ) ( , )

,
(51)

f

4

4

3

3

2

2
ζ ζ

ζ

ζ
ζ

ζ

ζ
ζ

ζ

ζ

ζ

ζ
ℵ =

∂

∂
+








∂

∂
+

∂

∂
−

∂

∂








ζ ζ
ζ

ζ
ζ

ζ

ζ

ζ

ζ
ℵ =

∂

∂
+








∂

∂
−

∂

∂








f q g q
g q

Re f q
g q

M
g q

[ ( , ), ( , )]
( , )

2 ( , )
( , ) ( , )

,
(52)

g

2

2

f q g q q
q

PrRe f q
q

MEc
f q

g q Nb
q q

Nt
q

[ ( , ), ( , ), ( , )]
( , )

2 ( , )
( , ) ( , )

( ( , ))
( , ) ( , ) ( , )

,

(53)

2

2

2

2

2

ζ ζ θ ζ
θ ζ

ζ
ζ

θ ζ

ζ

ζ

ζ

ζ
θ ζ

ζ

φ ζ

ζ

θ ζ

ζ

ℵ =
∂

∂
+









∂

∂
+





∂

∂






+ +
∂

∂

∂

∂
+





∂

∂














θ

f q q
q

Re Lef q
q Nt

Nb

q
[ ( , ), ( , )]

( , )
2 ( , )

( , ) ( , )
,

(54)

2

2
ζ φ ζ

φ ζ

ζ
ζ

φ ζ

ζ

θ ζ

ζ
ℵ =

∂

∂
+








∂

∂
+

∂

∂






φ

(55)
f q q h q

h q
Re Scf q

h q
Pe

h q q
h q

q
[ ( , ), ( , ), ( , )]

( , )
2 ( , )

( , ) ( , ) ( , )
( , )

( , )
,h

2

2

2

2
ζ φ ζ ζ

ζ

ζ
ζ

ζ

ζ

ζ

ζ

φ ζ

ζ
ζ

φ ζ

ζ
ℵ =

∂

∂
+









∂

∂
+







∂

∂

∂

∂
−

∂

∂















where ℵ is the nonlinear operator and q is an embedding parameter such that q  ∈  [0, 1].
Further 

ζ ζ ζ ζ− − = ℵLq f q f q f q g q(1 ) [ ( , ) ( )] [ ( , ), ( , )], (56)f f f0


Lq g q g q f q g q(1 ) [ ( , ) ( )] [ ( , ), ( , )], (57)g g g0
ζ ζ ζ ζ− − = ℵ

Lq q q f q g q q q(1 ) [ ( , ) ( )] [ ( , ), ( , ), ( , ), ( , )], (58)0θ ζ θ ζ ζ ζ θ ζ φ ζ− − = ℵθ θ θ

φ ζ φ ζ ζ θ ζ φ ζ− − = ℵφ φ φLq q q f q q q(1 ) [ ( , ) ( )] [ ( , ), ( , ), ( , )], (59)0

Lq h q h q f q q h q(1 ) [ ( , ) ( )] [ ( , ), ( , ), ( , )], (60)h h h0 ζ ζ ζ φ ζ ζ− − = ℵ

where ħf, ħg, ħθ, ħφ, and ħh are used for the auxiliary non-zero parameters.
�e boundary conditions for Eqs. (56–60) are respectively 

f q f q k f q f q k(0, ) 0, (0, ) , (1, ) 0, (1, ) , (61)1 2= ′ = = ′ =

Order of 
approximation − f ″(0) g− ′(0) − θ′(0)

1 2.12234561 0.97231567 1.77546831

6 2.12234562 0.97231568 1.77546835

11 2.12234563 0.97231569 1.77546838

16 2.12234563 0.97231569 1.77546838

21 2.12234564 0.97231569 1.77546838

26 2.12234564 0.97231569 1.77546838

31 2.12234564 0.97231569 1.77546838

36 2.12234564 0.97231569 1.77546838

41 2.12234564 0.97231569 1.77546838

42 2.12234564 0.97231569 1.77546838

Table 3. Convergence of the homotopy solution for di�erent order of approximation.
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= = Ωg q g q(0, ) 1, (1, ) , (62)

q q(0, ) 1, (1, ) 0, (63)θ θ= =

q q(0, ) 1, (1, ) 0, (64)φ φ= =

h q h q(0, ) 1, (1, ) 0 (65)= = .

For q = 0 and q = 1, the following results are obtained 

ζ ζ ζ ζ= ⇒ = = ⇒ =q f f and q f f0 ( , 0) ( ) 1 ( , 1) ( ), (66)0

Figure 3. ħg curve of g(ζ).

Figure 4. ħθ curve of θ(ζ).

Figure 2. ħf curve of f(ζ).
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ζ ζ ζ ζ= ⇒ = = ⇒ =q g g and q g g0 ( , 0) ( ) 1 ( , 1) ( ), (67)0

θ ζ θ ζ θ ζ θ ζ= ⇒ = = ⇒ =q and q0 ( , 0) ( ) 1 ( , 1) ( ), (68)0

φ ζ φ ζ φ ζ φ ζ= ⇒ = = ⇒ =q and q0 ( , 0) ( ) 1 ( , 1) ( ), (69)0

ζ ζ ζ ζ= ⇒ = = ⇒ = .q h h and q h h0 ( , 0) ( ) 1 ( , 1) ( ) (70)0

f(ζ, q) is made f0(ζ) to f(ζ) when q has the values from 0 to 1. g(ζ, q) is made g0(ζ) to g(ζ) when q has the values 
from 0 to 1. θ(ζ, q) is made θ0(ζ) to θ(ζ) when q has the values from 0 to 1, φ(ζ, q) is made φ0(ζ) to φ(ζ) for q 
retaining the values from 0 to 1. Similarly h(ζ, q) is made h0(ζ) to h(ζ) when q has the values from 0 to 1.

Introducing Taylor series expansion and Eqs. (66–70), the simpli�cations are 

Figure 5. ħφ curve of φ(ζ).

Figure 6. ħh curve of h(ζ).

Figure 7. Axial velocity in the consideration of Re.
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(71)m
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m
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0
1 0

g q g g q where g
m

g q

q
( , ) ( ) ( ) , ( )

1

!

( , )
,

(72)m
m

m
m

m

m

q

0
1 0

∑ζ ζ ζ ζ
ζ

= + =
∂

∂
=

∞

=

q q where
m

q

q
( , ) ( ) ( ) , ( )

1

!

( , )
,

(73)m

m
m

m

m

m

q

0

1 0

∑θ ζ θ ζ θ ζ θ ζ
θ ζ

= + =
∂

∂
=

∞

=

Figure 8. Radial velocity in the consideration of k1.

Figure 9. Radial velocity in the consideration of k2.

Figure 10. Radial velocity in the consideration of M.
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∑φ ζ φ ζ φ ζ φ ζ
φ ζ

= + =
∂

∂
=

∞

=

q q where
m

q

q
( , ) ( ) ( ) , ( )

1

!

( , )
,

(74)m

m
m

m

m

m

q

0

1 0

∑ζ ζ ζ ζ
ζ

= + =
∂

∂
.

=

∞

=

h q h h q where h
m

h q

q
( , ) ( ) ( ) , ( )

1

!

( , )

(75)m

m
m

m

m

m

q

0

1 0

�e convergence of the series is closely related to ħf, ħg, ħθ, ħφ and ħh. Let ħf, ħg, ħθ, ħφ and ħh are chosen in a man-
ner that the series in Eqs. (71–75) converge at q = 1, so Eqs. (71–75) provide 

Figure 11. Tangential velocity in the consideration of Ω.

Figure 12. Temperature in the consideration of Nb.

Figure 13. Temperature in the consideration of Ec.
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∑ζ ζ ζ= +
=

∞

f f f( ) ( ) ( ),
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Figure 14. Temperature in the consideration of Pr.

Figure 15. Nanoparticles concentration in the consideration of Le.

Figure 16. Nanoparticles concentration in the consideration of Nt.
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mth order deformation problems. For Eqs. (56) and (61), the mth order deformation is 

ζ χ ζ ζ− =
−

L f f[ ( ) ( )] ( ), (81)f m m m f m
f

1
R

Figure 17. Motile microorganisms concentration in the consideration of Le.

Figure 18. Motile microorganisms concentration in the consideration of Pe.

Figure 19. Motile microorganisms concentration in the consideration of Sc.
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For Eqs. (57) and (62), the mth order deformation is 
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= =g g(0) 0, (1) 0, (85)m m

Figure 20. Entropy generation rate in the consideration of β.

Figure 21. Entropy generation rate in the consideration of Br.

Figure 22. Entropy generation rate in the consideration of B1.
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For Eqs. (58) and (63), the mth order deformation is 
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Figure 23. Entropy generation rate in the consideration of A.

Figure 24. Entropy generation rate in the consideration of k1.

Figure 25. Entropy generation rate in the consideration of k2.
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For Eqs. (59) and (64), the mth order deformation is 
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Figure 26. Entropy generation rate in the consideration of Re.

Figure 27. Entropy generation rate in the consideration of Sc.

Figure 28. Entropy generation rate in the consideration of Pe.
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Figure 29. Entropy generation rate in the consideration of Ec.

Figure 30. Entropy generation rate in the consideration of M.

Figure 31. Entropy generation rate in the consideration of Pr.
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Combining the special solutions ζ∗f ( )
m

, g ( )
m
ζ∗ , θ ζ∗( )m , φ ζ∗( )m  and ζ∗h ( )m , the general solutions of Eqs. (81), (84), (87), 

(90) and (93) are 

ζ ζ ζ ζ ζ= + + + +∗f f C C C C( ) ( ) , (97)m m 1 2 3
2

4
3

g g C C( ) ( ) , (98)m m 5 6ζ ζ ζ= + +∗

C C( ) ( ) , (99)m m 7 8θ ζ θ ζ ζ= + +∗

Figure 32. Entropy generation rate in the consideration of Nb.

Figure 33. Entropy generation rate in the consideration of Ω.

Figure 34. Entropy generation rate in the consideration of γ1.
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ζ ζ ζ= + + .∗h h C C( ) ( ) (101)m m 11 12

Results and discussion
Results are obtained for the non-linear differential Eqs. in (19,21–26) through the application of 
MATHEMATICA. Equations (32, 33, 36, 39, 42) and (45) are solved with the obtained HAM solution for discuss-
ing skin friction coe�cients, Nusselt numbers, Sherwood numbers, motile microorganisms �uxes and entropy 
generation. �e geometry of the problem is demonstrated in Fig. 1. Following Liao51, the valid ħ-curves for f(ζ), 
g(ζ), θ(ζ), φ(ζ) and h(ζ) are constructed with the ranges −1.5 ≤ ħf ≤ − 0.4, − 20.0 ≤ ħg ≤ 18.0, − 2.0 ≤ ħθ ≤ 0.0, 
− 2.0 ≤ ħφ ≤ 0.0 and − 2.5 ≤ ħh ≤ 0.5 in Figs. 2–6. �e e�ects of relevant parameters on the respective pro�les are 

Figure 35. Entropy generation rate in the consideration of γ2.

Figure 36. Entropy generation rate in the consideration of γ3.

Figure 37. Entropy generation rate in the consideration of γ4.
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displayed in Figs. 7–39. Convergence of the HAM solution is shown through Table 3. Comparison of the existing 
work with published work is presented through Tables 4 and 5.

Dynamic role of profiles. Figure 7  shows the e�ect of Reynolds number Re on axial velocity f(ζ) observing 
that the enhancement in velocity pro�le is very much signi�cant with enhancement in Reynolds number. �e 
re�ection point in that �gure lies in the neighboring of 0.25 where Reynolds number e�ect turns to decreasing 
behavior. Graph behavior is similar to the Fig. 3 of the study by Hayat et al.35 and Fig. 5(a) of the study by Ahmed 
et al.36. Figure 8 reveals that radial velocity ζ′f ( ) increases with stretching parameter k1 in the e�ectiveness of 
rotating system. Velocity becomes negative at lower disk due to high stretching. �e tendency of the graph is 
already obtained in Fig. 6 by Hayat et al.35. Due to centrifugal force, the �uid particles are pushed away in the 
radial direction. k1 = 0 shows that the lower disk is una�ected by stretching phenomena. Radial velocity changes 
its sign near ζ = 0.3 which is the in�ection point hence the �uid drawn radially inwards due to slow rotating disk 
and is thrown radially outwards due to fast rotating disk.

�e notion in Fig. 9 has the similar result about the parameter k2 and radial velocity ζ′f ( ). It provides oppor-
tunities for bringing back past memory (e�ect in Fig. 8), getting to know about the pro�les. �e graph behavior is 
closely matched with the Fig. 8 in35, Fig. 3(c) in36 and Fig. 9 in the paper by Khan et al.38. k2 = 0 shows that the 
stretching rate at upper disk is absent. In such situation, the axial velocity component is positive for positive and 
negative directions of rotation. �erefore, near the lower disk, the radial velocity is positive and negative near the 
upper disk. It is noted that due to the strong stretching rate (k2 = 0.20, 0.30, 0.40, 0.50) at upper disk, slow motion 
is made and the in�ection point is shi�ed towards the fast rotating disk in the radial velocity. Figure 10 shows the 

e�ect of magnetic �eld parameter M on radial velocity ζ′f ( ) to decrease the �ow. �e value of M = 
Bf

f

0
2

1

σ

ρ Ω
 which 

adheres to the simpli�cation of the nonlinear term σ +B u v( )f 0
2 2 2  in Eq. (12) and also committed to exist as a last 

negative term − B uf 0
2σ  and −σ B vf 0

2  each in Eqs. (9) and (10) respectively. So in non-dimensional form (M) of 
these terms does a lot to motion and heating. A drag-like Lorentz force is generated by the application of magnetic 
�eld on the electrically conducting �uid. �is force has the tendency to slow down the �ow around the disk. 
Figure 10 follows the trend of Figs. 4(c)36 and 345. Figure 11 is the result of an e�ective collaboration between the 
rotation parameter Ω and the tangential velocity g(ζ). Rotation paves a long way in improving the motion. Ω is 

de�ned in Table 2 as 2

1

Ω =
Ω

Ω
 which has the basic e�ective results for rotatory motion. When Ω <  0 i. e. for the 

negative values of Ω, the direction of motion of both the disks become opposite. Ω = 0 implies that the upper disk 

Figure 38. Entropy generation rate in the consideration of Le.

Figure 39. Entropy generation rate in the consideration of Nt.
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has no part in motion and is at rest. Ω >  0 explains that the direction of motion of both the disks is same and in 
particular, Ω = 1 interprets that both the disks have the same speed and directions. Figure 11 has close resem-
blance with Fig. 11 of35.

It is easy to understand that the directions of rotation of both the disks are important in the motion of both 
the disks. When both the discs rotate in the same sense then the �uid in the disks rotates with an angular velocity. 
In particular case, the motion of upper disk is higher compared to the lower disk, the radial �ow is inwards near 
the lower disk and outwards near the upper one. On the other side, if the lower disk rotates faster than upper one, 
then �uid �ows inwards near to the lower disk and outwards near to the upper disk. In both cases, the two disks 
are attracted to one another which indicates that the pressure between the two disks decreases.

�e rotation in the opposite sense of both the disks, a plane exist between the two disks where the tangential 
velocity has zero magnitude. In such a case, the radial velocity of the �uid is inwards near the plane and out-
wards in the vicinity of both the disks. At this time, both the disks repel one another which causes to increase the 
pressure.

�e Brownian motion parameter Nb projects its in�uence on temperature θ(ζ) in Fig. 12. Brownian motion is 
the core objective of the present system. Nanoparticles and nano�uids community con�rm the Brownian motion 
contribution on real time basis. Brownian motion is the result of random motion of the nanoparticles which 
causes to increase the temperature. �is was also shown by Ahmed et al.36 in Fig. 8(b). �e greater values of Ec are 
used to access the enhanced temperature θ(ζ) in Fig. 13. �e parameter Ec is assigned the values 0.70, 3.70, 6.70 
and 9.70 which is marked due to the fact that energy is stored in the �uid region as a consequence of dissipation 
because of viscosity. �e system gets the parameter Pr by assigning the designated values 0.80, 3.80, 6.80 and 9.80 
to enhance the temperature shown through Fig. 14. Physically, thermal di�usivity is reduced with higher values 
of Prandtl number.

�e nano�uid active parameters are Lewis number Le and thermophoresis parameter Nt. Both Le and Nt 
have signi�cant role in mass transfer characteristics. Figure 15 shows that φ(ζ) is reduced with increasing values 
of Lewis number Le to ensure the power of nanoparticles di�usion. Lewis number Le is inversely related to the 
di�usion of nanoparticles. Figure 16 witnesses that the thermophoresis parameter Nt decreases the nanoparticle 
concentration φ(ζ). Enhancement of Nt aims not to improve the concentration. �ermophoresis works to push 
the nanoparticles from high energy state to low energy state on account of using temperature so in the present 
case temperature is used which a�ects the concentration. �e result of Fig. 16 is authenticated by the consequence 
of Fig. 6(B) of the work of Rout et al.32 and Fig. 9 of Ahmed et al.36.

Heating makes the system more unstable and accelerates the development of bioconvection. Figure 17 depicts 
that for the increasing values of Lewis number Le, the motile microorganisms concentration h(ζ) enhancement is 
observed. It is due to the fact that the density and boundary layer thickness of motile microorganisms is increased. 
Motile microorganisms concentration h(ζ) is easily enhanced for the prescribed values of Pe in Fig. 18. �e addic-
tion of such behavior of Pe  to the surrounding (h(ζ)) can be comprehended from Eq. (23) 
h Re Scfh Pe h h[2 ( )] 0φ φ″ + ′ + ′ ′ − ″ = , where strong coupling relation of Pe is observed with nanoparticles �eld 
φ and microorganisms concentration �eld h. It is witnessed that as Pe is attempting to resume positive values, 
event causes h(ζ) to high position. Figure 19 records the evidence of motile microorganisms concentration h(ζ) 
and Schmidt number Sc. Increasing values of Sc reduce the concentration pro�le h(ζ).

Entropy generation rate. Figure 20  illustrates the entropy generation rate NG(ζ) and the temperature 
di�erence parameter β behaviors. It proves that entropy generation rate NG(ζ) is enhanced with increasing values 
of β, as there is no challenge to the entropy existence, already reported by Khan et al.38 in Fig. 25. �e view of 
Fig. 21 is conveying a prompt response to permit that entropy generation is made high due to the positive val-
ues of Brinkman number Br like in38 through Fig. 23. In Fig. 22, the non-dimensional parameter B1 allows the 
entropy generation rate NG(ζ) to grow large by adding B1. �e other non-dimensional parameter A has good and 

Ω f ″(0)38 f ″(0)(present) g′(0)38 ′g (0)(present)

−1.0 0.066663140 0.066663112 2.0009522 2.0009513

−0.8 0.083942070 0.083942039 1.8025885 1.8025824

−0.3 0.10395088 0.10395046 1.3044236 1.3044233

0.0 0.099972208 0.099972211 1.0042776 1.0042775

0.50 0.066634195 0.066634178 0.50261351 0.50261355

Table 4. Comparison of f ″(0) and ′g (0) with previous work.

Pr θ′(1)34 θ′(1) (present) φ′(1)34 φ′(1) (present) ′h (0)34 ′h (0)(present)

0.01 0.251679 0.251671 −0.251679 −0.251671 2.0009522 2.0009513

1.00 0.247780 0.247789 −0.247780 −0.247789 0.268805 0.268801

3.00 0.239800 0.239801 −0.239800 −0.239801 0.282821 0.282823

5.00 0.231716 0.231715 −0.231716 −0.231715 0.296777 0.296775

7.00 0.223570 0.223571 −0.223570 −0.223571 0.310617 0.310616

Table 5. Comparison of θ′(1), φ′(1) and ′h (1) with previous work.
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interesting e�ect, shown in Fig. 23, not to increase A-based entropy generation rate NG(ζ). So the irreversibility 
of the thermal system is reduced by adjusting the term A. Figure 24 takes several values of stretching parameter 
k1 and delivers high entropy generation rate NG(ζ) wheres in Fig. 25 for the stretching parameter k2, the entropy 
generation rate NG(ζ) initially decreases and then increases which has been discussed in a similar way by Fig. 
2938. Figure 26 projects that Reynolds number Re provides incremental values to entropy generation rate NG(ζ). 
Similarly in the other �gure, namely Fig. 27, the entropy generation rate NG(ζ) is noti�ed for the information that 
for any quantity of Schmidt number Sc, NG(ζ) is positively a�ected. In Fig. 28, it is stated that on the appearance of 
Peclet number Pe, the entropy is growing large. On Fig. 29, the constituents represent the irreversibility rate NG(ζ) 
along with the Eckert number Ec enhancement under this �gure. Figure 30 shows that there are certain provi-
sions in the magnetic �eld parameter M, mostly four values of M which make high the entropy generation rate. 
Figure 31 reveals that the present forms of entropy generation rate NG(ζ) and Prandtl number Pr are enhanced.

Figure 32 provides the information that according to said �gure, the size of entropy generation rate NG(ζ) 
is maximized for high values of Brownian motion parameter Nb. Figure 33 is related to rotation parameter Ω 
and entropy generation rate NG(ζ) possessing maximization in both Ω and NG(ζ). �e concentration di�usivity 
parameters γ1 in Fig. 34 and γ3 in Fig. 35 respectively are showing the same behaviors. Similarly the decisions 
are exist for microorganisms concentration di�usivity parameters γ2 in Fig. 36 and γ4 in Fig. 37 respectively 
to enhance the entropy generation rate NG(ζ). One of the fundamental parameter Le in Fig. 38 increases the 
entropy generation rate NG(ζ). Figure 39 projects in a manner where the thermophoresis parameter Nt in�uence 
is involved to increase the entropy generation rate NG(ζ).

Conclusions
Buongiorno’s nano�uid model is used to model the problem between two stretchable rotating disks with �ow, 
heat and mass transfer as well as gyrotactic microorganisms and entropy generation. Homotopy analysis method 
(HAM) is applied to solve the problem and the solution is shown through graphs for the interesting e�ects of all 
the embedded parameters.

�e �ndings are summarized as follow.
(1)     Reynolds number Re increases the axial velocity f(ζ). Stretching parameters k1, k2 and magnetic �eld 

parameter M decrease the radial velocity while rotation parameter Ω increases the tangential velocity.
(2)     Brownian motion parameter Nb, Eckert number Ec and Prandtl number Pr increase the temperature.
(3)     Lewis number Le and Peclet number Pe increase the microorganisms concentration while the Schmidt 

number Sc decreases the same pro�le.
(4)     Temperature di�erence parameter β, Brinkman number Br, non-dimensional constant B1, stretching 

parameters k1 and k2, Reynolds number Re, Schmidt number Sc, Peclet number Pe, Eckert number Ec, 
magnetic �eld parameter M, Prandtl number Pr, Brownian motion parameter Nb, rotation parameter Ω, 
nanoparticles and gyrotactic microorganisms di�usivity parameters γ1, γ2, γ3 and γ4, Lewis number Le 
and thermophoresis parameter Nt increase the entropy generation rate while the non-dimensional con-
stant A decreases the same pro�le.

(5)    Convergence of the HAM solution is shown through Table 3 and close agreement is found in Tables 4 and 
5 with the published work.

Data availability
All the relevant material is available.

Received: 18 July 2019; Accepted: 24 February 2020;

Published: xx xx xxxx

References
 1. Venkatachalappa, M., Sankar, M. & Natarajan, A. A. Natural convection in an annulus between two rotating vertical cylinders. Acta 

Mech. 147, 173–196 (2001).
 2. Khan, N. S. et al. �in �lm �ow of a second-grade �uid in a porous medium past a stretching sheet with heat transfer. Alex. Eng. J. 

57, 1019–1031 (2017).
 3. Sankar, M., Venkatachalappa & Shivakumara, I. S. E�ect of magnetic �eld on natural convection in a vertical cylindrical annulus. 

Int. J. Eng. Sci. 44, 1556–1570 (2006).
 4. Khan, N. S. et al. Entropy generation in MHD mixed convection non-Newtonian second-grade nanoliquid thin �lm �ow through a 

porous medium with chemical reaction and strati�cation. Entropy 21, 139 (2019).
 5. Sankar, M., Park, Y., Lopez, J. M. & Do, Y. Numerical study of natural convection in a vertical porous annulus with discrete heating. 

Int. J. Heat Mass Transf. 54, 1493–1505 (2011).
 6. Zuhra, S., Khan, N. S., Alam, A., Islam, S. & Khan, A. Buoyancy e�ects on nanoliquids �lm �ow through a porous medium with 

gyrotactic microorganisms and cubic autocatalysis chemical reaction. Adv. Mech. Eng. 12(1), 1–17 (2020).
 7. Sankar, M., Park, J. & Do, Y. Natural convection in a vertical annuli with discrete heat sources. Nume. Heat. Transf. Part A 59, 

594–615 (2011).
 8. Khan, N. S., Kumam, P. & �ounthong, P. Second law analysis with e�ects of Arrhenius activation energy and binary chemical 

reaction on nano�uid �ow. Scienti�c Reports 10, 1226 (2020)
 9. Sankar, M., Kim, B., Lopez, J. M. & Do, Y. �ermosolutal convection from a discrete heat and solute source in a vertical porous 

annulus. Int. J. Heat Mass Transf. 55, 4116–4128 (2012).
 10. Zuhra, S., Khan, N. S., Islam, S. & Nawaz, R. Complexiton solutions for complex KdV equation by optimal homotopy asymptotic 

method. Filomat 33(19), 6195–6211 (2020).
 11. Sankar, M., Jang, B. & Do, Y. Numerical study of non-Darcy natural convection from two discrete heat sources in a vertical annulus. 

J. Porous Media 17(5), 373–390 (2014).
 12. Khan, N. S., Kumam, P. & �ounthong, P. Renewable energy technology for the sustainable development of thermal system with 

entropy measures. Int. J. Heat Mass Transf. 145, 118713 (2019).

https://doi.org/10.1038/s41598-020-61172-2


25SCIENTIFIC REPORTS |         (2020) 10:4448  | https://doi.org/10.1038/s41598-020-61172-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 13. Khan, N. S., Zuhra, S. & Shah, Q. Entropy generation in two phase model for simulating �ow and heat transfer of carbon nanotubes 
between rotating stretchable disks with cubic autocatalysis chemical reaction. Appl. Nanosci 9, 1797–1822 (2019).

 14. Khan, N. S. et al. Hall current and thermophoresis e�ects on magnetohydrodynamic mixed convective heat and mass transfer thin 
�lm �ow. J. Phys. Commun. 3, 035009 (2019).

 15. Zuhra, S., Khan, N. S., Shah, Z., Islam, Z. & Bonyah, E. Simulation of bioconvection in the suspension of second grade nano�uid 
containing nanoparticles and gyrotactic microorganisms. A.I.P. Adv. 8, 105210 (2018).

 16. Khan, N. S., Gul, T., Islam, S. & Khan, W. Thermophoresis and thermal radiation with heat and mass transfer in a 
magnetohydrodynamic thin �lm second-grade �uid of variable properties past a stretching sheet. Eur. Phys. J. Plus 132, 11 (2017).

 17. Palwasha, Z., Khan, N. S., Shah, Z., Islam, S. & Bonyah, E. Study of two dimensional boundary layer thin �lm �uid �ow with variable 
thermo-physical properties in three dimensions space. A.I.P. Adv. 8, 105318 (2018).

 18. Khan, N. S., Gul, T., Islam, S., Khan, A. & Shah, Z. Brownian motion and thermophoresis e�ects on MHD mixed convective thin �lm 
second-grade nano�uid �ow with Hall e�ect and heat transfer past a stretching sheet. J. Nano�uids 6(5), 812–829 (2017).

 19. Zuhra, S. et al. Flow and heat transfer in water based liquid �lm �uids dispensed with graphene nanoparticles. Result Phys. 8, 
1143–1157 (2018).

 20. Khan, N. S. et al. Magnetohydrodynamic nanoliquid thin �lm sprayed on a stretching cylinder with heat transfer. J. Appl. Sci. 7, 271 
(2017).

 21. Khan, N. S. et al. Slip �ow of Eyring-Powell nanoliquid �lm containing graphene nanoparticles. A.I.P. Adv. 8, 115302 (2019).
 22. Khan, N. S. et al. Influence of inclined magnetic field on Carreau nanoliquid thin film flow and heat transfer with graphene 

nanoparticles. Energies 12, 1459 (2019).
 23. Khan, N. S. Mixed convection in MHD second grade nano�uid �ow through a porous medium containing nanoparticles and 

gyrotactic microorganisms with chemical reaction. Filomat 33(14), 4627–4653 (2019).
 24. Khan, N. S. Study of two dimensional boundary layer �ow of a thin �lm second grade �uid with variable thermo-physical properties 

in three dimensions space. Filomat 33(16), 5387–5405 (2019).
 25. Choi, S. U.S. Enhancing thermal conductivity of �uids with nanoparticles. In: International mechanical engineering congress and 

exposition, San Francisco, USA, ASME, FED 231/MD, 66, 99–105 (1995).
 26. Irfan, M., Khan, M., Khan, W. A. & Ahmad, L. In�uence of binary chemical reaction with Arrhenius activation energy in MHD 

nonlinear radiative �ow of unsteady Carreau nano�uid: Dual solutions. Appl. Phys. A 125, 179 (2019).
 27. Hashim, Khan, M. & Hamid, A. Convective heat transfer during the �ow of Williamson nano�uid with thermal radiation and 

magnetic e�ects. Eur. Phys. J. Plus 134, 50 (2019).
 28. Moradi, A., Toghraie, D., Isfahani, A. H. M., and Hosseinian, A.An experimental study on MWCNT-water nano�uids �ow and heat 

transfer in double-pipe heat exchanger using porous media. J. �erm. Anal. Calorimetry (2019).
 29. Sadiq, A. S., Khan, A. U., Saleem, S. & Nadeem, S. Numerical simulation of oscillatory oblique stagnation point �ow of a magneto 

micropolar nano�uid. RSC Adv. 9, 4751 (2019).
 30. Benos, L. �., Karvelas, E. G. & Sarris, I. E. A theoretical model for the magnetohydrodynamic natural convection of CNT-water 

nano�uid incorporating a renovated Hamilton-Crosser model. Int. J. Heat Mass Transf 135, 548–560 (2019).
 31. Ramzan, M., Sheikholeslami, M., Saeed, M. & Chung, J. D. On the convective heat and zero nanoparticle mass �ux conditions in the 

�ow of 3D MHD Couple Stress nano�uid over an exponentially stretched surface. Sci. Reports 9, 562 (2019).
 32. Rout, B. C., Mishra, S. R. & Nayak, B. Semi-analytical solution of axisymmetric �ows of Cu- and Ag-water nano�uids between two 

rotating disks. Heat Transfer-Asian Res 48, 1–25 (2019).
 33. Ahmad, J., Mustafa, M., Hayat, T., Turkyilmazoglu, M. & Alsaedi, A. Numerical study of nano�uid �ow and heat transfer over a 

rotating disk using Buongiorno’s model. Int. J. Numer. Methods Heat Fluid Flow 27(1), 221–234 (2017).
 34. Li, J. J., Xu, H., Raees, A. & Zhao, Q. K. Unsteady mixed bioconvection �ow of a nano�uid between two contracting or expanding 

rotating discs. Z Naturforsch (2016).
 35. Hayat, T., Qayyum, S., Imtiaz, M. & Alsaedi, A. Flow between two stretchable rotating disks with Cattaneo-Cristov heat �ux model. 

Result. Phys. 7, 126–133 (2017).
 36. Ahmed, J., Khan, M. & Ahmad, L. Swirling �ow of Maxwell nano�uid between two coaxially rotating disks with variable thermal 

conductivity. J. Braz. Soc. Mech. Sci. Eng. 41, 97 (2019).
 37. Abbas, A. A., Bai, Y., Rashidi, M. M. & Bhatti, M. M. Analysis of entropy generation in the �ow of peristaltic nano�uids in channels 

with compliant walls. Entropy 18, 90 (2016).
 38. Khan, M. I., Qayyum, S., Hayat, T. & Alsaedi, A. Entropy generation minimization and statistical declaration with probable error for 

skin friction coe�cient and Nusselt number. Chinese J. Phys. 56, 1525–1546 (2018).
 39. Al-Rashed, A. A. A. A.  et al. Entropy generation of boehmite alumina nano�uid �ow through a minichannel heat exchanger 

considering nanoparticle shape e�ect. Physica A (2019).
 40. Shukla, N., Rana, P., Beg, O. A., Singh, B. & Kadir, A. Homotopy study of magnetohydrodynamic mixed convection nano�uid 

multiple slip �ow and heat transfer from a vertical cylinder with entropy generation. Propulsion Power Res. (2019).
 41. Rashidi, M. M., Bhatti, M. M., Abbas, M. A. & Ali, E. Entropy generation on MHD blood �ow of nano�uid due to peristaltic waves. 

Entropy 18, 117 (2016).
 42. Rashid, M., Hayat, T. & Alsaedi, A. Entropy generation in Darcy-Forchheimer �ow of nano�uid with �ve nanoparticles due to 

stretching cylinder. Appl. Nanosci. (2019).
 43. Rashidi, M. M., Nasiri, M., Shadloo, M. S. & Yang, Z. Entropy generation in a circular tube heat exchanger using nano�uids: E�ects 

of di�erent modeling approaches. Heat Transf. Eng. (2016).
 44. Selimefendigil, F. & Oztop, H. F. Mixed convection and entropy generation of nano�uid �ow in a vented cavity under the in�uence 

of inclined magnetic �eld. Micrsys. Tech. (2019).
 45. Rashidi, M. M., Abelman, S. & Mehr, N. F. Entropy generation in steady MHD �ow due to a rotating porous disk in a nano�uid. Int. 

J. Heat Mass Transf. 62, 515–525 (2013).
 46. Khan, N. S. Bioconvection in second grade nano�uid �ow containing nanoparticles and gyrotactic microorganisms. Braz. J. Phys. 

43(4), 227–241 (2018).
 47. De, P. Impact of dual solutions on nano�uid containing motile gyrotactic microorganisms with thermal radiation. Bionanosci. 

(2018).
 48. Palwasha, Z., Islam, S., Khan, N. S. & Ayaz, H. Non-Newtonian nanoliquids thin film flow through a porous medium with 

magnetotactic microorganisms. Appl Nanosci 8, 1523–1544 (2018).
 49. Khan, N. S., Gul, T., Khan, M. A., Bonyah, E. & Islam, S. Mixed convection in gravity-driven thin �lm non-Newtonian nano�uids 

�ow with gyrotactic microorganisms. Results. Phys. 7, 4033–4049 (2017).
 50. Zuhra, S., Khan, N. S. & Islam, S. Magnetohydrodynamic second grade nano�uid �ow containing nanoparticles and gyrotactic 

microorganisms. Comput. Appl. Math. 37, 6332–6358 (2018).
 51. Liao, S. J. Homotopy analysis method in nonlinear di�erential equations. (Higher Education Press, Springer-Verlag, Beijing, Berlin 

Heidelberg, 2012).

https://doi.org/10.1038/s41598-020-61172-2


2 6SCIENTIFIC REPORTS |         (2020) 10:4448  | https://doi.org/10.1038/s41598-020-61172-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
�e authors are thankful to the Higher Education Commission (HEC) Pakistan for providing the technical and 
�nancial support. All the comments and valuable suggestions of the reviewers are highly appreciated. �is project 
was supported by the �eoretical and Computational Science (TaCS) Center under Computational and Applied 
Science for Smart Innovation Research Cluster (CLASSIC), Faculty of Science, KMUTT. �is research was 
funded by the Center of Excellence in �eoretical and Computational Science (TaCS-CoE), KMUTT.

Author contributions
N.S.K. modeled, solved the problem and wrote the paper. Q.S. and A.B. practiced and veri�ed all the dimensional 
and non-dimensional equations. P.K. and P.T. constructed the �gures and tables. I.A. has checked the equations 
and has organized the sections.

Competing interests
�e authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.S.K., P.K. or I.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2020

https://doi.org/10.1038/s41598-020-61172-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks

	Methods

	Problem formulation. 
	Important physical quantities. 
	Entropy Generation. 

	Computation Methodology

	Zeroth-order deformation problems. 
	mth order deformation problems. 

	Results and discussion

	Dynamic role of profiles. 
	Entropy generation rate. 

	Conclusions

	Acknowledgements

	Figure 1 Geometry of the problem.
	Figure 2 ℏf curve of f(ζ).
	Figure 3 ℏg curve of g(ζ).
	Figure 4 ℏθ curve of θ(ζ).
	Figure 5 ℏφ curve of φ(ζ).
	Figure 6 ℏh curve of h(ζ).
	Figure 7 Axial velocity in the consideration of Re.
	Figure 8 Radial velocity in the consideration of k1.
	Figure 9 Radial velocity in the consideration of k2.
	Figure 10 Radial velocity in the consideration of M.
	Figure 11 Tangential velocity in the consideration of Ω.
	Figure 12 Temperature in the consideration of Nb.
	Figure 13 Temperature in the consideration of Ec.
	Figure 14 Temperature in the consideration of Pr.
	Figure 15 Nanoparticles concentration in the consideration of Le.
	Figure 16 Nanoparticles concentration in the consideration of Nt.
	Figure 17 Motile microorganisms concentration in the consideration of Le.
	Figure 18 Motile microorganisms concentration in the consideration of Pe.
	Figure 19 Motile microorganisms concentration in the consideration of Sc.
	Figure 20 Entropy generation rate in the consideration of β.
	Figure 21 Entropy generation rate in the consideration of Br.
	Figure 22 Entropy generation rate in the consideration of B1.
	Figure 23 Entropy generation rate in the consideration of A.
	Figure 24 Entropy generation rate in the consideration of k1.
	Figure 25 Entropy generation rate in the consideration of k2.
	Figure 26 Entropy generation rate in the consideration of Re.
	Figure 27 Entropy generation rate in the consideration of Sc.
	Figure 28 Entropy generation rate in the consideration of Pe.
	Figure 29 Entropy generation rate in the consideration of Ec.
	Figure 30 Entropy generation rate in the consideration of M.
	Figure 31 Entropy generation rate in the consideration of Pr.
	Figure 32 Entropy generation rate in the consideration of Nb.
	Figure 33 Entropy generation rate in the consideration of Ω.
	Figure 34 Entropy generation rate in the consideration of γ1.
	Figure 35 Entropy generation rate in the consideration of γ2.
	Figure 36 Entropy generation rate in the consideration of γ3.
	Figure 37 Entropy generation rate in the consideration of γ4.
	Figure 38 Entropy generation rate in the consideration of Le.
	Figure 39 Entropy generation rate in the consideration of Nt.
	Table 1 Illustration of different mathematical letters and notations used in Eqs.
	Table 2 Various parameters in Eqs.
	Table 3 Convergence of the homotopy solution for different order of approximation.
	Table 4 Comparison of f ″(0) and (0) with previous work.
	Table 5 Comparison of (1), (1) and (1) with previous work.


