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Abstract 

 

The present article aims to report the effects of hydrodynamic slip on entropy generation in the boundary layer flow over a vertical sur-

face with convective boundary condition. Suitable similarity transformations are used to transform the fundamental equations of hydro-

dynamic and thermal boundary layer flow into ordinary differential equations. The governing equations are then solved numerically us-

ing the shooting method and the velocity and the temperature profiles are obtained for various values of parameters involved in the gov-

erning equations. The expressions for the entropy generation number and the Bejan number are presented and the results are discussed 

graphically and quantitatively for the slip parameter, the local Grashof number, the Prandtl number, the local convective heat transfer 

parameter, the group parameter and the local Reynolds number. It is observed that due to the presence of slip, entropy production in a 

thermal system can be controlled and reduced.   
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1. Introduction 

The boundary layer flow over a flat surface has been stud-

ied extensively due to its wide applications in the fields of 

aerodynamics, mechanical engineering, chemical engineering 

etc. Blasius [1] was the first who investigated a steady two-

dimensional boundary layer flow past a stationary flat plate. 

Pohlhausen [2] analyzed the heat transfer of the problem. 

Howarth [3] made hand computations for the problem using 

the Runge-Kutta scheme. Abbussita [4] established the exis-

tence of the solution for the flow past a flat plate. Since then, 

different scientists and engineers obtained the solution of the 

problem using different analytical and numerical techniques 

[5-7]. In all the above mentioned investigations, the no-slip 

condition at the boundary had been assumed. However, a 

situation may arise when the no-slip boundary condition is not 

appropriate. Slip velocity is a phenomenon that occurs due to 

non-adherence of the fluid to a solid boundary. 

The fluids having slip velocity have many applications in 

technology such as polishing of surfaces and in micro devices. 

In the literature, there is a scarcity of studies of slip flow over 

a flat surface. Martin and Boyd [8] studied the effects of slip 

flow on the boundary layer flow over a flat plate. Vedantam 

[9] studied the same problem with three different models for 

the slip flow. Fang and Lee [10] extended the problem to 

moving plate. Aziz [11] investigated the influence of hydro-

dynamic slip on boundary layer flow over a flat plate with 

constant heat flux at the boundary. Bhattacharyya and Layek 

[12] studied the slip flow and heat transfer over a flat plate 

under the influence of magnetic field. Mehmood and Ali [13] 

studied the injection flow past a porous plate. Munawar et al. 

[14] commented on flow and heat transfer of viscoelastic fluid 

over a semi-infinite horizontal moving flat plate. 

The study of convective heat transfer has much importance 

in high-temperature processes like gas turbines, nuclear plants, 

thermal energy storage, etc. Bataller [15] discussed the effects 

of thermal radiation and convective surface heat transfer on 

boundary layer flow in Blasius and Sakiadis flow. A similarity 

solution for laminar thermal boundary layer over a flat plate 

with a convective boundary condition was reported by Aziz 

[16]. Makinde [17, 18] studied the effects of buoyancy force 

over a stationary plate and the internal heat generation effects 

on moving vertical plate under convective boundary condition. 

In thermodynamic analysis of flow and heat transfer proc-

esses, one thing of core interest is to improve the thermal sys-

tems to avoid energy losses and fully utilize energy resources. 

Second law analysis in terms of entropy generation rate is a 
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useful tool to predict the performance of engineering proc-

esses by investigating the irreversibility arising during the 

processes. Different sources such as heat transfer and viscous 

dissipation are responsible for the production of entropy. 

Since the pioneering work done by Bejan [21], many investi-

gations have been made on entropy generation analysis. Sahin 

[22] investigated the second law analysis for a viscous fluid in 

a circular duct with isothermal boundary conditions. Mahmud 

and Fraser [23] applied the second law analysis to heat and 

fluid flow due to forced convection inside a channel. The en-

tropy generation in boundary layer flow was investigated by 

Arpaci and Selamet [24]. Odat et al. [25] studied the effect of 

magnetic field on entropy generation due to laminar forced 

flow past a horizontal plate. Saouli and Mahmud [26] dis-

cussed entropy generation in a falling liquid film along an 

inclined heated plate. Tshehla et al. [27] studied the irreversi-

bility effects in a pipe flow with temperature dependent vis-

cosity and convective cooling. Makinde [28] investigated the 

entropy generation in hydromagnetic variable viscosity 

boundary layer flow over a flat plate in the presence of ther-

mal radiation and Newtonian heating.  

The purpose of the present study is to observe the effects of 

hydrodynamic slip on entropy generation in a viscous flow 

over a vertical plate with convective boundary condition. The 

velocity and the temperature distribution are determined by 

solving the momentum and energy equation with a numerical 

technique, the shooting method. The expression for entropy 

generation rate is evaluated and the effects various parameters 

arising in the problem are analyzed. 

 

2. Mathematical description of the problem 

Consider the two-dimensional steady state incompressible 

boundary layer flow with heat transfer by convection over a 

vertical plate. The fluid is assumed to flow over the right sur-

face of the plate with a uniform velocity U∞ . The stream of 

the cold fluid has temperature T∞  and the right surface of the 

plate is heated by convection from a hot fluid at temperature 

f
T , which provides a heat transfer coefficient 

f
h  as shown 

in Fig. 1. Thus, the governing equations for the flow and heat 

transfer can be written as: 

 

0,
u v

x y

∂ ∂
+ =

∂ ∂
 (1)  

2

2
( ),

u u u
u v g T T

x y y
ν β ∞

∂ ∂ ∂
+ = + −

∂ ∂ ∂
 (2)  

22

2

p p

T T k T u
u v

x y c c yy

µ

ρ ρ

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂∂

 
 
 

 (3) 

 

where u and v  are the x  and y components of the veloci-

ties respectively, ν  is the kinematic viscosity of the fluid, ρ  

is the density of the fluid, 
p

c  is the specific heat at constant 

pressure, k  is the thermal conductivity of the fluid, g  is the 

gravitational constant and β  is the thermal expansion coeffi-

cient. 

The boundary conditions for the velocity field are: 
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where λ  is the mean free path and σ  is the tangential mo-

mentum accommodation coefficient. The boundary conditions 

for temperature at the surface and far into the cold fluid are: 
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Introducing the following dimensionless quantities: 
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where prime denotes the differentiation with respect to η . 

Substituting Eq. (8) into Eqs. (1)-(7), we have: 

 

1
''' '' 0,

2
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1 2'' Pr ' Pr  ( '') 0.
2
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The corresponding boundary conditions are 
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where Kn
x

 and Re
x

 are the local Knudsen number and 

local Reynolds number defined by 

 
 

Fig. 1. Schematic diagram of the problem. 
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,     Re
U x
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x xx

λ
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and K  is the slip (rarefaction) parameter defined as 

 

2 1/ 2Re .K Kn
x x

σ
σ
−

=  (14) 

 

Also, the local Biot number, Prandtl number and local 

Grashof number are given as 
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Here, we assume 

 

1/ 2 1,     h cx mx
f

β− −= =  (16) 

 

where c  and β  are the constants. Substituting Eq. (16) into 

the parameters xBi  and xGr  we have 
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3. Numerical solution 

The coupled non-linear differential Eqs. (9) and (10) with 

the boundary conditions Eqs. (11) and (12) are solved numeri-

cally using the shooting technique, and the calculations are 

made by utilizing the symbolic software MATHEMATICA. 

Let 1 2 3 4 4,  ' ,  '' ,  ,  ' .f x f x f x x xθ θ= = = = = Eqs. (9) and 

(10) are then transformed into a system of first order differen-

tial equations as follows: 
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Subject to the following initial conditions: 

 

1 2 3 3 1

4 2 4 2

(0) 0,  (0) (0),  (0) ,

(0) ,  (0) (1- ).

x x Kx x s

x s x Bi s
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In order to solve Eqs. (18) and (19) as an initial value prob-

lem, we need values of 1s  and 2s . By making initial guess 

values for 1s and 2s , the solutions of Eqs. (18) and (19) are 

obtained by applying fourth order Runge-Kutta method. A 

step size of 0.001 is used to obtain the numerical solution and 

the accuracy goal is kept equal to 710−  as the convergence 

criteria. The semi-infinite domain is truncated at suitable dis-

tance where the effects of boundary layers are negligible. The 

values of plate surface temperature, local skin-friction coeffi-

cient and local Nusselt number, which are respectively propor-

tional to (0),  ''(0),  - '(0)fθ θ , can be worked out and their 

numerical values are presented in a tabular form. 

 

4. Entropy generation 

According to Woods [28], the local entropy generation rate 

is defined as 
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Clearly, it can be seen from Eq. (20) that there are two 

sources of entropy generation. The first term on the right hand 

side is the entropy generation due to heat transfer and the sec-

ond term is the entropy generation due to fluid friction. In 

terms of dimensionless variables, the entropy generation has 

the form 
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characteristic entropy generation rate, dimensionless tempera-

ture difference and the Brinkman number, respectively. Thus, 

the dimensionless form of entropy generation in Eq. (21) can 

be expressed as follows: 
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is the local entropy generation due to heat transfer and fluid 

friction, respectively. In order to understand the entropy gen-

eration mechanism, the irreversibilites of heat transfer and 

fluid flow processes are analyzed. For this reason, we define 

the irreversibility distribution ratioφ . This is the ratio between 

entropy generation due to fluid friction FN to the entropy gen-

eration due to heat transfer HN . 
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The heat transfer irreversibility is dominant for the range 

0 1φ≤ <  and when 1φ > , the irreversibility due to fluid 

friction dominates. When 1φ = , the contribution of heat 

transfer entropy generation HN  is equal to fluid friction FN . 

Another alternative irreversibility distribution parameter is the 

Bejan number Be , which is the ratio of entropy generation 

due to heat transfer to the total entropy generation. 

 

1

1

HN
Be

Ns φ
= =

+
 (26) 

 

Clearly, the Bejan number ranges from 0 to 1. When the 

value of Be is greater than 0.5, the irreversibility due to heat 

transfer dominates, whereas Be < 0.5 refers to irreversibility 

due to viscous dissipation. When 0.5Be = , the contribution of 

the heat transfer and fluid friction entropy generation are equal. 

An alternative irreversibility distribution parameter called 

the Bejan number is defined as follows: 

 

      
.

  

Entropy generation due to heat transfer
Be

Total entropy generation
=  (27) 

 

Clearly, the Bejan number ranges from 0 to 1. When the 

value of Be is greater than 0.5, the irreversibility due to heat 

transfer dominates, whereas Be < 0.5 refers to irreversibility 

due to viscous dissipation. When 0.5Be = , the contribution of 

the heat transfer and fluid friction entropy generation are equal. 

 

5. Results and discussion 

Numerical calculations have been carried out for different 

values of the physical parameters involved in the considered 

problem. In Tables 1 and 2, a comparison of our work with the 

work reported by Aziz [16] and Makinde [17] is made in the 

absence of slip parameter. From here, good agreement is ob-

served among the studies, which shows the accuracy and va-

lidity of our numerical scheme. Table 3 presents the values of 

the local skin friction coefficient and the local Nusselt number 

for different values of the parameters involved in the consid-

ered problem. It is observed that the skin friction coefficient 

decreases whereas the heat transfer rate at the surface of the 

plate increases with an increase in the slip (rarefaction) pa-

rameter and the Prandtl number. On the other hand, an in-

crease in the local Grashof number and the convective heat 

transfer parameter causes an increase in the skin friction and 

the rate of transfer at the surface. Fig. 2 depicts the effects of 

slip (rarefaction) parameter on the velocity profile. It is no-

ticed that as the fluid becomes more rarefied, the velocity of 

the fluid increases. Fig. 3 shows that an increase in the inten-

sity of convective surface heat transfer xBi causes an increase 

in the velocity of the fluid. However, it is observed that the 

effects of the local Grashof number on the velocity profile are 

more pronounced than the convection parameter xBi as shown 

in Fig. 4. 

Table 1. Computation showing comparison of values of ''(0)f  with 

Aziz [15] and Makinde [16] for 0K = . 
 

Gr Pr Bi 
''(0)f  

Makinde 

''(0)f  

Present 

0 0.72 0.05  0.3321 

0 0.72 0.10  0.3321 

0 0.72 0.40  0.3321 

0.5 0.72 0.10 0.4970 0.4970 

1.0 0.72 0.10 0.6320 0.6320 

0.1 3.00 0.10 0.3493 0.3493 

0.1 7.00 0.10 0.3427 0.3427 

 

 
Table 2. Computation showing comparison of values of '(0),  (0)θ θ−

 
with Aziz [15] and Makinde [16] for 0K = . 
 

Gr Pr Bi 
'(0)θ−

Aziz 

'(0)θ−
Makinde

 

'(0)θ−
Present 

(0)θ
 

Aziz 

(0)θ
 

Aziz 

(0)θ
 

Present
 

0 0.72 0.05 0.0428  0.0428 0.1447  0.1447 

0 0.72 0.10 0.0747  0.0747 0.2528  0.2528 

0 0.72 0.40 0.1700  0.1700 0.5750  0.5750 

0.5 0.72 0.10  0.0761 0.0761  0.2386 0.2386 

1.0 0.72 0.10  0.0770 0.0770  0.2295 0.2295 

0.1 3.00 0.10  0.0830 0.0830  0.1695 0.1695 

0.1 7.00 0.10  0.0867 0.0867  0.1327 0.1327 

 

 

 
 

Fig. 2. Effects of slip (rarefaction) parameter K  on '( )f η  when 

Pr 0.72,  0.5,xGr= = 0.5,  0.1xEc Bi= = . 

 

 

 
 

Fig. 3. Effects of the local Biot number xBi  on '( )f η  when 

Pr 0.72,  0.5,xGr= = 0.1,  0.5Ec K= = . 
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Fig. 5 illustrates that the thermal boundary layer thickness 

decreases with an increase in the slip parameter. The effects of 

the local Grashof number on the thermal boundary layer 

thickness are presented in Fig. 6. The temperature profile in-

creases as xGr  increases. However, the thermal boundary 

layer thickness decreases. 

Fig. 7 depicts that with an increase in the intensity of local 

Biot number due to convective surface heat transfer, the ther-

mal boundary layer becomes thicker. 

The influence of the slip on the entropy generation num-

ber Ns is presented in Fig. 8. With an increase in K , the skin 

friction decreases, ultimately resulting in less entropy produc-

tion. The entropy generation rate increases with an increase in 

local Grashof number as illustrated in Fig. 9. Fig. 10 shows 

that the entropy generation number increases as xBi  in-

creases. Fig. 11 illustrates that the entropy generation number 

increases with the group parameter /Br Ω . 

The Bejan number is investigated in Figs. 12-15 for differ-

ent physical parameters. The effects of slip parameter K on 

the Bejan number are shown in Fig. 12. The effects of fluid 

Table 3. Computation showing values of ''(0), '(0),  (0)f θ θ−  for 

various values of physical parameters. 
 

K Gr Pr Bi ''(0)f  '(0)θ−  (0)θ  

0.0 0.1 0.72 0.10 0.36881 0.07507 0.24922 

1.0    0.31381 0.07867 0.21326 

2.0    0.25197 0.08013 0.19868 

3.0    0.20622 0.08085 0.19140 

1.0 0.5 0.72 0.10 0.38176 0.07961 0.20380 

 1.0   0.45089 0.08043 0.19561 

 1.5   0.50977 0.08105 0.18949 

 2.0   0.56193 0.08153 0.18462 

1.0 0.1 1.00 0.10 0.31016 0.08087 0.19125 

  3.00  0.30172 0.08702 0.12976 

  5.00  0.29930 0.08930 0.10698 

  7.10  0.29805 0.09067 0.09327 

1.0 0.1 0.72 0.10 0.31381 0.07867 0.21326 

   0.50 0.34502 0.21562 0.56876 

   1.00 0.35792 0.27704 0.72295 

   3.00 0.37116 0.34307 0.88564 

 

 
 

Fig. 4. Effects of the local Grashof numberon '( )f η  when 

Pr 0.72,  0.5,K= =  0.5,  0.1xEc Bi= = . 

 

 
 

Fig. 5. Effects of slip (rarefaction) parameter K  on ( )θ η  when 

Pr 0.72,  0.5,xGr= =  0.5,  0.1xEc Bi= = . 

 

 

 
 

Fig. 6. Effects of the local Grashof numberon ( )θ η  when

Pr 0.72,  0.5,K= =  0.5,  0.1xEc Bi= = . 

 

 
 

Fig. 7. Effects of the local Biot number xBi  on ( )θ η  when

Pr 0.72,  0.5,xGr= =  0.1,  0.5Ec K= = . 

 

 
 

Fig. 8. Effects of slip (rarefaction) parameter K  on Ns  when

Pr 0.72,  0.5,xGr= = 0.1, / 1.0, Re 2.0.x xBi Br= Ω = =  
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friction irreversibility weaken near the surface as the slip pa-

rameter increases while far away in the flow regime, the heat 

transfer irreversibility is dominant. Fig. 13 shows the effects 

of xGr on the Bejan number. The Bejan number increases as 

xGr  augments and decreases as one goes downstream. For 

large xGr , three variational trends are noticed. Near the plate, 

fluid friction irreversibility dominates, and then afterwards, 

heat transfer irreversibility dominates over fluid friction irre-

versibility and attains a peak value within the boundary layer 

region. In the main flow regime, fluid friction irreversibility 

again develops, and far away from the boundary layer region, 

heat transfer irreversibility controls the entropy production. 

Moreover, it is noteworthy that within the boundary layer 

region, heat transfer irreversibility becomes dominant earlier 

for large values of local Grashof number as compared to 

 
 

Fig. 9. Effects of local Grashof numberon Ns  when 

Pr 0.72,  0.5,K= = 0.1, / 1.0, Re 2.0.x xBi Br= Ω = =  

 

 
 

Fig. 10. Effects of local Biot number on Ns  when 

Pr 0.72,  0.5,K= = 0.1, / 1.0, Re 2.0.x xGr Br= Ω = =  

 

 
 

Fig. 11. Effects of group parameter /Br Ω  on Ns  when 

Pr 0.72,  0.5,K= = 0.1, / 1.0, Re 2.0.x xGr Br= Ω = =  

 

 
 

Fig. 12. Effects of slip (rarefaction) parameter K  on Be  when

Pr 0.72,  0.5,xGr= = 0.1, / 1.0, Re 2.0.x xBi Br= Ω = =  

 

 
 

Fig. 13. Effects of local Grashof number on Be  when

Pr 0.72,  0.5,K= = 0.1, / 1.0, Re 2.0.x xBi Br= Ω = =  

 

 
 

Fig. 14. Effects of local Biot number on Be  when

Pr 0.72,  0.5,K= = 0.5, / 1.0, Re 2.0.x xGr Br= Ω = =  

 

 

 
 

Fig. 15. Effects of group parameter /Br Ω  on Be  when

Pr 0.72,  0.5,K= = 0.1, / 1.0, Re 2.0.x xGr Br= Ω = =  
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smaller values due to strong buoyancy effects. Fig. 14 depicts 

the effects of local Biot number xBi on Be . With an increase 

in value of xBi , fluid friction irreversibility at the surface de-

creases and effects of heat transfer irreversibility start to ap-

pear. In the free stream region, the heat transfer irreversibility 

effects are fully dominant. The influence of the group parame-

ter /Br Ω  on the Bejan number is presented in Fig. 15. The 

fluid friction irreversibility dominates at the surface of the 

plate with increase in /Br Ω and in the flow regime, the heat 

transfer irreversibility dominates. 

 

6. Conclusions 

In the present study, an analysis is carried out for the en-

tropy generation rate in hydrodynamic boundary layer flow 

over a vertical plate in the presence of slip velocity and con-

vective boundary condition. The velocity and the temperature 

profiles are obtained numerically and the entropy generation 

number and the Bejan number are computed. The effects of 

different physical parameters on the velocity and the tempera-

ture profiles are shown and their influence on the entropy gen-

eration is also discussed. It is observed that the velocity in-

creases by increasing the slip parameter K , the local Grashof 

number xGr  and the local Biot number xBi . The slip pa-

rameter K and local Grashof number xGr  have decreasing 

effects on thermal boundary layer, and the local Biot number 

xBi  causes the thermal boundary layer thickness to increase. 

It is concluded that the entropy production in the fluid can be 

reduced and controlled by increasing slip at the boundary wall. 

Also, increasing xBi  enhances entropy production. Therefore, 

the entropy can be minimized by reducing the convection 

through boundaries. It is observed from the study that fluids 

flowing with high Reynolds number depreciate the entropy 

production. The effects of the local Grashof number xGr  and 

the group parameter /Br Ω  on Ns  are increasing. Fluid 

friction irreversibility dominates at the surface of the plate and 

the heat transfer irreversibility effects are dominant in the 

main flow regime. 

The results obtained through this article depict that the op-

timal design and the efficient performance of a flow system or 

a thermally designed system can be improved by choosing the 

appropriate values of the physical parameters. This will enable 

us to reduce the effects of entropy generated within the system.  

 

Nomenclature------------------------------------------------------------------------ 

Br : Brinkman number 

Be : Bejan number 

xBi  : Local Biot number 

pc  : Specific heat at constant pressure 

Ec : Eckert number 

xGr  : Local Grashof number 

k : Thermal conductivity 

K : Slip (rarefaction) parameter 

xKn  : Local Knudsen number 

Ns : Entropy generation number 

HN  : Entropy generation due to heat transfer 

FN  : Entropy generation due to fluid friction 

Pr : Prandtl number 

Rex  : Local Reynolds number 

GS  : Volumetric rate of entropy generation 

oG
S  : Characteristic entropy generation rate 

T  : Temperature of the fluid 

fT  : Temperature of the hot fluid 

T∞  : Temperature of the ambient fluid 

,u v  : Velocity components in x and y directions 

,x y  : Spatial coordinates 

  

Greek symbols 

η  : Similarity variable 

θ  : Dimensionless temperature 

µ  : Coefficient of viscosity 

ν  : Kinematic viscosity 

ρ  : Density of fluid 

Ω  : Dimensionless temperature difference 
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