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a b s t r a c t

In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within,
in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and
distinguished history that we review. We employ the Navier–Stokes equations to construct a self-similar version
of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; and that solution
reproduces the well-known result of Morduchow & Libby that features a maximum of the equilibrium entropy
inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that is smooth and
monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part
on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for
the weakest shocks. We conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating
that it closely estimates the gas kinetic nonequilibrium entropy within a shock.

Published by Elsevier Ltd.

1. Introduction

1.1. Aim and scope

In this paper we will consider the entropy profile in a gaseous shock
from two points of view, first that of nonequilibrium thermodynamics
and second from that of gas kinetic theory. We will begin by reviewing
and generalizing the classic paper of Morduchow & Libby [1] in which
steady-state shock solutions of the Navier–Stokes equations are analyzed
for a particular Prandtl number. Our results confirm and extend those
of [1], namely, that the thermodynamic (equilibrium) entropy has a
maximum inside the shock for all finite values of Prandtl number
and all Mach numbers. Next, we will reconsider the problem from
the point of view of nonequilibrium statistical mechanics and kinetic
theory. We will calculate the Boltzmann entropy in the shock using the
Grad velocity distribution function that underlies the derivation of the
Navier–Stokes equations and show that it is a smooth monotonically
increasing function in the shock profile.

Boltzmann’s entropy is a true nonequilibrium entropy, evaluated for
nonequilibrium solutions of the Boltzmann equation. However, the ther-
modynamic entropy is derived specifically from equilibrium statistics;
it is extended to nonequilibrium systems through the assumption of
local thermodynamic equilibrium (LTE). Based on experimental mea-
surements, a gaseous shock is only a few mean free paths wide, implying

* Corresponding author.
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that there are not sufficient collisions occurring within the shock to
restore equilibrium. Using our Navier–Stokes solutions, we evaluate
the LTE assumption and show that it is justified only for the weakest
shocks. We conclude the paper with a proposal for a nonequilibrium
thermodynamic entropy more relevant to shock analyses.

Solving for the shock profile in monatomic gases (e.g., Ar, He,
Ne, Rn) is perhaps the most straightforward problem to test model
predictions because the bulk viscosity coefficient in this class of gases is
zero. Further, there exists good experimental data against which model
results/predictions can be evaluated. There is broad agreement now
that the validity of Navier–Stokes theory is restricted to rather weak
shocks, i.e., those with a Mach numbers less than 2; see, e.g., [2,3].
Nevertheless, in this paper we will continue to explore Navier–Stokes
theory to contribute to an understanding of the details of its breakdown.

In the next subsection, we present a brief history of the application of
Navier–Stokes theory to the determination of shock profiles, our focus
being on two classic works in the field: the 1922 paper of Becker [4]
and the 1949 paper of Morduchow & Libby [1].

1.2. A brief history of shock profile theory

The determination of a shock’s profile, i.e., the spatial dependence
of density, velocity and internal energy, and its characterization by the
metric known as the shock width, is a well-studied problem with an
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extensive, multi-disciplinary literature; a recent survey can be found
in [5]. That literature started with the articles of Rayleigh [6] and
Taylor [7], both in 1910, in which the general one-dimensional (1D)
equation of motion for the Navier–Stokes shock profile was first derived;
these authors, however, were only able to obtain solutions for either the
constant viscosity-only or the constant heat conductivity-only special
case. It was Becker [4] who, in 1922, was the first to publish a steady-
shock solution of the (compressible) Navier–Stokes equations wherein
both viscosity and heat conduction were taken into account. The main
point of Becker’s article was to raise important questions concerning the
validity of the Navier–Stokes equations in the study of strong shocks.

The Becker solution is a special case result; the stationary shock
profile he derived assumes a particular Prandtl number, namely, Pr =
3∕4, which is a reasonable value for many gases. (For quantitative
discussions of this approximation, see [8] for large Mach numbers
and [9] for small Mach numbers). The solution presumes an infinite 1D
gaseous medium with inflow at one end and outflow at the other. The
shock is stationary in the chosen reference frame, and so the problem
is one of steady flow. The solution, however, is not a priori Galilean
invariant; when the shock is stationary, no net work is done on the
system, while in every other reference frame this is not so. Also, as the
number of required conditions behind the shock is different, it is not
clear whether the steady-shock solution is equivalent to the one obtained
via the traveling wave assumption—specifically, while both approaches
assume the vanishing of the velocity gradient at the inflow end, the
steady solution (in, say, [1]) requires that both the velocity (i.e., piston
velocity) and temperature be specified there, whereas the only inflow
datum to be specified for the traveling wave solution is the piston
velocity. However, our analysis indicate the qualitative equivalence of
the two methodologies to within a Galilean transformation.

Becker’s 1922 paper [4] was the first in which a shock profile
solution that included the effects of both viscosity and heat conduction
was derived; here, however, we have modeled our investigation on that
of Morduchow & Libby [1], who revisited and refined Becker’s analysis
in 1949. We have chosen to work consistently with (specific) internal
energy  , rather than temperature, and to deal with equations written
in conservative form. To facilitate comparison with our computer
simulation results, rather than with experiment, we will maintain the
dependence on the (longitudinal) fluid viscosity �̄ and the thermal
coefficient � rather than introduce kinetic theory estimates of these
parameters as was done in [1]. These parameters appear in the Navier–
Stokes equations (1)–(3) and their relation to Morduchow& Libby’s
parameters � and k is described in footnote 1. In our analyses, it is more
convenient to work with the (dimensionless) parameter  = �∕�̄, which
can also be written as  = 
∕Pr′′. Here, Pr′′ represents the longitudinal
Prandtl number (see Hayes [10, p. 39]) and 
 ∈ (1, 5∕3] denotes the ratio
of specific heats.

As noted by Morduchow& Libby in their 1965 paper [11], ‘‘the fact
that entropy does not increase monotonically through the shock has
apparently been discovered independently at least four different times
from 1944–1961’’. Precedence in this regard must be, however, given
to Roy [12], who solved the Navier–Stokes equations using a general-
ization of Becker’s assumption that extended to certain non-monatomic
gases, but who curiously did not cite Becker’s work. Morduchow &
Libby [1], on the other hand, generalize Becker’s work by including
temperature dependence in the viscous and thermal conduction coeffi-
cients. The later papers of Golitsyn & Staniukovich [13] and of Serrin
& Whang [14] on this topic employ more general thermodynamic argu-
ments that do not depend on Becker’s assumption. Based on citations,
only [1] appears to be well known in the shock-physics community.

1.3. Outline of paper

This paper is primarily concerned with the distribution of entropy in
a gaseous shock and is conceptually broken into two parts. In Sections 2
through 5 we will work in the context of thermodynamics and the

compressible Navier–Stokes equations. In Sections 6 through 8 we will
transition to the more fundamental descriptions of statistical mechanics
and gas kinetic theory.

In Section 2, we derive the equations for a self-similar shock wave
including both viscosity and heat conduction. For the specific case of
 = 
, we obtain an integrable ODE that yields exact solutions for the
velocity, density, energy, and entropy profiles corresponding to (what
we term) the ‘‘full physics’’ Navier–Stokes equations, by which we mean
the system of nonlinear flow equations that includes both (physical)
viscosity and heat conduction. In Section 3, we prove that, as functions
of our similarity variable, the first three listed field variables have
monotone profiles. We also reproduce the result in [1] showing that the
equilibrium entropy, defined in Eq. (26) below, exhibits a maximum
inside the shock region, and we determine its location. In Section 4, we
derive a class of explicit traveling wave solutions for special case values
of the Mach number.

Section 5 is concerned with numerical simulations. We describe a
high-resolution code that integrates the Navier–Stokes equations for
a piston-driven shock. The resolution is high enough that physical
viscosity and heat conduction alone are sufficient to ensure stable
solutions; i.e., no artificial viscosity [15,16] is required. We compare
the analytical (self-similar) and numerical profiles, verifying the code
and verifying the stability of the (numerical) Navier–Stokes solutions.

Section 6 is concerned with the Clausius–Duhem inequality and the
classical extensions of irreversible thermodynamics. Here, we introduce
the fundamental nature of the local thermodynamic equilibrium (LTE)
hypothesis. In Section 7, we combine the macroscopic Navier–Stokes
solutions with kinetic theory to show that LTE is not a valid assumption
for any but the weakest shocks. Then, in Section 8, we employ a purely
statistical mechanical definition to calculate the nonequilibrium entropy
profile in a shock. We conclude the paper with a summary of our findings
in Section 9.

Most of the results presented in the first part of this paper are
formulated in the context of Becker’s assumption of a particular Prandtl
number. In an effort to show that those results are more generally valid,
we have added three appendices. Appendix A describes some approx-
imate and asymptotic results for the equation of motion in Eq. (17).
Appendix B gives an equation of motion and related expressions that
are valid for arbitrary Prandtl number values. And in Appendix C, we
develop a perturbation solution for the region near the piston’s face.
The findings derived from this approximation are consistent with those
of Serrin & Whang [14] regarding the existence of an entropy peak for
all realizable values of the Prandtl number.

2. The self-similar version of Becker’s solution

It is convenient for the purposes of this paper to use a traveling wave
(i.e., self-similar) ansatz that is more easily compared with numerical
simulations of the piston-driven shock. As noted above, the steady-
shock and self-similar solutions turn out to be related by a Galilean
transformation; however, a derivation of the full physics version of the
latter has, apparently, not been carried out previously.

Now, the (full physics) Navier–Stokes equations in one spatial di-
mension read

)�

)t
+

)

)x
[� u] = 0, (1)

)�u

)t
+

)

)x

[
� u2 + p − �̄

)u

)x

]
= 0, (2)

)

)t

[
� +

1

2
�u2

]
+

)

)x

[
� u +

1

2
�u3 + pu − �̄ u

)u

)x
− �

)
)x

]
= 0. (3)

And to close this system, we assume the well known equation of
state [17, §2.5]

p = (
 − 1)� . (4)

Here, �, u, p and  have their usual meanings of mass density, velocity,
pressure, and specific internal energy; we have used the fact that  = cvT
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in perfect gases, where T > 0 is the absolute temperature and cv is
the (assumed constant) specific heat at constant volume; we have also
assumed that q, the heat flux vector, obeys Fourier’s law [17, p. 29].
As is well known, �̄ and �, the transport coefficients,1 depend on T ; in
actuality, this dependence is quantitatively significant in increasing the
shock width (see, e.g., [18]), but including that dependence complicates
the analysis while introducing little qualitative effect. Hence, unless
otherwise indicated, we shall assume �̄ and � to be constants.

The traveling wave equations result from assuming that all field
variables depend on only the similarity variable y = x − vt, where the
constant v will turn out to be the shock velocity. Applying the similarity
assumption to Eqs. (1)–(4) leads to

d

dy
[−v� + u�] = 0, (5)

d

dy

[
−vu� + u2� + p − �̄

du

dy

]
= 0, (6)

d

dy

[
−v� + u� −

1

2
�u2v +

1

2
�u3 + pu − u �̄

du

dy
− �

d
dy

]
= 0, (7)

p = (
 − 1)� . (8)

Integrating (5)–(7) and then solving for the resulting constants of
integration by imposing and enforcing the right–asymptotic conditions

�→ �o, u→ 0,  → o, p→ po,

du

dy
→ 0,

d
dy

→ 0 (y→ ∞),

which correspond to a shock moving to the right, yields

�(v − u) = �ov, (9)

u�(v − u) − (
 − 1)� + �̄
du

dy
= −po, (10)

�(v − u) + 1

2
�u2(v − u) − (
 − 1)�u + �̄u du

dy
+ �

d
dy

= vo�o, (11)

where we observe that po = (
 − 1)�oo.
We now multiply the momentum equation (10) by v and then

subtract it from the energy equation (11). This yields, after simplifying
with Eq. (9),


�ov + �ov
(
1

2
u2 − uv

)
− (v − u)�̄

du

dy
+ �

d
dy

= 
�ovo, (12)

which, after some additional manipulation, becomes


 +
1

2
(v − u)2 +

(
1

�ov

)
d

dy

[
� +

�̄

2
(v − u)2

]
= 
o + 1

2
v2. (13)

Clearly, Eqs. (9), (10) and (13) apply for all Mach and Prandtl
numbers. At this point, however, we make the assumption of a particular
 , namely,  = 
 (i.e., � = 
�̄). Consequently, Eq. (13) becomes
[

 +

1

2
(v − u)2

]
+

(
�̄

�ov

)
d

dy

[

 +

1

2
(v − u)2

]
= 
o + 1

2
v2, (14)

which immediately integrates to
(

 +

1

2
(v − u)2

)
= B̃ + C4 exp

(
−�ov∫

dy

�̄

)
, (15)

where we have set B̃ ≡ 
o + v2∕2. Note that C4, the constant of
integration, must vanish to prevent the blow-up of the exponential in
Eq. (15) as y → −∞. Upon setting C4 = 0, the RHS of Eq. (15) reduces
to a constant, and thus we recover the classic result


 +
1

2
(v − u)2 = B̃, (16)

i.e., the total enthalpy becomes a constant for  = 
; see, e.g., [10].

1 In [1], � is the shear viscosity and k is the heat conductivity, where in the case of
monatomic gases � = 3�̄∕4; see [10], wherein �̄ is termed the longitudinal coefficient of
viscosity. Here, we have set � = k∕cv. Thus,  = 
 is equivalent to taking Pr = 3∕4 in [4]
and [1].

Next, we solve Eq. (16) for  and substitute into the momentum
equation (10). After then eliminating the density from the latter using
Eq. (9), followed by some additional manipulation, we end up with the
following Abel ODE as our equation of motion:

lw
dw

dy
= −(w − 1)(w − �) ( = 
). (17)

In Eq. (17), we have defined w ≡ 1 − u∕v; the length scale

l ≡
(
�̄

�ov

)(
2



 + 1

)
; (18)

and the dimensionless constant

� ≡ 
 − 1


 + 1
+

2

(
 + 1)2
, (19)

where we have introduced the Mach number, ≡ v∕co, and the sound
speed ahead of the shock, co =

√

(
 − 1)o.

The shock velocity v is determined from Eq. (17) by applying and
enforcing the left-asymptotic conditions on u, specifically,

u → up,
du

dy
→ 0 (y→ −∞),

which in terms of w become

w → 1 − up∕v,
dw

dy
→ 0 (y→ −∞),

where up > 0 is the (constant) speed of the piston. This leads to the
quadratic equation

v2 −

 + 1

2
upv − c

2
o = 0. (20)

Thus, for a shock moving to the right

v =

 + 1

4
up +

√(

 + 1

4
up

)2

+ c2o > up, (21)

where the inequality follows from the thermodynamic constraint 
 > 1,
and from which it is easy to see that > 1.

It should be noted that on eliminating c2o between Eqs. (19) and (20),
the latter reduces to

� = 1 −
up

v
, (22)

which we recall is the left–asymptotic limit ofw. In addition, it is readily
established that 0 < � < 1.

Note that for arbitrary (realizable) values of �, Eq. (17) can be
integrated to yield an exact solution for w. While this solution is, in
general, in implicit form, for at least one special case value of �, an
explicit expression can be obtained; see Section 4 below, where we
exhibit and discuss this special class of solutions.

Now, it is useful to write the other field variables in terms of the
velocity. From Eq. (9), we have the general result

� =
�o
w
. (23)

For the particular choice of  = 
, we derive from Eq. (16)

 = o
[
1 +


 − 1

2
2

(
1 −w2

)]
. (24)

Using Eq. (8), the equation of state, in Eq. (24) then gives us

p =
po
w

[
1 +


 − 1

2
2

(
1 −w2

)]
. (25)

Recasting [17, eq. (2.83)] in terms of � and  , we take the change in the
equilibrium (specific) entropy S of an perfect gas to be given by

S − So
cv

= ln

( 
o

)
− (
 − 1) ln

(
�

�o

)
, (26)

which after making use of Eqs. (23)–(25) becomes

S − So
cv

= ln

[
1 +


 − 1

2
2(1 −w2)

]
+ (
 − 1) ln [w] . (27)
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3. Profiles

It is not necessary to have explicit solutions to Eq. (17) to determine
whether each of the profiles (i.e., those of u, �,  , and S) is a monotone
function of y; indeed, establishing such is not difficult. First, we show
that the velocity must be a monotone function of y using proof by
contradiction.2

∙ From Eq. (21), v > up ≥ u; so the monotonicity of w implies the
monotonicity of u.

∙ Assume now that w has a maximum, wm, at some finite value
y = ym; then at that point

dw

dy
|y=ym = 0.

∙ Then from Eq. (17), either wm = 1 or wm = �. Assume wm = 1.
∙ If wm is an absolute maximum, then the slope must change sign
from one side to the other. Thus, on one side of the maximum,
the slope must be positive.

∙ From Eq. (17), a positive slope implies then that w > 1.
∙ This, however, contradicts the assumption that wm = 1 is the
maximum value.

∙ A similar argument shows that there cannot be a minimum in the
profile.

∙ Thus, the w vs. y profile is a kink, i.e., a monotone function of y.
The slope dw

dy
> 0 everywhere, but tends to zero at the asymptotic

limits y→ ±∞.

Consider next the density profile. From Eq. (23)

d�

dy
=
d�

dw

dw

dy
= −

�o

w2

dw

dy
≤ 0.

That is, density is monotonically increasing with increasing w or equiv-
alently with decreasing y. Similarly, from Eq. (24)

d
dy

=
d
dw

dw

dy
= −

(
 − 1)2

2

(
2wo) dw

dy
≤ 0,

so  is also monotonically increasing with increasingw or, equivalently,
with decreasing y.

As reported in [1,12], the equilibrium entropy of Becker’s solution
does exhibit a maximum. From Eq. (27)

dS

dy
=
dS

dw

dw

dy
= (
 − 1) cv

⎡⎢⎢⎣
−w2

1 +

−1

2
2(1 −w2)

+
1

w

⎤⎥⎥⎦
dw

dy
,

which has an interior zero at

wm =
1


√

2 + (
 − 1)2

(
 + 1)
=
√
�. (28)

Here, we note that wm → 1 as → 1. For stronger shocks,wm decreases

monotonically and asymptotes to
√


−1


+1
as  → ∞. To summarize, in

every shock solution (for the special case  = 
) with 1 <  < ∞,
Eq. (27) has an interior maximum, and wm ∈ (

1

2
, 1) in perfect gases.

Plots of the velocity and the entropy versus the similarity coordinate
are shown in Figs. 1 and 2 for the self-similar Becker solution with
 =

√
3 and 
 = 5∕3 (see Section 4 below). Clearly, the velocity profile

is a kink, monotonically decreasing to the right; in contrast, the entropy
profile exhibits a maximum, which in this case occurs at wm = 1∕

√
2.

4. A special solution

On separating variables and performing a partial-fraction decompo-
sition, the Becker equation of motion (i.e., Eq. (17)) becomes
(

�

w − �
−

1

w − 1

)
dw = −

(
� − 1

l

)
dy. (29)

The position of the shock is not specified in our statement of the
problem; here, we will place the center of the shock, defined as the

2 A more general theorem proving monotonicity is given in [19].

point where u = 1

2
up, at y = 0. The integration of Eq. (29) subject to this

condition then yields the (exact) solution

ln

(
w − �

wo − �

)�

− ln

(
1 −w

1 −wo

)
= −

(
� − 1

l

)
y (30)

where we have set

wo = w(0) ≡ 1 −
up

2v
. (31)

The velocity solution derived above is, of course, implicit. In general,
it is not possible to find an exact expression giving w as a function of
y; see, however, Appendix A, wherein explicit approximate/asymptotic
expressions are given. In this section we show that the special case
� = 1∕2 yields a class of explicit, exact solutions, valid for all realizable

. First, let us interpret this special case in terms of shock strength
(i.e., Mach number). From Eq. (22) it is easily established that � = 1∕2

implies that = ∗, where

∗ ≡ 2√
3 − 


(1 < 
 ≤ 5∕3), (32)

from which it is clear that
√
2 <∗ ≤ √

3 in perfect gases.
In the case of monatomic gases we have

∗ =
√
3 (
 = 5∕3),

and from Eqs. (22) and (31) we find that

wo = 3∕4 (� = 1∕2).

Substituting these particular values into Eq. (30) yields:

(w − 1∕2)1∕2

(1 −w)
= 2 exp

( y

2l

) ≡ (y). (33)

Squaring the above equation leads to a quadratic equation for w,
specifically,

2w2 −w(1 + 22) + (2 +
1

2
) = 0, (34)

the physically admissible solution of which (as we shall see) is

w = 1 +
1

22

[
1 −

√
1 + 22

]
, (35)

or

u =
v

8
exp

(
−
y

l

) [√
1 + 8 exp

( y
l

)
− 1

]
. (36)

It is simple matter to check that this solution satisfies the imposed
asymptotic conditions:

∙ when y→ ∞,  → ∞, so w → 1 and u→ 0, ✓

∙ when y→ −∞,  → 0, so w→ 1∕2 and u → v∕4 = up, ✓

while at the origin,

∙ when y = 0,  = 2, so wo = 3∕4 and u = up∕2. ✓

The analytically determined velocity and entropy profiles derived
from Eq. (36) are shown in Figs. 1 and 2.

Remark 1. For  = 0 (i.e., k = 0), Eq. (B.1) reduces to

lw
dw

dy
= −
(w − 1)(w − �) ( = 0). (37)

Thus, like Eqs. (17), (37) yields a class of exact, explicit, solutions for
� = 1∕2, all members of which being easily obtained from Eq. (36) by
replacing l with l∕
. Comparing the  = 
, 0 special cases highlights
the fact that neglecting heat conduction (i.e., setting k = 0) reduces the
shock width; see Section 5.4 below.
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5. Numerical simulations

In this section, we present numerical solutions of a piston-driven
shock. Our goals are threefold. First, we demonstrate the stability
of the numerically calculated shock profile and compare it with the
(analytically-derived) self-similar version of Becker’s solution. (The
stability of the shock is an essential input to the discussion in Section 7.)
Second, we demonstrate the ability of Eulerian-framework codes to
accurately reproduce analytically determined shock profiles in the direct
numerical simulation (DNS) regime. And third, we offer additional
verification of the code, apart from the analytical solutions, as limited
justification for using this numerical program in regimes where exact
expressions for the former are unknown, or otherwise unobtainable. We
begin by summarizing the algorithmic program and problem setup.

5.1. A simple Eulerian program

Our simulations use the HIGRAD [20] program, which solves the
multi-dimensional Euler (fluid) equations on an Eulerian mesh. We have
modified the program to solve Navier–Stokes equations by adding both
physical viscosity and heat conduction. There are many highly effective
algorithms for treating shocks in the under-resolved regime where one
solves the Euler equations regularized by either implicit or explicit
artificial viscosity. In the highly resolved calculations described below,
physical viscosity and heat conduction provide sufficient dissipation
so that no regularization is required. In particular, our algorithm uses
centered spatial differences in flux (conservation) form. The explicit
time marching scheme is centered over the time-step by a third-order
Runge–Kutta approximation. Further details of the HIGRAD program are
described in [20].

Each calculation uses a fixed cell size and a fixed time step. The
discrete equations approximate the 1D Navier–Stokes equations (1)–(4).
We use internal energy rather than temperature, but note that for a
perfect gas, the former is proportional to the latter with the constant
of proportionally being cv.

5.2. Problem set-up

Our problems simulate a steady piston-driven shock in a stationary
perfect gas. The flow is self-similar and is characterized by a single flow
parameter, the Mach number, and by the initial conditions. The fluid
properties are characterized by the parameters 
, �̄, and �.

We define a problem domain of length 20.0 μmwith an individual cell
size dx = 100 nm. We initialize the problem by specifying two material
states separated by a membrane. Most of the problem domain lies to
the right of the membrane and consists of a stationary gas with density,
velocity and internal energy (�R, uR, R). Correspondingly, to the left
of the membrane we set (�L, uL, L). We define cR ≡ √


(
 − 1)R and
write the Mach number as  = v∕cR, where we recall that v is the
shock speed. Note that cR is the same as co, the sound speed ahead of
the shock; see Section 2.

To initialize the shock, we relate these quantities by the Rankine–
Hugoniot equations. When the gas on the right is stationary (uR = 0),
these relations are simply written in terms of the Mach number:

uL
cR

=
2(2 − 1)

(
 + 1) ,
�L
�R

=

 + 1


 − 1 + 2−2
,

L
R =

[
1 +

2



 + 1
(2 − 1)

][ 
 − 1 + 2−2


 + 1

]
. (38)

In addition, to support the shock forward in time, new material in the
same ‘L−state’ is fluxed into the mesh on the left boundary with shock
speed v.

More specifically, we assume the gas to be argon, a monatomic gas,
meaning that 
 = 5∕3, and we use a (constant) viscosity value of �̄ =

2.94 ⋅ 10−5 kg/(m s) and take  = 5∕3. Also, we assume �R = 1.0 kg/m3,
uR = 0, and R = 9.048⋅104 m2/s2 in the gas to the right of themembrane.

Fig. 1. Red curve: u vs. similarity coordinate (y) plotted from the special solution of
Section 4. Blue curve: numerical simulation of the velocity field generated using HIGRAD
(see Section 5) to solve the 1-D Navier–Stokes system for the same parameter values
assumed in Section 4. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Red curve: ΔS vs. y profile, where ΔS ≡ (S −So)∕cv, corresponding to the special
solution of Section 4. Blue curve: numerical simulation of the ΔS profile generated from
the HIGRAD velocity field data plotted in Fig. 1. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Note that T does not appear in our calculations; however, we use the
specific heat value cv = 312m2/(s2 K), which corresponds a temperature
of approximately 290 K, as the ambient temperature to the right of the
membrane. To simulate the special solution of Section 4, we set =

√
3

in Eq. (38) to derive the state conditions of the shocked gas (�L, uL, L).
We devote 300 cells to the shockedmaterial left of themembrane and

run the problem for several thousand cycles to establish a numerically
steady shock profile. We use a constant time-step of 4.0⋅10−15 s. And even
though the simulations are one-dimensional, we typically employed 500
processors to complete a given run in a reasonable amount of ‘‘wall
clock’’ time.

5.3. Numerical results

We begin with comparisons of the code predictions with those of
the (explicit) solution derived in Section 4. Using the parameter values
noted above and Eq. (18), we find the length scale in Eq. (36) to be
l ≈ 66.9 nm. In Fig. 1 we compare the two velocity profiles. Note that
there are two graphs in this figure, indistinguishable in the view-graph
norm. As noted at the end of Section 2, �,  , and S, can all be written
as functions of the velocity, so it is clear that the close agreement of the
velocity profiles seen here implies similar agreement vis-à-vis those of
the other field variables. However, for completeness, and later reference,
we show the comparison of the entropy profiles in Fig. 2.
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5.4. Kinetic estimates

Using [1, eq. (9b)], we estimate the mean free path in the pre-
shocked gas for the conditions listed above as

�R =
3

4

√

�

8

(
�̄

�RcR�

) |||||�=0.35
≈ 160.7 nm, (39)

where 1∕3 ≤ � ≲ 0.499 [1, p. 676]. A similar estimate of 114.6 nm

is obtained using the formula in a footnote of Alsmeyer [2, p. 499],
which we observe follows on setting � = 5�∕32 (≈ 0.491) in Eq. (39); see
also [17, §2.7].

A typical estimate of the shock width, which we denote here by
(> 0), is given by

 ≡ uL − uR
|s| . (40)

Here, |s| is the magnitude of the velocity profile’s slope at the midpoint
of the shock, i.e.,

s ≡ du

dy

|||||u=u∗
, where u∗ ≡ 1

2
(uL + uR).

(In the case of Eq. (17), u∗ = v(1 − �)∕2.) For the case of the special
solution in the previous section, where  =

√
3, one has � = 1∕2,

uL = v(1 − �) = v∕2, uR = 0, and u∗ = v∕4. Now from Eq. (17)
one calculates |s| = v∕(12l), so that  = 6l; but, as noted above,
l ≈ 66.9 nm. Consequently, the theoretical value of the shock width
for the special solution is

 ≈ 401.5nm. (41)

(For the version of the special solution corresponding to Eq. (37),
 = 6l∕
 ≈ 240.9 nm.) Thus, Eq. (39) implies that the width of the
 =

√
3 shock in argon is approximately 2.5 and 3.5 mean free paths

for � = 0.35, 5�∕32, respectively, in the case of Becker’s solution.

5.5. Shock widths for three conduction cases

Experimental results reported in [2,3], both of which take � = 5�∕32,
indicate that in argon the thinnest shocks have a width of about 3 mean
free paths and first occur for ≈ 3. In Fig. 3 (velocity) and 4 (energy),
we illustrate the additional widening of the Mach 3 shock due to the
inclusion of heat conduction and the temperature-dependence of �̄, �.
We consider three models: (I) there is viscosity but no heat conduction,
i.e.,  = 0 (see Eq. (37)); (II) there is constant viscosity and heat
conductivity such that  = 
 (i.e., the Becker case); and (III), both the
viscosity and heat conductivity coefficients are power-law functions of
temperature, specifically, �̄, � ∝ T 0.68, where we have employed the
exponent used by Schmidt [3]. The shock width can be estimated in
terms of the gradients of velocity, density or specific internal energy,
and these lead to similar, but quantitatively different, results.

In the more physically realistic case of temperature-dependent vis-
cosity and conductivity (i.e., case (III)), we see the  = 3 velocity
profile admits a shock width of approximately 3 and 4 mean free paths
for � = 0.35, 5�∕32, respectively. We also note that the energy profile
is strongly skewed; i.e., the leading part of the shock is flattened much
more significantly than the back of the shock. Schmidt also notes that
Navier–Stokes theory produces shocks that are more asymmetric than
what is seen in experiments; see Appendix A.1 where the asymmetric
form of the self-similar version of Becker’s solution is established for all
realizable.

5.6. Comparisons of perturbation solutions at the back of the shock

In Appendix C we derive a perturbation solution for  as a function
of velocity near the back of the shock, i.e., corresponding to the piston

Fig. 3. Velocity field shock profiles are compared for the Mach 3 shock for the three
different thermal conductivity cases listed in Section 5.5. Blue curve: case (I),  = 0. Red
curve: case (II),  = 
. Green curve: case (III), �̄, � ∝ T 0.68. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Shock profiles of normalized internal energy I , where I ≡ ∕o, are compared for
the Mach 3 shock for the three different thermal conductivity cases listed in Section 5.5.
Blue curve: case (I),  = 0. Red curve: case (II),  = 
. Green curve: case (III), �̄, � ∝ T 0.68.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

in the numerical simulations, that is valid for all 0 <  < ∞ and all
 > 1. In particular, we develop the expansion

E(�) = EL + a� + (�2). (42)

Here, E is a dimensionless version of  , EL = E(w = �) is a
known constant, the perturbation coefficient a is determined/discussed
in Appendix C, and we have set

� ≡ up − u

v
, (43)

where we observe that 0 < � ≪ 1 in the region near the piston.
In Figs. 5 and 6, we plot the physically-relevant value of a, the

coefficient of the first-order perturbation term, and superpose the results
of numerical simulations for four representative values of  .

A general conclusion based on the experimental results of [2,3] is
that Navier–Stokes theory more closely represents the measured widths
for weak shocks, specifically, those with  < 2, and less closely
for stronger shocks. We illustrate the close agreement of theory and
simulation vis-à-vis the perturbation coefficient, in both regimes, using
 =

√
3 in Fig. 5 and = 3 in Fig. 6.

6. Clausius–Duhem and equilibrium thermodynamics

‘‘Once you eliminate the impossible, whatever remains, no matter how
improbable, must be the truth’’. A. Conan Doyle
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Fig. 5. a∗ is plotted as a function of  , for 
 = 5∕3 and  =
√
3. The four red dots

are data points plotted from our HIGRAD-generated simulation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. a∗ is plotted as a function of  , for 
 = 5∕3 and  = 3. The four red dots
are data points plotted from our HIGRAD-generated simulation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

As we have seen, the Becker solution and our self-similar traveling
wave solution both show that specific entropy, as given by Eq. (26),
has a maximum3 inside the shock region. This is a sufficiently counter-
intuitive result that Morduchow & Libby make special mention of it.
Their comment (see [11]) is to the effect that the second law pertains to
systems and that entropy downstream of the shock is greater than the
entropy upstream, an explanation we find less than convincing.

There is a more ‘‘strenuous’’ test that could be applied to the
entropy profile, that test being the Clausius–Duhem inequality (CDI).
The CDI [21] is a local form of the second law; it is not about systems, but
about individual points of a continuum. The meaning of the CDI is that
a physical process should be dissipative at every point. The inequality
is most frequently applied to determine the conditions under which a
given constitutive relation is thermodynamically allowable.

In differential form, and assuming the absence of heat sources due
to external radiation, the CDI reads

�
DS

Dt
+ ∇ ⋅

( q

T

) ≥ 0, (44)

where we recall that q is the heat flux vector and T (> 0) is the absolute
temperature. In the case of the compressible Navier–Stokes equations,

3 Actually, this is true for all  > 0 [14], the case  = 0 (i.e., k = 0) being the sole
exception; see Remark 3 in Appendix B, and also our calculations at the end of Appendix C.

however, the CDI is identically satisfied since the LHS of Eq. (44) turns
out to be a positive-definite quantity; see, e.g., [17, eq. (2.15)].

It is unfortunate that, in the sense of thermodynamics, a general
nonequilibrium entropy is not defined [22]. What is given by Eq. (26)
is the equilibrium entropy, wherein gradients of density, energy, and
velocity do not appear. It is interesting that the CDI is more constraining
than the global second law by virtue of containing the heat flux which,
by Fourier’s law, depends on the gradient of the energy. Let us briefly
review the derivation of the CDI.

In equilibrium thermodynamics, the local Gibbs equation for a
general, single species, fluid reads [17, p. 58]

TdS = d −
p

�2
d�, (45)

which in the case of a perfect gas can be recast as

dS = cv[−1d − (
 − 1)�−1d�]. (46)

The latter form of this relation may be integrated to yield Eq. (26)—
but shocks are not equilibrium processes. The extension to classical
irreversible thermodynamics [23] involves two principal assumptions:

∙ Local thermodynamic equilibrium (LTE)—that small-enough re-
gions of space are in a local equilibrium, so that relations like
the equation of state (Eq. (4)) and the Gibbs equation (Eq. (45))
remain valid locally, and the density, velocity, and temperature
all become functions of position.

∙ Local entropy balance—the rate of entropy production in a mass
element is described by [17, p. 58]

DS

Dt
+ �−1(∇ ⋅ JS ) = �S , (47)

where JS is the entropy flux and �S is the per-unit-mass rate
of entropy production due to thermoviscous sources within the
element. Note that when the entropy flux is taken as JS = q∕T ,
and since �S ≥ 0 by the second law, Eq. (47) becomes the CDI
by replacing ‘‘=�S ’’ with ‘‘≥0’’.

The motivation for assuming the entropy flux is the heat flux divided
by the temperature is based on the definition of entropy in equilibrium
thermodynamics. The kinetic theory of gases allows for a more general
entropy flux; see, e.g., the discussion in [24]. However, it is the first
assumption, that of LTE, with which we will next be concerned.

One of the novel aspects of Becker’s [4] analysis is the way he mixes
the macroscopic (thermodynamic) and microscopic (gas-kinetic) points
of view. Here, we will also adopt this strategy. In the next section we will
evaluate the LTE assumption and show that it is valid only for the very
weakest shocks. Then, in Section 8, we will take a completely gas-kinetic
point of view and calculate the Boltzmann nonequilibrium entropy. We
will show that the nonequilibrium entropy is a monotonically increasing
function in the shock profile with no internal extrema. Finally, we will
propose a purely macroscopic modified entropy that closely estimates
the nonequilibrium entropy.

Since from this point forward we will be discussing several different
entropies, it is necessary to extend our notation. We will write SE for
the equilibrium entropy defined in Eq. (26). We will briefly refer to the
generic nonequilibrium entropy of Boltzmann in Eq. (59) as SB. When
the Grad approximate solution is used to calculate the Navier–Stokes
nonequilibrium entropy in Eq. (62), we will refer to SN. Finally, we will
evaluate a modified thermodynamic nonequilibrium entropy SM, which
we define below in Eq. (52).

In anticipation of its use in Section 8 and Appendix C, we now rewrite
the CDI for the self-similar solution in terms of w. First, we observe
that the material time derivative of the equilibrium entropy in Eq. (44)
becomes

�
DSE

Dt
= −�(v − u)

dSE

dy
= −�ov

dw

dy

dSE

dw
. (48)
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Next, the entropy flux term assumes the form:

q

T
= cv

q

 = −
�cv


d
dy

= −�cv
d ln(∕o)

dy
= −�cv

dw

dy

d ln(∕o)
dw

. (49)

Thus, it follows that

d

dy

( q

T

)
= −(�cv)

dw

dy

d

dw

[(
dw

dy

)(
d ln(∕o)

dw

)]
. (50)

And so the CDI for the self-similar shock is

CDI = −�0v

(
dw

dy

)
d

dw

(
SM

) ≥ 0. (51)

Here, we define

SM ≡ SE +
cvl(
 + 1)

2


[(
dw

dy

)(
d ln(∕o)

dw

)]
, (52)

where we have made use of the expression for l given in Eq. (18) and
the defining relation for  .

Considering Eq. (51) and that our shock is moving to the right, the
quantity SM is monotonically increasing through the shock, and thus
is a good candidate for a nonequilibrium thermodynamic entropy. To
support this hypothesis we will, in Section 8, compare SM directly with
SN for a Mach 3 shock.

7. Local thermodynamic equilibrium

‘‘In practice, the criterion for equilibrium is circular. Operationally,
a system is in an equilibrium state if its properties are consistently
described by thermodynamic theory!’’ H.B. Callen

The theoretical connection between the Boltzmann equation and
Navier–Stokes theory is the Chapman–Enskog (CE) approximation. CE
is a perturbation expansion in the Knudsen number, Kn, which is the
ratio of molecular mean free path to macroscopic length scale. If a
shock is of the order two or three mean free paths wide, then Kn is
not small and one should not expect the perturbation approximation
to be accurate4 . In effect, we have come full circle and conclude that
Becker’s original concerns are well-founded. Below, we will make some
rough estimates, in the spirit of Becker [4], combining results from
Navier–Stokes (continuum) theory and kinetic theory to quantify our
conclusions.

A quantitative justification for LTE would be that gradients are small
over some macroscopic length scale Δx, specifically,

Δx

Δu

|||||
du

dy

|||||
≪ 1, (53)

where Δu is the total change in velocity across the shock. For example,
in the case of numerical simulation one might interpret Δx as the size
of one computational cell. In CE theory, Δx is the (somewhat nebulous)
macroscopic scale that must be ‘‘large’’ when compared to the molecular
mean free path, �. More generally, Δx is not a scale of the flow, but
rather of the observer of the flow; see [25] for elaboration. Eq. (53), we
observe, defines an upper bound on Δx.

From a kinetic-physics point of view, it is the collisions that restore
an equilibrium distribution to the molecular velocities. So the establish-
ment of local equilibrium also places a lower bound on Δx as a multiple
of the molecular mean free path. Numerical studies suggest that the
CE-based derivation of the Navier–Stokes system is not justifiable for
Kn greater than ≃0.1; see [26]. This, then, leads to the conservative
estimate

Δx1 ≥ 10�. (54)

4 Navier–Stokes theory was formulated empirically many decades before Chapman and
Enskog.

A more generous estimate can be made from [2, fig. 2], where the
narrowest experimentally measured shock implies

Δx2 ≥ 3.5�, (55)

which we recall is based on � = 5�∕32 (see Section 5.4).
Our task now is to determine whether there is a range of allowable

values of Δx that lies between the lower and upper bounds described
above. We will make the following explicit choices: Take  = 
, so that
we can use the Becker solution in what follows; consider the velocity
gradient, in particular, and look near the center of the profile at the
point where the magnitude of the velocity gradient is at its maximum;
and use the more generous estimate of minimal Knudsen number cited
in Eq. (55)5 .

We begin with Eq. (17), evaluated at w = wm =
√
�, the point6 at

whichmax |du∕dy|y∈R occurs in the solutions of this ODE (and also those
of Eq. (37)):

|||||
du

dy

|||||
= v

|||||
dw

dy

|||||
=
v

l

(
1 −

√
�
)2

=
(�ov2

�̄

)( 
 + 1

2


)(
1 −

√
�
)2

,

where we recall that � is given in Eq. (19).
Eq. (55) provides a limiting estimate for the macroscale:

Δx = 3.5� = K1

√



⎧
⎪⎪⎨⎪⎪⎩

(
10 �̄

�mcm

)
, � = 0.35,

112

5�

(
�̄

�mcm

)
, � = 5�∕32.

(56)

Here, we have used Eq. (39) to estimate the mean free path, and we
have set K1 ∶=

3

4

√
�∕8 (≈ 0.470). Moreover, �m and cm represent the

density and sound speed, respectively, evaluated at the point w = wm of
the profile; specifically, we have, from Eq. (23),

�m =
�o√
�
,

while manipulation of Eq. (24) yields

cm = co

[
1 +

(

 − 1


 + 1

)
(2 − 1)

]1∕2
.

Now taking Δu = v � and then assembling these results yields

Δx

Δu

|||||
du

dy

|||||
≈

(

 + 1

2
√



)(
√
�

)
(1 −

√
�)2

[
1 +

(

−1


+1

)
(2 − 1)

]1∕2

×K1

{
10, � = 0.35,

7.13, � = 5�∕32.
(57)

In Fig. 7, the estimate of the (dimensionless) velocity gradient
given in Eq. (57) is plotted as a function of the Mach number for
two representative values of 
. Given the coarseness of our estimates,
one should not look for a single, overall, critical Mach number value.
However, it is clear that for monatomic gases, for which 
 = 5∕3,
LTE will fail by a Mach number of two7 , which is consistent with
detailed comparisons of Navier–Stokes theory and kinetic theory (see,
e.g., [27])—More precisely, achieving LTE in monatomic gases requires,
based on Eq. (57), that 1 <  ≪ 1.83 or 1 <  ≪ 2.08 for � =

0.35, 5�∕32, respectively. For more complicated gases such as air, which
is a mixture of several components and has a smaller (effective) specific
heat ratio of 
 ≈ 1.4, LTE will fail at even smaller Mach number values;
viz.: achieving LTE in diatomic8 gases, for which 
 = 7∕5, demands
1 <≪ 1.66 or 1 <≪ 1.81 for � = 0.35, 5�∕32, respectively.

5 We note that this is consistent with shock-capturing numerical simulations where an
artificial viscosity chosen to yield a shock that is between three and four computational
cells wide suffices to eliminate unphysical post-shock oscillations; see [16].

6 Recall that this is also the point where the equilibrium entropy profile (i.e., Eq. (27))
exhibits its maximum; see Section 3.

7 The mid-20th century consensus was that continuum theory failed for 1.3 ≲ M0;
see [1] (whereinM0 is defined), and the references cited therein, but take note of the lack
of consistent schemes for defining  and assigning a value to �.

8 Example of which include H2, N2, and O2; see [17, p. 80].
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Fig. 7. Dimensionless estimate of the velocity gradient (plotted from Eq. (57)) vs. for
two representative values of 
 and two values of �. Green curve: 
 = 1.4 and � = 0.35.
Purple curve: 
 = 1.4 and � = 5�∕32. Blue curve: 
 = 5∕3 and � = 0.35. Red curve: 
 = 5∕3

and � = 5�∕32. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Remark 2. In solutions of Eq. (17), the center (or midpoint) of the
velocity profile is located at w = w∗ = (1 + �)∕2 (see Section 5.4) while
max |du∕dy|y∈R occurs at w = wm =

√
�, where 0 < wm < w∗ < 1 since

0 < � < 1.

8. Nonequilibrium entropy

In this section, we will derive a nonequilibrium entropy for the
Navier–Stokes equations based on gas kinetic theory. The entropy that
appears in Eqs. (26) SE is the thermodynamic equilibrium entropy. The
extension to nonequilibrium processes is made through the assumption
of local thermodynamic equilibrium [23] as described in Section 6. That
implies that the macroscopic field quantities, e.g., density, temperature,
etc., will depend on the spatial coordinate. However, the gradients of
density, energy, etc., do not appear in the equilibrium entropy.

A general nonequilibrium entropy is not defined [22] in classical
thermodynamics. However, in the more fundamental descriptions of
statistical mechanics and gas kinetic theory, a nonequilibrium entropy
can be defined in terms of the velocity probability distribution function
(PDF). The H-theorem, introduced by Boltzmann in 1872, describes the
tendency for the quantity  to be monotonically decreasing, where

 ≡ ∫ f ln(f ) d3�, (58)

and where f (xi, �i, t) is any solution of the Boltzmann equation [28]. In
turn, a nonequilibrium entropy, SB, can be defined in terms of , viz.,
SB ≡ −∫ f ln(f ) d3� = −. (59)

Remarkably, when the equilibrium Boltzmann–Maxwell distribution,
i.e.,

fE(�) = �
(

1

2�
)3∕2

exp

[
−
(� − �̄)2

2
]
, (60)

is inserted into Eq. (59), one finds that SB is identical to the thermody-
namic entropy, SE, defined in Eq. (26), except for additive constant(s).

Solving the Boltzmann equation for nonequilibrium flows is very
difficult, and one is usually constrained to constructing perturbation
approximations assuming that the flow is near equilibrium. This is
the case for deriving the Navier–Stokes equations. One path from the
Boltzmann equation to Navier–Stokes was proposed by Grad [29]. The
Grad PDF, fG, is a perturbation of the equilibrium solution of the Boltz-
mann equation; its derivation is lengthy and intricate (see, e.g., chap. 4
of [28]). Here, we present the Grad PDF with two modifications to

Fig. 8. The nonequilibrium entropy SN (red curve) is compared with the equilibrium
entropy SE (blue curve), in dimensionless units for the Mach 3 shock. The green dots show
a modified SN in which the viscous term in the velocity PDF is ‘‘turned off’’, illustrating
that viscosity plays essentially no role in the nonequilibrium entropy. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

ensure the closest comparison with our analysis in Section 2. First, we
assume a 1D flow and integrate over the two extraneous dimensions;
and second, we introduce the longitudinal viscosity term, �. This gives
us the modified (Grad) PDF:

fM(�) = fE(�)

{
1 +

1

2�2

[
� (�2 − ) + 4

5
q�

(
�2

2 −
5

2

)]}
. (61)

Here, we have set � ≡ −�̄ )u∕)x, and we recall that q = −� )∕)x is the
heat flux. Note that both the original Grad PDF and our modified version
of it are carefully constructed to ensure that the macroscopic variables
of density and average velocity are the equilibrium values. This is an
essential feature of the assumption of local thermodynamic equilibrium.
Now inserting Eq. (61) into (59), we define the nonequilibrium entropy
for Navier–Stokes theory:

SN ≡ −∫ fM ln(fM) d�. (62)

We have evaluated the integral above numerically using the par-
ticular parameters of the Mach 3 shock. The issue at hand is not only
to compare the equilibrium and nonequilibrium entropies, but more
simply to ascertain whether SN has a maximum inside the shock profile.
The answer to the latter is shown graphically in Fig. 8—In contrast to
SE, the nonequilibrium entropy SN is monotonically increasing through the
shock profile. Further, as the equilibrium and nonequilibrium entropies
must agree in the regions in front of and behind the shock, it is easy
to determine the relative scale factors; a direct comparison of the two
entropies is also shown in Fig. 8.

There is more to learn from Eq. (61). Let us now remove the
contribution of the longitudinal viscosity term from fM, by setting � = 0,
and recompute the entropy. Representative points added in Fig. 8 show
that there was no discernible contribution to SN from the longitudinal
viscosity. If, in addition, we now remove the contribution of the heat
flux, then what remains is the equilibrium PDF, fE, and the equilibrium
entropy, SE; thus, we conclude that the main difference between SE and
SN is due to the heat flux q term in Eq. (61).

The importance of the heat flux in the nonequilibrium entropy
brings to mind the Clausius–Duhem inequality discussed in Section 6.
We conjecture that a nonequilibrium thermodynamic entropy might be
accurately estimated for the 1D self-similar solution by including the
entropy flux in the entropy. In particular, we focus on the modified
thermodynamic entropy defined in Eq. (51). To test this conjecture,
we have calculated SM numerically and compared it to SM in Fig. 9.
The agreement is not exact, but is compelling. In Appendix C we show
that SM is monotonically increasing for all realizable Prandtl and Mach
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Fig. 9. The nonequilibrium entropy SN (red curve) is compared with the modified
equilibrium entropy SM (blue curve), for the Mach 3 shock using dimensionless units.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

numbers. A revised CDI has the simple form

dSM

dy
≥ 0. (63)

Note that this form of the inequality results from self-similarity and is
not restricted to only shock waves.

9. Closure

In this paper we have considered the general structure of shock
waves calculated by Navier–Stokes theory. In particular, we have stud-
ied the distribution of entropy within the shock profile. Our analysis was
motivated by two classic papers in shock structure. The first is the 1922
paper by Becker [4] that presented the first steady shock solution of a
Navier–Stokes shock that includes both viscosity and heat conduction.
Becker used his solution to estimate the shock width and raised the issue
that the predicted shock width, measured in units of the molecular mean
free path, was too narrow to allow the Chapman–Enskog perturbation
theory to converge; i.e., he questioned the use of the Navier–Stokes
equations to describe the structure of shocks.

The second is the 1949 paper by Morduchow & Libby [1] that revis-
ited Becker’s analysis and calculated the entropy distribution, explicitly
showing an entropy maximum within the profile. This is certainly a
counter-intuitive result, but the authors concluded that it did not violate
the global version of the second law of thermodynamics, namely, that
the total entropy of the system must increase.9

The principal new results of this paper are five-fold:

1. In Section 2 we derived the self-similar solution in analogy to
Becker’s steady-shock solution; then, in Section 4, we derived a
special case of the former, which appears to be a new result, that
corresponds to  = ∗ and yields a class of exact, explicit,
traveling wave solutions valid for all perfect gases. In Section 5,
we developed a direct numerical simulation code that solves
the compressible Navier–Stokes equations at high resolution.
We then compared the numerical solutions with the traveling
wave solutions of the self-similar equations. We demonstrated
that the numerically and analytically determined solutions are in
excellent agreement and, furthermore, that the former is stable
from the computational standpoint.

9 The term entropy is used in many different contexts, thermodynamics, statistical
mechanics, PDE theory, numerical methods, chaos theory, topology, etc. [30]. The
relationship among these many concepts is in general not known.

2. Our analysis has also revealed shortcomings in the steady-shock
approach vis-à-vis its usefulness in modeling shock experiments.
In particular, it is lacking in the sense that, along with that of
the velocity (in the form of up), the value of at least one

10 state
variable must also be specified at −∞; in the case of [1], it is T ,
which creates a formulation inconsistency since the face of the
piston is tacitly assumed to be insulated. This is in contrast to
the present traveling wave-based analysis of the piston problem,
wherein only the value of the velocity must be specified at −∞,
while those of the state variables (and the velocity) must be
given at +∞. The latter approach is thus more realistic from
the modeling standpoint; indeed, an experimenter, who clearly
has control over the speed of the piston and the state of the
gas ahead of the shock, would perform the shock experiment in
order to determine the values of �, T , and p at the piston. This
problem with the steady-shock approach is manifested in [1] in
at least two other ways: (i) the state of the gas at +∞ cannot
be independently specified, i.e., it depends on the conditions at
−∞; and (ii), the entropy profile in [1, fig. 3] is the reverse-image
of that given above in Fig. 2, a consequence of the fact that the
temperature at the face of the piston in [1] is less than it is at
+∞.

3. In Section 7, we quantified the meaning of LTE (in the spirit of
Becker) and showed that it is a valid assumption for only the very
weakest of shocks, i.e., those well-described by weakly-nonlinear
theory (see Appendix A.2). This is an important result in the
following sense: There are no length scales in classical thermo-
dynamics; however, the derivation of the (compressible) Navier–
Stokes equations from kinetic theory requires two assumptions
that place first a lower and then an upper limit on system size.
On the one hand, there must be sufficient collisions to allow
equilibration (lower bound), while on the other hand macro-
scopic properties must not change significantly over the collision
process (upper bound). In the case of shocks in monatomic gases,
our most ‘‘charitable’’ estimate indicates that these bounds are
incompatible for shock strengths of 2 ≲.

4. In Section 8 we calculated directly the gas-kinetic entropy, SN,
for the Navier–Stokes solutions and showed that it is significantly
different from the equilibrium entropy, SE. Indeed, SN is mono-
tonically increasing through the shock profile in accordance with
our intuition. We do not believe the structure of the equilibrium
entropy has any significance in Navier–Stokes theory.

5. We have hypothesized a nonequilibrium thermodynamic en-
tropy, i.e., one that depends on macroscopic variables, that is
monotonically increasing through the shock, and which closely
estimates the nonequilibrium Boltzmann entropy that is based
on the statistical mechanical probability distribution function.
Our hypothesis is currently restricted to self-similar flows, but
is not necessarily restricted to shocks due to its relation to the
Clausius–Duhem inequality.

Becker’s paper [4] called into question the applicability of Navier–
Stokes theory to shocks only a few years after the Chapman–Enskog
expansion was introduced. The validity of his criticisms is now well
established by experiment. However, the search for a more accurate
replacement remains an active research topic.
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Appendix A. Approximate and asymptotic results

The derivations presented in this appendix are most readily carried
out by recasting Eq. (17) in the form

(� −  )
d 

dY
= −(1 −  2). (A.1)

Here, we have set w ≡ 1 −
1

2
(1 − �)(1 + ); the parameter � is defined as

� ≡ 1 + �

1 − �
=

1 + 
2

2 − 1
, (A.2)

where we observe that � > 1; and we introduce the dimensionless
similarity variable Y ≡ y∕l.

Before beginning our analysis it should be noted that, while origi-
nally derived for the Becker case (i.e.,  = 
), all results presented in
this appendix are easily made to apply to the case  = 0 (see Remark 1)
by replacing l with l∕
 in the defining relation for Y .

A.1. Results for all > 1

With our equation of motion in the form of Eq. (A.1), it is a
straightforwardmatter to apply the results given in [31, §5.2] and derive
the following (explicit) approximation to the Becker solution:

u(Y ) ≈ up

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −
� − 1

� + 1
W0

[(
� + 1

� − 1

)
exp

(
2(Y + ln 2)

� − 1

)]
, Y ≪ Y1,

1

2

(
1 + � −

√
�2 + 2Y

)
, |Y |≪ �,

� + 1

� − 1
W0

[(
� − 1

� + 1

)
exp

(
−2(Y + ln 2)

� + 1

)]
, Y ≫ Y2,

(A.3)

where W0( ⋅ ) denotes the principal branch of the Lambert W -function,
and we have set Y1,2 ≡ − ln(2) ∓ (� ∓ 1)∕2.

From Eq. (A.3) and the fact that W0(x) ∼ x − x2, as x → 0, the
following asymptotic expressions are easily obtained:

u(Y ) ∼ up

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − exp

(
−2|Y |
� − 1

)[
1 −

� + 1

� − 1
exp

(
−2|Y |
� − 1

)]
, Y → −∞,

1

2

(
1 − Y ∕� +

1

2
Y 2∕�3

)
, |Y | → 0,

exp

(
−2Y

� + 1

)[
1 −

� − 1

� + 1
exp

(
−2Y

� + 1

)]
, Y → ∞.

(A.4)

From these expressions, we are able to quantify the kink’s asymmet-
ric shape in the large-|Y | regimes; qualitatively, however, its clear that
the rate at which u(Y ) tends to up (i.e., its left-asymptotic limit) is faster
than that which it tends to zero (i.e., its right-asymptotic limit).

A.2. Results for weak shocks

What are referred to above as ‘‘weak shocks’’, i.e., those for which
1 <  ≪ 2, result when up ≪ co. This is easily established by recasting
the RHS of Eq. (21) in terms of up∕co and expanding, viz.:

 ≈ 1 +
1

4
(
 + 1)(up∕co) +

1

32
(
 + 1)2(up∕co)

2 (up ≪ co), (A.5)

where we observe that > up∕co.
In the broader context, the assumptionMp ≪ 1 is the basis of weakly-

nonlinear compressible flow theory, the aim of which is to derive sim-
plified (i.e., approximate) versions of the compressible Navier–Stokes
system that still capture the salient physics of the flow in question;
see, e.g., [9] and the references cited therein. In the present study,

Mp may be called the piston Mach number, because Mp = up∕co; for
compressible flows in general, however, it is sometimes referred to as
the ‘‘peak particle velocity Mach number’’ (of the flow).

In the case of weak shocks, where we observe that

Mp ≪ 1 ⇒ 1 <≪ 2 ⇒ � ≫ 1, (A.6)

u(Y ) exhibits Taylor shock-like behavior, specifically,

u(Y ) ≈
1

2
up[1 − tanh(Y ∕�)] (� ≫ 1), (A.7)

which unlike the (exact) profiles corresponding to the piecewise-valid
approximations above is symmetric11 . It is noteworthy that by re-
expressing it in terms of y∕l, and then approximating the resulting quo-
tient �∕ to (1∕Mp), under the weakly-nonlinear scheme, Eq. (A.7)
becomes the velocity traveling wave solution of the Becker case of
the (weakly-nonlinear) PDE known as the Blackstock–Lesser–Seebass–
Crighton (BLSC) equation [31, §4].

Appendix B. Expressions valid for arbitrary values of 

The results presented in this appendix are intended to lay the
groundwork for further study of shock phenomena, in particular, the
general case  ≠ 0, 
,∞, using the similarity variable (i.e., traveling
wave) approach. To this end, we observe that for arbitrary values of
 ≥ 0, the elimination of � and  between Eqs. (9), (10), and (11) yields
the general equation of motion

(1 −w)(w − �)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
1 + 

(2 − 
−1

2

)
− (1 + 2)(1 −w)

]

×

(
l




)
dw

dy
+
ll




[(
dw

dy

)2

+w

(
d2w

dy2

)]
,  ≠ 
,

−
4l


 + 1

(2 + 
−1

22
−w

)
dw

dy
,  = ∞,

(B.1)

where we recall that Eq. (17) corresponds to the case  = 
. Here, we
have set l = �∕(�ov), and we note that the cases  = ∞ and  = 0 imply
�̄ = 0 and k = 0, respectively, where we also recall that � = k∕cv.

It is noteworthy that Eq. (B.1) is the traveling wave (i.e., self-similar)
version of the equations of motion given by Rayleigh [6, eq. (97)]
and Taylor [7, eq. (6)] in 1910, both of whom applied the steady-
state shock approach to the piston problem. It is also noteworthy to
compare the  ≠ 0, 
,∞ case of Eq. (B.1) with its third-order counterpart
given by Christov et al. [31, eq. (22)], an ODE which is also based
on the traveling wave assumption; evidently, employing the entropy
balance equation [17, eq. (2.16)], in place of the total energy equation
(i.e., Eq. (3)), yields an equation of motion for the traveling wave version
of the piston problem that is one order greater.

And recalling that Eqs. (10) and (26) hold for all perfect gases,
regardless of Prandtl number, we observe the following: With the aid
of Eq. (23), the former and latter can be written in terms of w as

 = o
[
(1 + 
2) − 
2w −

1

2
l(
 + 1)2 dw

dy

]
w, (B.2)

S − So
cv

= ln

[
−

1

2
(
 + 1)l2

(
dw

dy

)

+(1 + 
2(1 −w))

]
+ 
 ln (w) . (B.3)

Remark 3. On setting k = 0, Eq. (B.3) reduces to

S − So
cv

= ln

[
−

1

2

(
 + 1)2(1 −w)(w − �) + (1 + 
2(1 −w))w

]

+ (
 − 1) ln(w) ( = 0), (B.4)

11 In the sense that both u = up∕2, the midpoint of the profile, and max |du∕dY |Y∈R occur
at the same Y -value, i.e., Y = 0.
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which we have simplified with the aid of Eq. (37). It can be shown
that for this special case, and only this special case, the specific entropy
profile assumes the form of a strictly positive, strictly decreasing, kink,
and as such does not12 exhibit a stationary point.

Appendix C. Perturbation solution

The purpose of this appendix is to derive a general representation of
the specific internal energy  as a function of the velocity in the post
shock region of the flow, where u = v(1−w) ≈ v(1−�). Hence, assuming
only that 0 <  < ∞, we return to the self-similar Eqs. (5)–(7), and the
equation of state (8), which are repeated below:

�(v − u) = �ov, (C.1)

u�(v − u) − (
 − 1)� + �̄
du

dy
= −po, (C.2)

�(v − u) + 1

2
�u2(v − u) − (
 − 1)�u + �̄u du

dy
+ �

d
dy

= vo�o, (C.3)

p = (
 − 1)� . (C.4)

As in Section 2, we use the mass conservation equation (Eq. (C.1))
to eliminate � from the momentum equation (Eq. (C.2)), the result of
which we write as

w + (
 − 1)
E

w
+
dw

dz
= (
 − 1)Eo + 1 ≡ A. (C.5)

Here, we introduce E ≡ ∕v2, the nondimensional specific internal
energy, and z ≡ (�ov∕�̄) y. Then

dw

dz
=

1

w

d

dz

[
w2

2

]
= Aw −w2 − (
 − 1)E. (C.6)

where we observe that

Eo =
c2o


v2(
 − 1)
=

1


 (
 − 1)2
, (C.7)

and where we recall that co is the sound speed at w = 1 and  is the
Mach number.

Next, we turn to the energy equation:


E +
1

2
w2 +

d

dz

[E +
1

2
w2

]
= 
Eo +

1

2
≡ B. (C.8)

In the Becker solution,  = 
; here, we treat it as a positive constant.
We now use the chain rule to write

dE

dz
=
dE

dw

dw

dz
.

Then

d

dz

[E +
1

2
w2

]
=

[
w

dE

dw
+ 1

]
dw

dz

=
[
w

dE

dw
+ 1

] [
Aw −w2 − (
 − 1)E

]
. (C.9)

Thus, Eq. (C.8) may be written as the following ODE in E and w:

[

Ew +

1

2
w3 − Bw

]
+
[ dE

dw
+w

]
⋅
[
Aw −w2 − (
 − 1)E

]
= 0. (C.10)

Eqs. (C.5) and (C.10) are still completely general, both in the sense
that they are valid for the entire domain of the shock and also that
they contain  ,, and 
 as unspecified parameters. Rather than seek a
complete solution, we now construct an approximate solution near the
asymptotic value w = �. (In the simulations, this is the region near the
piston; in terms of our Fig. 2, this is the region where the entropy is
decreasing as we move to the left.)

12 Since they assumed k (as well as �̄) to be strictly positive, this result does not
contradict the proof given by Serrin & Whang [14].

For our purposes we need only evaluate the perturbation expansion
to first order; i.e., approximate Eq. (42) by

E ≈ EL + a�, (C.11)

where determining the coefficient a will the primary goal of this
appendix, and we note that EL = L∕v2. To this end we return to
Eq. (43) and, using the defining relation for w, write

w = (1 − up∕v) + � = � + � ⇒
d

dw
=

d

d�
.

Here, we recall that 0 < � ≪ 1 in the region near the piston and that
� = 1 − up∕v.

In the momentum equation (Eq. (C.5)) we set w = �,

(
 − 1)EL = A� − �2. (C.12)

Equivalently, from the energy equation (C.8),


EL = B −
1

2
�2. (C.13)

These relationships show that the constants A, B, and � are not
independent. Also, to (�),
w = � + �; w2 = �2 + 2��;

w3 = �3 + 3�2�;
dE

dw
= a.

Note that the monotonicity of E as a function of w, proven in Section 3,
indicates that a ≤ 0.

Returning to Eq. (C.5), we substitute for the energy term, and this
yields

dw

dz
≈ Aw −w2 − (
 − 1)(EL + a�) = [A − 2� − (
 − 1)a] �. (C.14)

Then,

d

dw

(
dw

dz

)
= [A − 2� − (
 − 1)a] ; (C.15)

thus, dw
dz

∼ (�) and d

dw

(
dw

dz

)
∼ (1).

Now we can rewrite the energy equation (C.10) to first order. For
example, the sum in the first set of brackets on the LHS of Eq. (C.10)
becomes


Ew +
1

2
w3 − Bw =

[
�
EL +

1

2
�3 − B�

]

+
[

(a� + EL) +

3

2
�2 − B

]
�. (C.16)

Here, the first term on the RHS vanishes exactly, a consequence of
the asymptotic condition. Further simplification then results from using
Eq. (C.13):


Ew +
1

2
w3 − Bw =

[

a� + �2

]
�, (C.17)

while the second bracket set in Eq. (C.10) becomes

[ dE
dw

+w
]
= [a + �] + �. (C.18)

Finally, consider the expression inside the last set of brackets in
Eq. (C.10); it becomes

[
Aw −w2 − (
 − 1)E

]
=

[
A� − �2 − (
 − 1)EL

]

+ [A − 2� − (
 − 1)a] �. (C.19)

Here again, the expression inside the first set of brackets vanishes
identically. Now in Eq. (C.10), there are no terms of (1). Equating
terms of (�) then leads to our principal result, a quadratic equation
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Fig. 10. a∗ is plotted as a function of, for 
 = 5∕3 and  = 5∕3.

Fig. 11. dSE∕dw, the slope of the equilibrium entropy profile, is plotted as a function of

 near the piston’s face. Blue curve:  =
√
3. Red curve:  = 3, Green curve:  = 6.

Note that w increases to the right and the shock is moving to the right; therefore, entropy
is increasing toward the right. Since the entropy must eventually decrease to the value
of the un-shocked gas, this indicates the presence of (at least) one maximum within the
profile. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

for a:

−(
 − 1)a2 + [
� + (A − 2�)

]
a +

(
A� − �2

)
= 0. (C.20)

With regard to Eq. (C.20), we observe the following:

∙ The coefficient a depends on three parameters: 
,  , and the
shock strength as measured either by  or by �. To show that
the constants A and B depend only on two parameters, namely,

 and �, recall13

� =

 − 1


 + 1
+

2


 + 1

1

2
;

thus,

1

2
=

(
 + 1)�

2
−

 − 1

2
.

Hence,

A = 1 +
1


2
=

 + 1

2

(� + 1) , (C.21)

from which we see that A > 1, and, similarly,

B =
1

2
+

1

(
 − 1)2
=

(
 + 1)�

2(
 − 1)
. (C.22)

13 This relation was derived in Section 2 for the special case of  = 
. However, it can
easily be shown to depend only on the asymptotic conditions and is independent of  .

Fig. 12. dSN∕dw, the slope of the nonequilibrium entropy profile, is plotted as a function

of  near the piston’s face. Blue curve: =
√
3. Red curve: = 3, Green curve: = 6.

Note that w increases to the right and the shock is moving to the right; therefore, the
nonequilibrium entropy is decreasing to the right. This is consistent with the monotonicity
of the Boltzmann entropy (see Section 8), though it does not necessarily rule out more
complicated dependencies. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

∙ The solutions (i.e., roots) of Eq. (C.20) are real-valued. This is
readily shown by observing that A − � > 0, which follows from
Eq. (C.21) and the fact that 0 < � < 1, while the coefficient of the
a2 term is strictly negative. Hence, provided the coefficient of a
is real-valued, which is clearly the case for all realizable values
of the physical parameters, it follows by Descartes’ rule of signs
that Eq. (C.20) admits exactly one negative and one positive root.
Moreover, since the discriminant of Eq. (C.20) is strictly positive,
i.e., � > 0, where

� ≡ [
� + (A − 2�)

]2
+ 4�(
 − 1)(A − �), (C.23)

it also follows that these two roots are of single multiplicity
(i.e., they maintain their distinct signs); therefore, the two can
never coalesce into a single root of multiplicity two at zero, nor
any other value of a.

∙ For the particular case of the Becker solution, the physical
solution is the negative root. Thus, the negative root, which we
shall henceforth denote as a∗, must be the physical solution for
all realizable values of 
,  , and �; this is consistent with the
results of Section 3, where it was proven that  is monotonically
decreasing for the entire range of y values.

∙ Letting�(a) denote the LHS of Eq. (C.20), it is readily established
that �(0) > 0 while �(−1) < 0; therefore, the value of a∗ is
restricted to the interval (−1, 0) for all realizable values of the
physical parameters.

∙ It is easy to verify that Eq. (C.20) is consistent with the self-
similar solution corresponding to  = 
. Recall that this special
case leads to the invariant (see Eq. (16))


E +
1

2
w2 = 
Eo +

1

2
.

So, near the left asymptotic limit, where w ≈ � + �,


E ≈ 
Eo +
1

2
(1 − �2) − ��,

and thus a∗ = −�∕
. This means that 0 < 3

5
� ≤ |a∗| < � < 1 for

perfect gases under Becker’s special case, with min|a∗| occurring
in the case of monatomic (i.e., 
 = 5∕3) gases. Direct substitution
shows that this value of  and a = a∗ satisfy Eq. (C.20).

Plots of the solutions of Eq. (C.20) in Figs. 5 and 6 verify that a∗

is negative for  ranging from 0 to at least 2, for both a weak shock,
 =

√
3, and a stronger shock, = 3. Particular points on these graphs

show the agreement of the theory with representative values taken from
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our numerical simulations. Finally, in Fig. 10, a∗ is plotted as a function
of the Mach number for 
 = 5∕3 and  = 5∕3.

We can use these results to evaluate dSE

dy
and dSM

dy
in the region near

the piston for  ≠ 
. (Recall that in all our calculations, the shock is
moving toward the right.) In Fig. 11 we plot the slope of the equilibrium
entropy vs.  for three values of shock strength. In each case, the slope
is positive, meaning that entropy is increasing to the right. Since the
equilibrium entropy is smallest in the undisturbed region, far to the right
of the shock, we conclude that the equilibrium entropy profile always
exhibits at least one maximum, provided  > 0.

In Fig. 12, we plot the slope of the modified entropy SM, which
we have suggested as a thermodynamic estimate of the nonequilibrium
entropy; see Eq. (51). In this graph, the slope is negative for all finite
values of  , meaning that entropy is increasing toward the piston face.
This does not exclude the possibility of more complicated distributions,
but rules out the simple profiles of Morduchow & Libby.
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