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Technology, Yokohama 226-8502, Japan
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Abstract. The statistical picture of the solution space for a binary perceptron is
studied. The binary perceptron learns a random classification of input random patterns
by a set of binary synaptic weights. The learning of this network is difficult especially
when the pattern (constraint) density is close to the capacity, which is supposed to be
intimately related to the structure of the solution space. The geometrical organization
is elucidated by the entropy landscape from a reference configuration and of solution-
pairs separated by a given Hamming distance in the solution space. We evaluate the
entropy at the annealed level as well as replica symmetric level and the mean field
result is confirmed by the numerical simulations on single instances using the proposed
message passing algorithms. From the first landscape (a random configuration as a
reference), we see clearly how the solution space shrinks as more constraints are added.
From the second landscape of solution-pairs, we deduce the coexistence of clustering
and freezing in the solution space.

PACS numbers: 89.75.Fb, 87.19.L-, 75.10.Nr
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1. Introduction

Learning in a single layer of feed forward neural network with binary synapses has

been studied either based on statistical mechanics analysis [1, 2, 3, 4] or in algorithmic

aspects [5, 6, 7, 8, 9, 10, 11, 12]. This network can learn an extensive number P = αN

of random patterns, where N is the number of synapses and α denotes the constraint

density. The critical α (also called the capacity) separating the learnable phase from

unlearnable phase is predicted to be αs � 0.833 where the entropy vanishes [1]. A

solution is defined as a configuration of synaptic weights to implement the correct

classification of P random input patterns. Above αs, no solutions can be found with

high probability (converging to 1 in the thermodynamic limit). The replica symmetric

solution presented in Ref. [1] has been shown to be stable up to the capacity, which

is in accordance with the convexity of the solution space [3]. Note that the solutions

disappear at the threshold αs still maintaining a typical finite value of Hamming distance

between them, which is quite distinct from the case in the continuous perceptron with

real-valued synapses. In the continuous perceptron, this distance tends to zero when

the solutions disappear at the corresponding threshold [13]. On the other hand, many

local search algorithms [6, 7, 11, 12] were proposed to find solutions of the perceptron

learning problem, however, the search process slows down with increasing α, and the

critical α for the local search algorithm [12] decreases when the number of synapses

increases. This typical behavior of the stochastic local search algorithm is conjectured

to be related to the geometrical organization of the solution space [7, 4]. In order to

acquire a better understanding for the failure of the local search strategy, we compute

the entropy landscape both from a reference configuration and for solution-pairs with a

given distance in the solution space. Both distance landscapes contain rich information

about the detailed structure of the solution space and then can help us understand the

observed glassy behavior of the local search algorithms. Throughout the paper, the

term distance refers to the Hamming distance. The distance landscape has been well

studied in random constraint satisfaction problems defined on diluted or sparse random

graphs [14, 15, 16, 17].

Learning in the binary perceptron can be mapped onto a bipartite graph where

variable node represents synaptic weight and function node represents the input random

pattern to be learned (see figure 1 (b)). This graph is also called graphical model

or factor graph [18]. The efficient message passing learning algorithm for the binary

perceptronal learning problem has been derived using the cavity method and this factor

graph representation [9]. In this paper, we focus on the typical property of the solution

space in random ensembles of the binary perceptronal learning problem. We apply the

replica trick widely used to study disordered systems [19] to compute the statistical

properties in the thermodynamic limit. To confirm the mean field result computed

using the replica approach, we derive the message passing equations in the cavity context

which can be applied on single random instances of the current problem. In this context,

we apply the decorrelation assumption as well as the central limit theorem to derive the
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Figure 1. The sketch of the binary perceptron and the factor graph representation.
(a) N input units (open circles) feed directly to a single output unit (solid circle). A
binary input pattern (ξμ

1 , ξμ
2 , . . . , ξμ

N ) of length N is mapped through a sign function to
a binary output σμ, i.e., σμ = sgn

(∑N
i=1 Jiξ

μ
i

)
. The set of N binary synaptic weights

{Ji} is regarded as a solution of the perceptron problem if the output σμ = σμ
0 for each

of the P = αN input patterns μ ∈ [1, P ], where σμ
0 is a preset binary value. (b) Each

circle denotes the variable node whose value takes Ji with i its index. The square is
the function node denoting a random binary pattern to be learned. If the pattern is
learned by the synaptic vector J , the value of the corresponding function node takes
zero. The dotted line represents other P − 4 function nodes while the dashed line for
variable node i means i is connected to other P −4 function nodes and that for function
node means the function node (e.g., b) is connected to other N − 3 variable nodes.

formula at the replica symmetric level. This assumption arises from the weak correlation

among synaptic weights (within one pure state [19]) and among input patterns [20]. The

efficiency of the inspired message passing algorithms in loopy systems has been observed

in Refs. [21, 22, 9, 23] while the underlying mechanism still needs to be fully understood.

However, our cavity method focuses on the physical content and yields the same result

as that obtained using replica approach [20, 24, 25].

The remainder of this paper is organized as follows. The random classification by

the binary perceptron is defined in Sec. 2. In Sec. 3, we derive the self-consistent

equations to compute the distance landscape (entropy landscape) from a reference

configuration, i.e., to count the number of solutions at a distance from the reference

configuration. Both the annealed and replica symmetric (RS) computations of this

entropy landscape are presented. We also derive the message passing equations for

single instances in this section using the cavity method and factor graph representation.

In Sec. 4, the landscape of Hamming distances between pairs of solutions is evaluated

at both annealed approximation and RS ansatz, and the associated message passing

equations are proposed as well. Discussion and conclusion are given in Sec. 5.

2. Problem definition

The binary perceptron realizes a random classification of P random input patterns

(see figure 1(a)). To be more precise, the learning task is to find an optimal set of

binary synaptic weights (solution) {Ji}N
i=1 that could map correctly each of random

This is the Pre-Published Version 
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input patterns {ξμ
i }(μ = 1, . . . , P ) to the desired output σμ

0 which is assigned a value ±1

at random. P is proportional to N with the coefficient α defining the constraint density

(each input pattern serves as a constraint for all synaptic weights, see figure 1 (b)).

The critical value is αs � 0.833 below which the solution space is non-empty [1]. Given

the input pattern ξμ, the actual output σμ of the perceptron is σμ = sgn
(∑N

i=1 Jiξ
μ
i

)
where Ji takes ±1 and ξμ

i takes ±1 with equal probabilities. If σμ = σμ
0 , we say that the

synaptic weight vector J has learned the μ-th pattern. Therefore we define the number

of patterns mapped incorrectly as the energy cost

E(J) =
∑

μ

Θ

(
− σμ

0√
N

N∑
i=1

Jiξ
μ
i

)
(1)

where Θ(x) is a step function with the convention that Θ(x) = 0 if x ≤ 0 and Θ(x) = 1

otherwise. The prefactor N−1/2 is introduced to ensure that the argument of the step

function remains at the order of unity, for the sake of the following statistical mechanical

analysis in the thermodynamic limit. In the current setting, both {ξμ
i } and the desired

output {σμ
0} are generated randomly independently. Without loss of generality, we

assume σμ
0 = +1 for any input pattern in the remaining part of this paper, since one

can perform a gauge transformation ξμ
i → ξμ

i σμ
0 to each input pattern without affecting

the result.

3. Distance landscape from a reference configuration

In this section, we consider the entropy landscape from a reference configuration (which

is not a solution). This entropy counts the number of solutions at a distance Nd from

the reference configuration J∗. The behavior of this entropy landscape reflects the

geometrical organization of the solution space. Since we concentrate on the ground

state (E = 0), we take the inverse temperature β → ∞ and introduce a coupling field x

to control the distance between solutions and the reference configuration. The partition

function for this setting is

Z =
∑

J

∏
μ

Θ

(
1√
N

∑
i

Jiξ
μ
i

)
exp

[
x

∑
i

JiJ
∗
i

]
(2)

where the sum
∑

J goes over all possible synaptic weight vectors and
∑

i means the sum

over all variable nodes. Under the definition of the overlap q̃ ≡ 1
N

∑
i JiJ

∗
i , the partition

function can be written as

Z =
∑

q̃

exp [N(s(q̃) + xq̃)] (3)

where eNs(q̃) is the number of solutions with the overlap q̃. In the thermodynamic limit

N → ∞, the saddle point analysis leads to f(x) ≡ 1
N

log Z = maxq̃ [s(q̃) + xq̃] where

f(x) is defined as the free energy density. Therefore, we can determine the entropy s(q̃)

This is the Pre-Published Version 
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by a Legendre transform [16, 17]

s(q̃) = min
x

[f(x) − xq̃] , (4)

q̃(x) =
df(x)

dx
(5)

where q̃ is related to d through d = 1−q̃
2

and then the entropy density can be expressed as

a function of the distance d which can be understood as the probability that a synaptic

weight takes different values in J and J∗. One recovers the total number of solutions

by setting x = 0 in Eq. (2).

3.1. Annealed approximation for s(d)

We first calculate the annealed entropy density sann(d) which serves as the upper bound

(Jensen’s inequality [26]) for the true value of the entropy density. Actually, the free

energy log Z should be averaged over the random input patterns. However, the annealed

approximation alternatively performs the average of the partition function first and then

takes the logarithmic operation as fann ≡ 1
N

log 〈Z〉 where the average is taken over the

distribution of the random input patterns. This can be computed as

〈Z〉 =

〈∑
J

∏
μ

Θ

(
1√
N

∑
i

Jiξ
μ
i

)
exp

[
x

∑
i

JiJ
∗
i

]〉

=

∫
dq̃

∫
dq̂

2πi/N
exp [N (−q̂q̃ + xq̃ − α log 2 + log(2 cosh q̂))] (6)

where the integral representation of Θ(·) is used and the conjugated counterpart q̂ of

the overlap q̃ is introduced as a Dirac delta function δ
(
q̃ − 1

N

∑
i JiJ

∗
i

)
is inserted [27].

A saddle point analysis results in

fann = max
q̃,q̂

{−q̂q̃ + xq̃ − α log 2 + log(2 cosh q̂)} (7)

where the saddle point equation reads q̂ = x, q̃ = tanh q̂. Using Eq. (4) and the saddle

point equation, we get the annealed entropy density

sann(d) = −α log 2 − d log d − (1 − d) log(1 − d). (8)

3.2. Replica symmetric computation of s(d)

The free energy density f(x) is a self-averaging quantity whose value concentrates in

probability around its expectation in the thermodynamic limit [28], and its average

over the random input patterns is very difficult to compute because the logarithm

appears inside the average. The replica trick bypasses this difficulty by using the identity

log Z = limn→0
Zn−1

n
. Then the disorder averaged free energy density can be computed

by first averaging an integer power of the partition function and then letting n → 0 as

f = lim
n→0,N→∞

log 〈Zn〉
nN

. (9)

This is the Pre-Published Version 
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Although the replica method is not generally rigorous, the obtained theoretical result

can be checked by numerical simulations. To compute 〈Zn〉, we introduce n replicated

synaptic weight vectors Ja(a = 1, . . . , n) as follows.

〈Zn〉 =

〈∑
{Ja}

∏
a,μ

Θ

(
1√
N

∑
i

Ja
i ξμ

i

)
exp

[
x

∑
i,a

Ja
i J∗

i

]〉

=

∫ ∏
a<b

dqabdq̂ab

2πi/N
exp

[
−N

∑
a<b

qabq̂ab + Nα log G0({qab}) + NG1({q̂ab})
]

, (10)

where G0 and G1 are expressed respectively as

G0({qab}) =
∏

a

[∫
dλa

2π

∫ ∞

0

dta
]

ei
∑

a λata−∑
a<b λaλbqab− 1

2

∑
a(λa)2 , (11)

G1({q̂ab}) = log
∑

Ja:a=1,...,n

e
∑

a<b q̂abJaJb+x
∑

a JaJ∗
, (12)

where we have introduced the replica overlap qab ≡ 1
N

∑
i J

a
i J b

i and its associated

conjugated counterpart q̂ab. The replica symmetric ansatz assumes qab = q, q̂ab = q̂

for a �= b. Now using the saddle point analysis, we finally arrive at the formula of the

free energy density and the corresponding saddle point equations,

f(x) =
q̂

2
(q − 1) + α

∫
Dz log H

(√
q

1 − q
z

)

+

∫
Dz log

[
2 cosh(

√
q̂z + x)

]
, (13)

q =

∫
Dz tanh2(

√
q̂z + x), (14)

q̂ =
α

1 − q

∫
Dz

[
G

(√
q

1 − q
z

)
/H

(√
q

1 − q
z

)]2

, (15)

where G(x) = exp(−x2/2)/
√

2π and H(x) ≡ ∫ ∞
x

Dz with the Gaussian measure

Dz ≡ G(z)dz. After the fixed point of the self-consistent equations (14) and (15) is

obtained, the entropy landscape s(d) is computed as

s(x) = f(x) − x

∫
Dz tanh(

√
q̂z + x). (16)

Note that the final expression of s(x) does not depend on the reference configuration

and the integral in the second term of Eq. (16) is q̃(x) defined in Eq. (5).

3.3. Message passing equations for single instances

In this section, we derive the message passing equations to compute the entropy

landscape for single instances under the replica symmetric ansatz. To derive the self-

consistent equation, we apply the cavity method [20, 9] and first define two kinds of

cavity probabilities. One is the probability pJi
i→a that variable node i in figure 1 (b) takes

value Ji in the absence of constraint a. The other is p̂Ji
b→i staying for the probability

This is the Pre-Published Version 
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that constraint b is satisfied (pattern μ = b is learned) if synaptic weight i takes Ji.

According to the above definitions, the self-consistent equation for these two kinds of

probabilities is readily obtained as

pJi
i→a =

1

Zi→a

exJiJ
∗
i

∏
b∈∂i\a

p̂Ji
b→i, (17)

p̂Ji
b→i =

∑
{Jj ,j∈∂b\i}

Θ

(
1√
N

∑
j

Jjξ
b
j

) ∏
j∈∂b\i

p
Jj

j→b, (18)

where Zi→a is a normalization constant, ∂i\a denotes the neighbors of node i except

constraint a and ∂b\i denotes the neighbors of constraint b except variable node i.

Eqs. (17) and (18) are actually the belief propagation equations [20, 9]. For the binary

perceptron, directly solving the belief propagation equations is impossible. To reduce

the computational complexity, we define wb→i ≡ 1√
N

∑
j �=i Jjξ

b
j . Note that the sum

involves N −1 independent random terms, as a result, the central limit theorem implies

that wb→i follows a Gaussian distribution with mean 〈wb→i〉 and variance σ2
wb→i

where

〈wb→i〉 = 1√
N

∑
j �=i mjξ

b
j and σ2

wb→i
= 1

N

∑
j �=i(1 − m2

j). Within the RS ansatz, the

clustering property 〈JiJj〉−〈Ji〉 〈Jj〉 � 0 for i �= j in the thermodynamic limit is used to

get the variance [9]. mj ≡ 〈Jj〉 is the magnetization in statistical physics language. By

separating the term 1√
N

Jiξ
b
i from the sum in the Θ(·) of Eq. (18), and approximating

the sum
∑

{Jj ,j∈∂b\i} by an integral over wb→i, we get finally

p̂Ji
b→i = H

(
−Jiξ

b
i + ŵb→i√
σ̂b→i

)
(19)

where ŵb→i =
∑

j∈∂b\i mj→bξ
b
j and σ̂b→i =

∑
j∈∂b\i(1 − m2

j→b) in which the cavity

magnetization mj→b ≡ tanh hj→b. Using Eqs. (17) and (19), the cavity field hj→b can

be obtained in the log-likelihood representation

hj→b =
1

2
log

p+1
j→b

p−1
j→b

= xJ∗
j +

∑
a∈∂j\b

ua→j, (20)

ua→j =
1

2
log

p̂+1
a→j

p̂−1
a→j

=
1

2

[
log H

(
−ξa

j + ŵa→j√
σ̂a→j

)
− log H

(
ξa
j − ŵa→j√

σ̂a→j

)]
. (21)

Notice that the cavity bias ua→j can be approximated by
ξa
j G

(
ŵa→j√

σ̂a→j

)

H

(
− ŵa→j√

σ̂a→j

)√
σ̂a→j

in the large

N limit. Eqs. (20) and (21) constitute the recursive equations to compute the free

energy density in the Bethe approximation [29]

f(x) =
1

N

∑
i

Δfi − N − 1

N

∑
a

Δfa, (22)

Δfi = log

[
exJ∗

i

∏
b∈∂i

H

(
−ξb

i + ŵb→i√
σ̂b→i

)
+ e−xJ∗

i

∏
b∈∂i

H

(
ξb
i − ŵb→i√

σ̂b→i

)]
,(23)

Δfa = log H

(
− ŵa√

σ̂a

)
, (24)
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Figure 2. (Color online) Distance landscape from a reference configuration.
The solid lines are the analytic annealed approximation (Eq. (8)) for α =
0.198, 0.495, 0.693, 0.792 (from the top to the bottom) respectively. The horizontal
dashed line indicates the zero entropy value. The line connecting symbols is a guide to
the eye. The empty symbols stay for the numerical simulation results on systems with
(N, P ) = (1001, 198), (1001, 495), (1001, 694), (1001, 793) (from the top to the bottom)
using message passing algorithms. The result is the average over 20 random instances.
Solid symbols are the replica symmetric results computed numerically by solving the
saddle point equations.

where Δfi = log Zi and Δfa = log Za are the free energy shifts due to variable

node (i) addition (and all its function nodes) and function node (a) addition [16]

respectively. Actually Zi is the normalization constant of the full probability pJi
i and Za

the normalization constant of p̂J
a [29]. ŵa =

∑
j∈∂a mj→aξ

a
j and σ̂a =

∑
j∈∂a(1−m2

j→a).

Equations (20) and (21) can be solved by an iterative procedure with a random

initialization of the corresponding messages. After the iteration converges, the entropy

landscape s(d) from the fixed reference configuration J∗ can be computed according to

the Legendre transform Eqs. (4) and (5). The computational complexity is of the order

O(N2) for this densely connected graphical model. f(x) computed based on Eq. (22)

does not depend on the reference configuration since the change of ξb
i → −ξb

i does not

affect the final result, consistent with Eq. (13).

The distance landscape from a reference configuration is reported in figure 2. We

choose the reference configuration J∗ = {J∗
i = 1}N

i=1 for simplicity. Other choices of

the reference configuration still yield the same behavior of the landscape. Note that

the annealed entropy provides an upper bound for the RS one, and it roughly coincides

This is the Pre-Published Version 
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Figure 3. (Color online) Entropy density and typical distance between any two
solutions as a function of constraint density. The vertical dashed line indicates the
capacity for the binary perceptron.

with the RS one at low α (around the maximal point) while the large deviation is

observed when α further increases. It is clear that most of the solutions concentrate

around the dominant point where the maximum of the entropy is reached. When the

given distance is larger or less than certain values (d > dmax or d < dmin), the number of

solutions at those distances becomes exponentially small in N . In the intermediate range

(d ∈ [dmin, dmax]), as the distance increases, the number of solutions separated by the

distance from the reference point in the solution space increases first and then reaches

the maximum which dominates the typical value of the entropy in the original systems

(by setting x = 0, see figure 3). The maximum is then followed by a decreasing trend as

the distance is further increased. This mean field behavior is confirmed by the numerical

simulations on large-size single random instances using the message passing algorithms

derived in Sec. 3.3. The consistency between the mean field result obtained by replica

approach and the simulation result obtained on single random instances is clearly shown

in figure 2. The bell shape in figure 2 is similar to that observed in calculating the growth

rate of expected distance enumerator for a random code ensemble [30]. Note that as

the constraint density increases, the distance range where solutions exist shrinks, which

illustrates clearly how the solution space changes as more patterns are presented to the

binary perceptron.

We also compute the typical value of the entropy in the original system (by setting

x = 0) and of the distance between any two solutions as a function of the constraint

This is the Pre-Published Version 
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density using the replica method. The result is reported in figure 3. Here we define

the typical value of the distance between any two solutions as drs = 1−q
2

where q is

obtained from the stationary value of Eq. (14). The entropy vanishes at αs � 0.833

with a finite typical value of distance [1]. This typical distance is also in accordance

with that computed on single instances by sampling a finite number of solutions [11].

Note that this distance is evaluated here based on the RS ansatz. One can further

check its stability by the population dynamics [31] on the one-step replica symmetry

breaking (1RSB) solution [29] where we define two typical distances: one is inter-cluster

distance d0 =
1−[〈tanh h〉2]

2
where 〈·〉 means the average over clusters and [·] over the

disorder, and the other is intra-cluster distance defined by d1 =
1−[〈tanh2 h〉]

2
[32] where

h is the local field defined in Eq. (20) by including all contributions of patterns around

the synaptic weight (x = 0). In general, solutions within a single cluster are separated

by a sub-extensive number of synaptic weights while any two clusters are separated

by an extensive number of synaptic weights. Our numerical simulations confirmed

that d0 and d1 will turn out to be identical (equal to drs) after sufficient iterations

implying that the RS ansatz is unbroken below the capacity. However, for constraint

density close to the capacity, one needs a much larger sampling interval (by way of the

Metropolis importance sampling method) [33] in the population dynamics algorithm.

To probe the fine structure of the connection pattern in the solution space, we study

the distance landscape of solution-pairs in the following section. This is similar to

the study of the spherical p-spin model in the presence of an attractive coupling with

quenched configuration in Ref. [34], however, the rich information about the solution

space structure of the current problem can also be attained by calculating the distance

landscape of solution-pairs.

4. Distance landscape of solution-pairs

The geometrical property of the solution space can also be studied by counting the

number of solution-pairs with a predefined distance d, equivalently an overlap of value

q̃. Actually this entropy value may be much larger than the entropy density of the

original problem (which is obtained by setting x = 0 in Eq. (22)). As we shall present

later, this case becomes more involved for the binary perceptron with an increasing

computational cost.

Considering distance between solutions, we write the partition function as

Z =
∑

J1,J2

∏
μ

Θ

(
1√
N

∑
i

J1
i ξμ

i

)
Θ

(
1√
N

∑
i

J2
i ξμ

i

)
exp

[
x

∑
i

J1
i J2

i

]
(25)

where the coupling field x is used to control the distance between a pair of solutions

(J1, J2) and the associated overlap q̃ ≡ 1
N

∑
i J

1
i J2

i . This partition function has been

used to predict optimal coupling field for a multiple random walking strategy to find

a solution for the perceptronal learning problem [12]. In the following sections, we

present an annealed computation as well as RS computation of the distance landscape
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To probe the fine structure of the connection pattern in the solution space, we study

the distance landscape of solution-pairs in the following section. This is similar to

the study of the spherical p-spin model in the presence of an attractive coupling with

quenched configuration in Ref. [34], however, the rich information about the solution

space structure of the current problem can also be attained by calculating the distance

landscape of solution-pairs.
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s(d). Note that in this setting, Eqs. (3), (4) and (5) can also be used but here d should

be understood as the distance separating two solutions in the weight space.

4.1. Annealed approximation for s(d)

Following the same techniques used in Sec. 3.1, we obtain the annealed free energy

density as (see also Ref. [12])

fann = max
q̃,q̂

{
−q̂q̃ + xq̃ + log(4 cosh q̂) + α log

∫ ∞

0

DtH

(
− q̃t√

1 − q̃2

)}
.(26)

The maximization with respect to q̃ and q̂ leads to the following saddle point equation

q̃ = tanh q̂, (27)

q̂ = x +
α√

1 − q̃2arccot

(
− q̃√

1−q̃2

) , (28)

where the identity
∫ ∞

0
DtH

(
− q̃t√

1−q̃2

)
= 1

2π
arccot

(
− q̃√

1−q̃2

)
has been used. Using

Eq. (4) and the above saddle point equation, we get the final expression for sann(d):

sann(d) = log 2 − (1 − d) log(1 − d) − d log d

+ α log

[
1

2π
arccot

(
− 1 − 2d

2
√

d(1 − d)

)]
, (29)

where sann(0) = (1 − α) log 2 which is actually the annealed entropy density of the

original system [1]. If α = 0, then sann(0) = log 2 which is in accord with the fact

that the number of solution-pairs with a distance d = 0 should be the total number of

solutions 2N if no constraints are present.

4.2. Replica symmetric computation of s(d)

In this section, we derive the free energy density f(x) for the landscape of solution-pairs

under the replica symmetric approximation, using the replica trick introduced in Sec. 3.2.

Since the partition function in this case involves a sum of all possible configurations of

two synaptic weight vectors, the computation becomes a bit complicated. The disorder

average of the integer power of the partition function can be evaluated as

〈Zn〉 =
∑

{J1,a,J2,a}

∏
a<b

∫
dqab

1 dqab
2 drabδ

(
qab
1 − 1

N

∑
i

J1,a
i J1,b

i

)
δ

(
qab
2 − 1

N

∑
i

J2,a
i J2,b

i

)

×δ

(
rab − 1

N

∑
i

J1,a
i J2,b

i

) ∏
a

∫
dRaaδ

(
Raa − 1

N

∑
i

J1,a
i J2,a

i

)

×
〈∏

μ,a

Θ(wμ,a
1 )Θ(wμ,a

2 )

〉
ex

∑
a,i J1,a

i J2,a
i , (30)
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where wμ,a
1 ≡ 1√

N

∑
i J

1,a
i ξμ

i and wμ,a
2 ≡ 1√

N

∑
i J

2,a
i ξμ

i . Under the replica symmetric

ansatz, the disorder average is carried out as〈∏
a

Θ(wμ,a
1 )Θ(wμ,a

2 )

〉
ξμ

=

∫
Dz

[∫
DyH(y1)H(y2)

]n

, (31)

where
∫

Dz ≡ ∫
Dz1

∫
Dz2

∫
Dt, yx = −

√
R−ry+

√
q−rzx+

√
rt√

1−q−R+r
(x = 1, 2) and we have used

qab
1 = qab

2 = q, rab = r, Raa = R under the RS ansatz. After the computation of the

summation in Eq. (30) by using
∑

a,b Ja
i J b

i =
(
∑

a J1,a
i +

∑
b J2,b

i )
2−(

∑
a J1,a

i )
2−(

∑
b J2,b

i )
2

2
and

the Hubbard-stratonovich transform, we get the replica symmetric free energy density

f(x) = α

∫
Dz log F1(q, R, r) + xR + q̂(q − 1) +

1

2
rr̂ − RR̂ +

∫
Dẑ log F2(q̂, R̂, r̂), (32)

where
∫

Dẑ ≡ ∫
Dẑ1

∫
Dẑ2

∫
Dẑ3, F1(q, R, r) =

∫
DyH(y1)H(y2) and F2(q̂, R̂, r̂) =

2ea3 cosh(a1 +a2)+2e−a3 cosh(a1−a2) where ax =
√

q̂ − r̂/2ẑx +
√

r̂/2ẑ3(x = 1, 2), a3 =

R̂− r̂/2. The RS order parameters (q, R, r, q̂, R̂, r̂) are determined by the following self-

consistent equations

R̂ = x +
α

1 − q − R + r

∫
Dz

∫
DyG(y1)G(y2)∫
DyH(y1)H(y2)

, (33)

r̂ =
2α

1 − q − R + r

∫
Dz

∫
DyG(y1)H(y2)

∫
DyG(y2)H(y1)[∫

DyH(y1)H(y2)
]2 , (34)

q̂ =
r̂

2
+

α

2(1 − q − R + r)

∫
Dz

[∫
Dy [G(y1)H(y2) − G(y2)H(y1)]∫

DyH(y1)H(y2)

]2

, (35)

R =

∫
Dẑ

tanh a3 + tanh a1 tanh a2

1 + tanh a3 tanh a1 tanh a2

, (36)

r =

∫
Dẑ

tanh a3(tanh2 a1 + tanh2 a2) + tanh a1 tanh a2(1 + tanh2 a3)

(1 + tanh a3 tanh a1 tanh a2)2
, (37)

q = r +

∫
Dẑ

(tanh a3 − 1)2(tanh a1 − tanh a2)
2

2(1 + tanh a3 tanh a1 tanh a2)2
. (38)

In the derivation of the above saddle point equations, we have used a useful property

of the Gaussian measure
∫

DzzF (z) =
∫

DzF ′(z) where F ′(z) is the derivative of the

function F (z) with respect to z. After the fixed point of the above saddle point equations

is obtained, one can compute the entropy density s = f(x)−xR with d = 1−R
2

. Note that

R−r may become negative, in this case we replace R and r by −R and −r respectively,

y by −y only for y2 in Eqs. (33) to (35).

4.3. Message passing equations for single instances

By analogy with definitions in Sec. 3.3, we define by p
J1

i ,J2
i

i→a the probability that the

synaptic weight i takes a two-component vector state (J1
i , J2

i ) in the absence of constraint

a and by p̂
J1

i ,J2
i

b→i the probability that constraint b is satisfied given the vector state (J1
i , J2

i )
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of weight i. These two cavity probabilities obey the following recursive equations

p
J1

i ,J2
i

i→a =
1

Zi→a

exJ1
i J2

i

∏
b∈∂i\a

p̂
J1

i ,J2
i

b→i , (39)

p̂
J1

i ,J2
i

b→i =
∑

{J1
j ,J2

j ,j∈∂b\i}
Θ

(
1√
N

∑
j

J1
j ξb

j

)
Θ

(
1√
N

∑
j

J2
j ξb

j

) ∏
j∈∂b\i

p
J1

j ,J2
j

j→b , (40)

where Zi→a is a normalization constant. In fact the belief propagation equations (39)

and (40) correspond to the stationary point of the Bethe free energy function of the

current system [35, 36]. The exchange of J1 and J2 does not change the partition

function Eq. (25), thus the cavity probabilities have the property that p+1,−1
i→a = p−1,+1

i→a

and p̂+1,−1
b→i = p̂−1,+1

b→i . This symmetry property will simplify the following analysis a lot.

To simplify Eqs. (39) and (40), we need the joint distribution of w1
b→i and w2

b→i

where w1
b→i ≡ 1√

N

∑
j �=i J

1
j ξb

j and w2
b→i ≡ 1√

N

∑
j �=i J

2
j ξb

j . Since we impose a distance

constraint upon two solutions J1 and J2 in Eq. (25), there exists correlation between

these two normally distributed random numbers and this correlation is characterized by

the correlation coefficient

ρ̂b→i =

∑
j∈∂b\i(qj→b − m2

j→b)

σ̂b→i

(41)

due to the symmetry property. Based on Eq. (39), messages qj→b and mj→b are

determined respectively by the following equations,

qj→b =
ex

[∏
a∈∂j\b p̂+1,+1

a→j +
∏

a∈∂j\b p̂−1,−1
a→j

]
− 2e−x

∏
a∈∂j\b p̂+1,−1

a→j

ex
[∏

a∈∂j\b p̂+1,+1
a→j +

∏
a∈∂j\b p̂−1,−1

a→j

]
+ 2e−x

∏
a∈∂j\b p̂+1,−1

a→j

, (42)

mj→b =
ex

[∏
a∈∂j\b p̂+1,+1

a→j − ∏
a∈∂j\b p̂−1,−1

a→j

]
ex

[∏
a∈∂j\b p̂+1,+1

a→j +
∏

a∈∂j\b p̂−1,−1
a→j

]
+ 2e−x

∏
a∈∂j\b p̂+1,−1

a→j

. (43)

Therefore, both w1
b→i and w2

b→i obey a bivariate normal distribution and p̂
J1

i ,J2
i

b→i is reduced

to be

p̂
J1

i ,J2
i

b→i =

∫ ∞

−J2
i

ξb
i
+ŵb→i√
σ̂b→i

DtH

(
− J1

i ξb
i + ŵb→i√

(1 − ρ̂2
b→i)σ̂b→i

− ρ̂b→it√
1 − ρ̂2

b→i

)
(44)

where ŵb→i =
∑

j∈∂b\i mj→bξ
b
j and σ̂b→i =

∑
j∈∂b\i(1 − m2

j→b). The overlap q̃ is

determined by q̃(x) = 1
N

∑
i q̃i where q̃i is given by

q̃i =
ex

[∏
b∈∂i p̂

+1,+1
b→i +

∏
b∈∂i p̂

−1,−1
b→i

] − 2e−x
∏

b∈∂i p̂
+1,−1
b→i

ex
[∏

b∈∂i p̂
+1,+1
b→i +

∏
b∈∂i p̂

−1,−1
b→i

]
+ 2e−x

∏
b∈∂i p̂

+1,−1
b→i

. (45)

Eq. (44) is more computationally demanding than Eq. (19) since an additional

numerical integral is required to compute p̂ here. However, the integral in Eq. (44)

can be approximated by c0H
(

c+c1√
c2

)
if we write the right hand side of Eq. (44) as∫ ∞

c
Dtelog H(a−bt) and expand H (a − bt) up to the second order in bt. The constants c0,
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Figure 4. (Color online) Distance landscape of solution-pairs with a predefined
distance d. The solid lines are the analytic annealed approximation (Eq. (29)) for
α = 0.198, 0.495, 0.693, 0.792 (from the top to the bottom) respectively. The line
connecting symbols is a guide to the eye. The empty symbols stay for the numerical
simulation results on systems with (N, P ) = (501, 99), (501, 248), (501, 347), (501, 397)
(from the top to the bottom) using message passing algorithms. The result is the
average over 20 random instances. Solid symbols are the replica symmetric results
computed numerically by solving the saddle point equations.

c1 and c2 can be determined as a function of a and b. Therefore, this approximation is

accurate only when large bt has vanishing contribution to the integral.

The free energy shift due to variable node addition (and all its adjacent constraints)

can be obtained as Δfi = log Zi and the free energy shift due to constraint addition

Δfa = log Za where

Zi = ex

[∏
b∈∂i

p̂+1,+1
b→i +

∏
b∈∂i

p̂−1,−1
b→i

]
+ 2e−x

∏
b∈∂i

p̂+1,−1
b→i , (46)

Za =

∫ ∞

− ŵa√
σ̂a

DtH

(
− ŵa√

(1 − ρ̂2
a)σ̂a

− ρ̂at√
1 − ρ̂2

a

)
, (47)

where ŵa =
∑

j∈∂a mj→aξ
a
j , σ̂a =

∑
j∈∂a(1 − m2

j→a) and ρ̂a =
∑

i∈∂a(qi→a−m2
i→a)

σ̂a
. The free

energy density can then be obtained using Eq. (22) and the entropy landscape can be

obtained correspondingly. The recursive equations Eqs. (41), (42), (43) and (44) can be

solved by an iterative procedure similar to that used in Sec. 3.3.

As is seen from figure 4, the entropy density increases smoothly until a maximum
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Figure 5. Minimal distance dmin as a function of the constraint density. The data
points are computed by solving numerically the saddle point equations in Sec. 4.2.
The error bars characterize the numerical fluctuations from ten different random
initializations. The upper inset shows the corresponding entropy values. The lower
inset shows schematically the typical concave and non-concave behavior of the entropy
landscape, where the horizontal dashed line indicates srs and the vertical dashed line
denotes dmin, and the black point (dmin, s(dmin)) marks the first change of the concavity,
i.e., ∂2s(d)

∂d2 = 0. The vertical dotted line marks the first order thermodynamic transition
point dc, where the dash-dotted line going through (0, srs) touches the concave part
of s(d) and has the slope 2xc. Note that dmin corresponds to the spinodal point xs

(≥ xc), i.e., ∂s(d)
∂d |d=dmin = 2xs.

is reached for α = 0.198 and then decreases as the distance further grows. Interestingly,

this behavior observed in figure 4 can be well fitted by the annealed approximation

keeping the concavity of the entropy function. However, as α increases, large deviation

from the annealed approximation occurs. The mean field calculations are supported

by the numerical simulations on single instances using the proposed message passing

algorithms, as shown in figure 4. The distance corresponding to the maximum of the

entropy landscape curve in figure 4 is actually the typical distance drs calculated in

figure 3, and s(d = 0) recovers the typical entropy density of the original problem.

By taking the limit R → 1 in Eq. (32), one can show that s(d = 0) = f(x = 0)

where f(x) is given by Eq. (13). As the constraint density increases, the maximal

point of the entropy curve moves to the left, however, solution-pairs still maintain

a relatively broad distribution in the solution space when α approaches αs, e.g.,

dmax = argmaxd{s(d) = 0} � 0.332 at α = 0.82 (drs � 0.222), which may be responsible

for the algorithmic hardness in this region.
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Figure 6. Compatible coupling field x for fixed d. The data points are computed by
solving numerically the saddle point equations in Sec. 4.2. The error bars characterize
the numerical fluctuations from ten different random initializations. Inset: the
corresponding entropy curve as a function of d. (a) α = 0.495. (b) α = 0.792.
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As α increases, the message passing algorithm requires a large number of iteration

steps to converge (especially at small distances) and additionally a computationally

expensive Monte Carlo integral involved in Eq. (44) cannot be avoided. On the other

hand, when α is large enough, one can easily observe a rapid growth of the order

parameter R to unity, i.e., at some critical coupling field xc, R changes sharply from

a value smaller than one to one. This implies that at xc, R = 1 becomes a globally

stable solution of the saddle point equations in Sec. 4.2. The first order thermodynamic

transition is signalled by the change of the concavity at d = dmin > 0. We define dmin

as the minimal distance before R = 1 becomes a unique stable solution. Figure 5 shows

the entropy gap and dmin as a function of the constraint density. The corresponding

coupling field xs marks the point where the concavity starts to change, i.e., ∂2s(d)
∂d2 = 0,

as shown in the lower inset of figure 5 (xs ≥ xc). After xs, R = 1 becomes the unique

stable solution of the saddle point equations. Note that in the entropy gap, there

exists a non-concave part of the entropy curve (for small distances), which can only

be obtained by fixing d instead of x and searching for a compatible x (by the secant

method). The result is shown in figure 6 for α = 0.495 and 0.792. The compatible x for

small distances (the left branch) is smaller than xs. When x > xc, the right branch is

no longer globally stable solution but becomes metastable solution of the saddle point

equations until x = xs, i.e., the spinodal point is reached. By fixing xc ≤ x ≤ xs, one

typically observes the right branch or R = 1, which describes the equilibrium properties

of the Boltzmann measure in Eq. (25). Thus, the non-concave behavior observed in

d ∈ (0, dmin) is thermodynamically non-dominant and unstable, suggesting that the

solution space is made of isolated solutions instead of separated clusters of exponentially

many close-by solutions, and this behavior becomes much more evident as α increases.

This explains why the multiple random walking strategy is extremely difficult to find a

solution by tuning the coupling field at high α and large N [12].

As shown in figure 5, dmin increases as α grows, making a uniform sampling of

solutions extremely hard. In addition, dmin seems to grow continuously, being the order

of O(10−3) or less for α < 0.5. The isolations of solutions can be explained by the

nature of the hard constraints [37] for the binary perceptron. Unlike the random K-

SAT and graph-coloring problems [38, 39], the hard constraint in the binary perceptron

problem implies that the synaptic weight on one node in the factor graph is completely

determined by the values of other nodes. But for finite N , solutions may not be strictly

isolated. This explains why some local search heuristics can find a solution when N

and α is not large enough. As α increases, some frozen solutions are more prone to

disappear, thus solutions become much more far apart from each other, as shown by

increasing dmin in figure 5. However, the thermodynamic properties can still be derived

from the RS solution before αs. We conjecture that clustering and freezing coexist for

α < αs, which is consistent with the computation in Ref. [4] in the sense that the total

entropy (displayed in figure 3) srs = Σ(s) + s where Σ(s) is the complexity of clusters

of entropy density s and s = 0 for the current problem. We can say that the solution

space is simple in the sense that it is made of isolated solutions instead of separated
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clusters of exponentially many solutions; however, it becomes rather difficult to find a

solution via stochastic local search algorithm. Below αs, srs > 0, meaning that there

exist exponentially many solutions, but they are widely dispersed (much more apparent

at large α). In other words, solution-pairs maintain a relatively broad distribution.

5. Discussion and Conclusion

The typical property of the distance landscape either from a reference configuration

or for pairs of solutions is studied. For the first distance landscape, as the distance

increases, the number of associated solutions grows first and then reaches its maximum

(dominating the typical value of the entropy in the original system) followed by a

decreasing behavior. This typical trend is confirmed by the numerical simulations on

single instances using the proposed message passing algorithms. This behavior suggests

that most of the solutions concentrate around the dominant point (the maximum in

the distance landscape) in the N -dimensional weight space. It is clear that as the

constraint density increases, the distance landscape shows larger and larger deviation

from the analytic annealed approximation. We also calculate the second distance

landscape characterizing the number of solution-pairs separated by a given distance.

In this case, the replica symmetric result is in good agreement with the annealed

computation at low α, while the large deviation is observed between the replica

symmetric approximation and annealed computation for high α. Both landscapes are

evaluated in the thermodynamic limit and confirmed by message passing simulations on

large-size single instances.

In this paper, we calculate the whole picture of the distance (entropy) landscape

and show that the entropy value rises to a maximum before declining at higher values of

distance at certain range of distances. From the first landscape (a random configuration

as a reference), we see clearly how the solution space shrinks as more constraints are

added. From the second landscape of solution-pairs, we deduce a picture in which each

global minimum (referred to as a canyon) is occupied by a single solution with zero

ground state energy, and is surrounded by local minima (referred to as valleys) with

positive energy [40]. This is also known as the valleys-dominated energy landscape [39].

The isolation of solutions implies that one cannot expect to satisfy all constraints

by flipping a few synapses. The necessary number of synapses to be flipped should

be proportional to N . The distance between the isolated solutions increases as the

constraint density grows. This is the very reason why some simple local search heuristics

cannot find a solution at high α or large N [11, 12] and the critical α for the local

search algorithm decreases when the number of synapses increases. Simulated annealing

process used in Refs. [6, 7] suffers from a critical slowing down when approaching a

certain temperature, therefore, it would be interesting to study this picture within a

finite temperature framework by focusing on the metastable states around the isolated

solutions. The structure of these states should also be responsible for the algorithmic

hardness. This issue will be addressed in our future work.
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The distance landscape evaluated here is very similar to the weight enumerator in

coding theory [41] and the method can be extended to consider the landscape analysis

for low-density parity-check codes or code-division multiple access multiuser detection

problems [21, 42], which will help to clarify what role the distance landscape plays with

respect to the decoding performance.
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[20] M. Mézard. The space of interactions in neural networks: Gardner’s computation with the cavity
method. J. Phys. A, 22:2181, 1989.

[21] Y. Kabashima. A cdma multiuser detection algorithm on the basis of belief propagation. J. Phys.
A, 36:11111, 2003.

[22] J. P. Neirotti and D. Saad. Improved message passing for inference in densely connected systems.
Europhys. Lett, 71:866, 2005.

[23] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with applications
to compressed sensing. IEEE Trans Inf Theory, 57:764, 2011.

[24] K. Y. Michael Wong. Microscopic equations and stability conditions in optimal neural networks.
Europhys. Lett, 30:245–250, 1995.

[25] A. Barra. Irreducible free energy expansion and overlaps locking in mean field spin glasses. J.
Stat. Phys, 123:601, 2006.

[26] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York, 1991.
[27] A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. Cambridge University Press,

Cambridge, England, 2001.
[28] F. Guerra and F. L. Toninelli. The thermodynamic limit in mean field spin glass models. Commun.

Math. Phys., 230:71, 2002.
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[39] F. Krzakala and L. Zdeborová. Phase transitions and computational difficulty in random constraint

satisfaction problems. J. Phys.: Conf. Ser, 95:012012, 2008.
[40] L. Zdeborová and F. Krzakala. Generalization of the cavity method for adiabatic evolution of

gibbs states. Phys. Rev. B, 81:224205, 2010.
[41] C. Di, A. Montanari, and R. Urbanke. Weight distribution of ldpc codes: Combinatorics meets

statistical physics,. In Proc. IEEE Int. Symp. Information Theory, page 102, Chicago, 2004.
[42] Y. Kabashima and D. Saad. Statistical mechanics of low-density parity-check codes. J. Phys. A,

37:R1–R43, 2004.

This is the Pre-Published Version 

[25] A

[26] T
[27]

[28]

[31] M

[34]

[37]

[39]

[40] L


