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Abstract. We study the relation between escape rates and pressure in general dynamical
systems with holes, where pressure is defined to be the difference between entropy and
the sum of positive Lyapunov exponents. Central to the discussion is the formulation
of a class of invariant measures supported on the survivor set over which we take the
supremum to measure the pressure. Upper bounds for escape rates are proved for general
diffeomorphisms of manifolds, possibly with singularities, for arbitrary holes and natural
initial distributions, including Lebesgue and Sinai–Reulle–Bowen (SRB) measures. Lower
bounds do not hold in such a generality, but for systems admitting Markov tower extensions
with spectral gaps, we prove the equality of the escape rate with the absolute value of the
pressure and the existence of an invariant measure realizing the escape rate, i.e. we prove a
full variational principle. As an application of our results, we prove a variational principle
for the billiard map associated with a planar Lorentz gas of finite horizon with holes.

1. Introduction
This paper is about leaky dynamical systems or dynamical systems with holes. A generic
setup consists of a triple ( f, M; H), where M is the phase space of a map or flow denoted
by f , and H ⊂ M is an open set. We refer to ( f, M) as a closed system and H as the
hole through which mass is allowed to escape from the system. More precisely, we follow
trajectories in M until they enter H . Once a point enters H , it leaves the system forever,
i.e. we stop considering it.

Holes can be large or small. Small holes are often used to model small (unintended)
leaks in physical systems; proximity of normalized surviving distributions to the physical
measure of the closed system is a form of stability. More generally, the study of ( f, M; H)
can be viewed as the study of dynamics on non-invariant domains. As an example of
why such studies are relevant, consider the following. It is well known that attractors are
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important because they capture the large-time behavior of dynamical systems, but invariant
sets that are not attracting can substantially impact the qualitative behavior of a system as
well: let 3⊂ M be such a set, and U ⊂ M a neighborhood of 3. Then we may regard
H = M\U as the hole. Slow escape rates from such holes are known to impact the speed
of correlation decay of the closed system.

Escape dynamics have been studied by many authors. We refer the reader to the part-
review article [DY] which contains many references, and will mention explicitly works
that are closer to the present paper as we go along. Most previous works have focused
on specific systems, such as Anosov diffeomorphisms, interval and billiard maps. In this
paper, we seek a general understanding for as large a class of dynamical systems as we
can. Specifically, we seek to relate escape rate to a dynamical invariant called pressure,
which, roughly speaking, measures the discrepancy between metric entropy and the sum of
positive Lyapunov exponents. We now proceed to a discussion of what this paper is about.

Setting and questions. We begin with the simpler setting of a compact Riemannian
manifold M without boundary and a diffeomorphism f which is at least C1+ε for some
ε > 0. In order to include applications to systems such as billiards, which are very
important examples of dynamical systems of physical origin, we also allow M to be the
union of a (possibly open) Riemannian manifold and a singularity set S , and f to be
piecewise smooth. Precise conditions on S and the behavior of f near it will be introduced
in §2. A Riemannian measure on M (or M\S ) is denoted by µ throughout. Unless
otherwise stated, the hole H is an arbitrary open set in M .

Let m be a reference measure on M . We think of m as the initial distribution of mass in
the phase space before any escape takes place, and take the view that initial distributions
related to µ are of particular physical interest. Notice that m need not be f -invariant.
Indeed, one can interpret the situation as follows: the escape of mass can begin before or
after the closed system f : M 	 reaches a steady state. In the first case, m is usually not
invariant, and we assume it has a density with respect to µ. In the second case, we take m
to be an SRB measure, which may be singular with respect to µ.

A basic quantity of interest is the escape rate, defined to be −ρ(m), where

ρ(m)= lim
n→∞

1
n

log m(Mn) (1)

when the limit exists. Here, Mn
=
⋂n

i=0 f −i (M\H) is the set of points which has not
escaped by time n. In general, the limit in (1) may not exist, and we write ρ and ρ for the
lim infn→∞ and lim supn→∞ of the quantity on the right-hand side. Notice that although
ρ(m) depends on m, all initial distributions uniformly equivalent to m have the same escape
rate, i.e. if ϕ is a function with 1/c ≤ ϕ ≤ c for some c > 0, then ρ(ϕm)= ρ(m), and the
same is true for ρ and ρ.

For an f -invariant Borel probability measure ν on M , the pressure of ν, denoted by Pν ,
is defined to be

Pν = hν( f )−
∫
λ+ dν,

where hν( f ) is the metric entropy of ( f, ν) and λ+ is the sum of the positive Lyapunov
exponents counted with multiplicity. We will write PG = supν∈G Pν , where G is a
collection of invariant measures.
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Given an open system ( f, M; H), we define the survivor set to be the f -invariant set
� :=

⋂
n∈Z f n(M\H)†. Let I = I(�) denote the set of f -invariant Borel probability

measures supported on�, and let E ⊂ I be the subset of I consisting of ergodic measures.
Assuming ρ(m) is well defined, we say ρ(m) satisfies a variational principle if

ρ(m)= PG for a suitable class of measures G ⊂ I.

Of interest also is whether the supremum in PG is attained, i.e. if there is a measure
ν ∈ G for which Pν = PG . Obviously, one can also ask if ρ(m)= Pν for some ν, without
mentioning any variational principles.

The ideas in the last paragraph were suggested by a number of previously known results,
some of which are recalled below, but let us first summarize the questions to be addressed.

This paper seeks to address, for as large a class of dynamical systems as possible, the
following three questions for natural initial distributions m.
(Q1) (Escape rate). Is the escape rate −ρ(m) well defined?
(Q2) (Formula for escape rate). Is ρ(m)= hν( f )−

∫
λ+ dν for some ν ∈ I ? The same

question can be posed for ρ(m) and ρ(m).
(Q3) (Variational principle). Does ρ(m) satisfy a variational principle?

Partial answers are given for very general dynamical systems, and complete answers for
a more restricted class, which includes many known examples. A concrete application to
the leaky periodic Lorentz gas is mentioned explicitly.

Earlier works.

THEOREM 1. [B] Consider a C1+ε Axiom A diffeomorphism f : M 	 of a compact
Riemannian manifold M. Let 3⊂ M be a basic set, and let I = I(3). Then PI ≤ 0,
and PI = 0, if and only if 3 is an attractor.

This is the first result that systematically relates the escape of mass to pressure: in the
case where 3 is an Axiom A attractor, no mass can escape from a neighborhood of 3, and
PI = 0; for non-attracting basic sets such as horseshoes, mass escapes at exponential rates
and PI < 0. The number PI has been shown to be equal to the topological pressure of f
with respect to the potential −log |det(D f u)| on 3; see [B] or [W] for more details.

The next result gives conditions under which the numerical value of PI is explicitly
related to the rate of escape.

THEOREM 2. [Y1, Theorem 4]‡ Let f : M 	 be a C1+ε diffeomorphism of a compact
Riemannian manifold M, and let H ⊂ M be an open set. We assume:
(i) � is compact with d(�, ∂H) > 0; and
(ii) f |� is uniformly hyperbolic.
Then ρ(µ) is well defined and equals PI .

In both of the settings above, PI = PE , and PI = Pν for some ν ∈ I . (The
latter follows from the continuity of x 7→ log |det(D f |Eu )| and upper semicontinuity

† If f is not invertible, we take n ≤ 0 in the definition of �.
‡ This result follows from the large deviation results in Theorem 1 (not Theorem 2) of [Y1]. Take ϕ ≡ 1 on a
closed set K and <1 on M\K , where �⊂ int(K )⊂ K ⊂ M\H , and ξ ≈−log |det(D f |Eu )| on �.
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of ν 7→ hν( f ); see [B].) Thus, for uniformly hyperbolic survivor sets�with d(�, H) > 0,
(Q1)–(Q3) have all been answered in the affirmative.

Several works went beyond Theorem 2 to give positive answers to (Q1) and (Q2) in a
number of situations, including Anosov diffeomorphisms with Markov or small holes (with
no requirement on � ∩ ∂H ) [CM1, CM2, CMT], uniformly expanding maps admitting
Markov partitions [CMS], piecewise expanding maps, and Collet–Eckmann maps of the
interval with singularities [BDM]. (Q3) was partially addressed in [BDM, CM1, CMS]: a
variational principle was proved for an associated dynamical system, namely the symbolic
dynamics of the original map (but not for the map itself).

2. Statement of results
Three sets of results are stated.
− Section 2.1 contains partial answers to (Q3): lower bounds for ρ(m) are proved for

very general dynamical systems; no results on upper bounds are reported.
− Sections 2.1 and 2.3 provide complete answers to (Q1)–(Q3) for systems admitting

Markov tower extensions with some additional conditions.
− These results are applied to the periodic Lorentz gas with small holes (Theorem F).

2.1. Lower bounds on ρ(m) for general dynamical systems. Our results in this
subsection will assert, in essence, that

for very general dynamical systems, ρ(m)≥ PG for reasonable choices of G.
Since PG decreases with G, this inequality is not meaningful for G too small. Thus, the
selection of a suitable G is an important part of the consideration. We start with E , the set
of ergodic invariant measures supported on the survivor set �. To obtain G, restrictions
will be placed on E on account of:
I. the hole H ;
II. the initial distribution m; and
III. singularities of the map f , if present.
We discuss these three types of restrictions separately. The conditions we impose are
admittedly motivated by our proofs, but the fact that they lead to a full variational principle
for a large class of dynamical systems (see §2.3) suggests that these choices of G are
reasonable.

Remark. One should keep in mind that the escape rate is defined by −ρ(m) when
interpreting the inequality ρ(m)≥ PG . Thus, a lower bound for ρ(m) provides an upper
bound of |PG | for the escape rate.

In paragraphs I and II below, f : M 	 is a C1+ε diffeomorphism; systems with
singularities are discussed in paragraph III. Throughout the paper, B(x, r) denotes the
ball of radius r in M centered at x ∈ M , and Nε(·) denotes the ε-neighborhood of a set
in M .

I. Restrictions on G due to the hole H. The following definition gives a sense of which
ν ∈ E we think impact the escape rate. Define

G H = {ν ∈ E | the following holds for ν-a.e. x : given any γ > 0,

∃r = r(x, γ ) > 0 such that B( f i x, re−γ i )⊂ M\H for all i ≥ 0}
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(a.e. denotes almost every). Notice that if ν ∈ E has the property that for some C, α > 0,
ν(Nε(∂H))≤ Cεα for all ε > 0, then ν is in G H (see §4.2, paragraph 4).

The definition of G H can be relaxed in many ways; in particular, it is not necessary for
the entire ball B( f i x, re−γ i ) to be in M\H . We mention one formulation, leaving the
reader to contemplate others: given x ∈ M , let W s

ε (x) denote the local stable manifold of
x of radius ε. We call an open set O a W s-neighborhood of x if O ∩W s

ε (x) 6= ∅ for every
ε > 0. All of our results remain valid if:
(O) in the definition of G H , B( f i x, re−γ i ) is replaced by f i (O) ∩ B( f i x, re−γ i ), where

O is a W s-neighborhood of x.

II. Restrictions on G due to the initial distribution m. Two types of initial distributions
are considered.

(A) Initial distributions with densities, possibly localized. Let m = µϕ = ϕµ, where
ϕ ≥ 0 is in L1(µ). For such an initial distribution, we consider

Gϕ = {ν ∈ E : ∃cν > 0 and an open set Z such that ν(Z) > 0 and ϕ|Z ≥ cν}.

THEOREM A. Let ( f, M; H) be as above. Then:
(i) ρ(µ)≥ PG H ;
(ii) more generally, ρ(µϕ)≥ PG H∩Gϕ .

Remark. Clearly, Gϕ = E if ϕ ≥ c for some c > 0; thus (ii) reduces to (i). Here, we permit
ϕ to vanish on parts of M provided it is measurable with ess inf(ϕ) > 0 on an open set
of M . We do not claim that the restrictions imposed on Gϕ are necessary, but if the support
of ϕ is localized in the phase space, invariant measures supported elsewhere are clearly
irrelevant since they cannot be ‘seen’ by the initial distribution µϕ .

(B) SRB measures as initial distributions. In (A), m = µϕ is not necessarily an invariant
measure. If, however, a steady state is reached before the leak begins, then it would be
natural to take m to be an SRB measure µSRB, as we now do. For simplicity, we assume
µSRB has no zero Lyapunov exponents.

The challenge here is to identify a class of invariant measures GSRB that can be ‘seen’
by the SRB measure µSRB, which is often singular. We call 5⊂ M a µSRB-hyperbolic
product set if the following hold.
(W.1) 5= (

⋃
0u) ∩ (

⋃
0s), where 0u

= {ω} and 0s
= {ω′} are two sets of relatively

open local unstable and stable manifolds such that each ω ∈ 0u intersects every
ω′ ∈ 0s in precisely one point. In addition, there exist constants C > 0, λ < 1 such
that

diam(T−nω)≤ Cλn for all ω ∈ 0u and diam(T nω′)≤ Cλn for all ω′ ∈ 0s,

where diam(·) denotes the diameter of the unstable or stable manifold.
(W.2) µSRB|5(A) > 0 for every relatively open A ⊂5.
(W.3) There exists a constant c0 > 0 such that for µSRB-a.e. ω ∈ 0u , the conditional

probability of µSRB on ω has density ψω ≥ c0 .
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We remark that (W.3) is a general property of SRB measures [LY]; we have listed it
separately only for emphasis. Define

GSRB = {ν ∈ E | ν(5) > 0 for a µSRB-hyperbolic product set 5}.

THEOREM B. Under the conditions above, ρ(µSRB)≥ PG H∩GSRB .

Remark 1. Observe that if f has an Axiom A attractor3 and µSRB is the SRB measure on
the attractor, then GSRB imposes no restriction whatsoever on ν ∈ E , i.e. GSRB = E .

Remark 2. In the case where the pushforward of the Lebesgue measure µ tends to µSRB,
one might be tempted to conclude that ρ(µ)= ρ(µSRB). This is not necessarily true, and
the reason is as follows: suppose f has a Lebesgue measure zero-invariant set 3 (such as
a horseshoe) away from the support of the SRB measure. The rate at which points escape
from a neighborhood of 3 will be reflected in ρ(µ) but not in ρ(µSRB); this can easily
lead to ρ(µ) > ρ(µSRB).

III. Restrictions on G due to the singularities of the map f . We state here a version of
our results that can be applied to planar billiards; see Theorem F below. Following [KS],
we let U be an open smooth (at least C4) finite-dimensional Riemannian manifold, and
assume that M =U is a compact metric space of finite capacity†, where U denotes the
closure of U .

Let ι(x,U ) be the radius of injectivity of the exponential map expx : TxU →U . We
assume that there exist constants s, c0, ς > 0 such that for each x, y ∈U , such that
d(x, y) < ι(x,U ) and w = exp−1

x (y), we have

ι(x,U )≥min{s, d(x, M\U )ς }, ‖D(expx )(w)‖ ≤ c0 and ‖D(exp−1
x )(y)‖ ≤ c0.

(2)
Let V be an open subset of U and let f : V →U be a mapping which is a C2

diffeomorphism of V onto its image. Let S = M\V . We think of S as the singularity
set of f . We assume that there exist constants C1, a > 0 such that for all x ∈ V ,

‖D fx‖ ≤ C1d(x, S)−a and ‖D f −1
x ‖ ≤ C1d(x, f S)−a . (3)

Let f̂x = exp−1
f x ◦ f ◦ expx denote the induced map on Tx V wherever it is defined. We

assume that there exists b > 0 such that if x ∈ V , v ∈ Tx V and f̂x (v) is well defined, then

‖D2 f̂x (v)‖ ≤ C1d(expx (v), S)−b. (4)

Notice that for billiards with a finite horizon, a = 1 and b = 3 (see [CM3, KS]). In what
follows, we will assume without loss of generality that b ≥ ς ≥ 1.

Into such a system we introduce a hole H ⊂ M . With regard to the choice of G, in
addition to the considerations above, we must also restrict to invariant measures that respect
the singularities (see [KS]). Define

GS = {ν ∈ E | ∃C, α > 0 such that for all ε > 0, ν(Nε(S))≤ Cεα}.

† This means there is some d <∞ such that lim supr→0(log C(r)/−log r)= d , where C(r) is the minimum
cardinality of a covering of M by open balls of radius r . For billiards with corners, the set U is technically not a
manifold with a boundary but a union of such glued together along some boundaries.
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p

FIGURE 1. Figure 8 attractor. The only invariant measure is δp , where p is the saddle point.

THEOREM C. Let ( f, M; H) be as above. Then:
(i) for ϕ ∈ L1(µ), ρ(µϕ)≥ PG H∩GS∩Gϕ ; and
(ii) if f has an SRB measure µSRB with no zero Lyapunov exponents, then ρ(µSRB)≥

PG H∩GS∩GSRB .

We finish with the following.

Remarks on upper bounds and the attractor case. No general results are known for
upper bounds on ρ(m), not even for m = µ. Consider the special case where �⊂ M
is an attractor. Assume there is a neighborhood O of � such that f (O)⊂ O and
�=

⋂
n≥0 f n(O). Let H = M\O and m = µ, so that ρ(m)= 0 by definition. Since

hν( f )≤ λ+ν for all ν ∈ E [R], showing that ρ(m)≤ PG in this case is equivalent to proving
PE = 0. The latter is known to be false in general, an example being the Figure 8 attractor
(see Figure 1), so one must rephrase the question to include some notion of ‘typicality’.
Still, Pν = 0 means either λ+ν = 0 or ν is an SRB measure [LY], and whether attractors with
non-uniform expansion admit SRB measures is well known to be a very difficult question;
see e.g. [Y4]. Since any result on upper bounds for ρ(m) must include this attractor case,
we conclude that in complete generality the question for upper bounds for ρ(m) (and lower
bounds for escape rates) is intractable at the present time.

We will, however, identify a large class of dynamical systems for which ρ(m)= ρ(m)=
PG for some G. This is the content of §§2.2 and 2.3.

2.2. Escape rate formula. In this section, we assert for a class of dynamical systems
the existence of ν̂ ∈ E , the pressure of which is equal to ρ(m), thereby answering (Q1) and
(Q2) in the affirmative.

Let f : M 	 be a C1+ε diffeomorphism or a piecewise smooth diffeomorphism, as in
the setting of Theorem C, and fix a hole H ⊂ M . We assume:
(A.1) ( f, M) has a Markov tower extension (F, 1);
(A.2) (F, 1) has an exponential tail;
(A.3) (F, 1) respects the hole H ; and
(A.4) the transfer operator on the ‘tower with holes’ has a spectral gap.
While (A.1) and (A.2) are by now quite standard, and (A.3) and (A.4) have also appeared
elsewhere, it will take a few pages to make precise this entire formal setting; we postpone
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that to §5.1. Let µSRB denote the (unique) ergodic SRB measure on π(1), where
π :1→ M is the projection, and let r< 1 be the leading eigenvalue of the transfer operator
on the tower with holes.

We will use the following notation: let m = m(0) denote a probability measure on M .
For n ≥ 1, let m(n) denote the normalized surviving distribution at time n, i.e. m(n)

=

f n
∗ (m|Mn )/m(Mn), assuming m(Mn) > 0. We call a measure m conditionally invariant

with eigenvalue t if m is supported on M\H and f∗(m|M1)= tm.

THEOREM D. Assume ( f, M; H) satisfies (A.1)–(A.4). Then:
(a) ρ(µSRB) is well defined and equals log r;
(b) µ

(n)
SRB converges weakly to a conditionally invariant measure µ∗ with eigenvalue r;

(c) there exists ν̂ ∈ G H ∩ GS such that

ρ(µSRB)= Pν̂ := hν̂( f )− λ+
ν̂
;

(d) ν̂ is defined by

ν̂(ϕ)= lim
n→∞

r−n
∫

Mn
ϕ dµ∗ for all continuous ϕ.

In addition, ν̂ enjoys exponential decay of correlations on Hölder observables.

Our construction of ν̂ generalizes that in [CM1, CMS], which assumes the maps in
question admit finite Markov partitions. See [BDM] for the first generalization in this
direction regarding pressure for one-dimensional maps with holes. Parts (a) and (b) of
Theorem D are also known for the periodic Lorentz gas [DWY]. We assert here that
these results hold generally for any dynamical system admitting a tower with the stated
conditions.

2.3. A full variational principle. Combining the results of the previous two sections, we
are able to state a full variational principle (answering (Q1)–(Q3) in §1) for maps admitting
towers with a spectral gap, as described in §2.2. Let 3⊂ M be the reference hyperbolic
product set which forms the base of the tower 1.

THEOREM E. Assume ( f, M; H) satisfies (A.1)–(A.4), and let ν̂ be as in Theorem D.
(a) If µSRB = ϕµ, where ϕ ≥ δ > 0 on a neighborhood of 3, then ν̂ ∈ G H ∩ GS ∩ Gϕ

and
ρ(µSRB)= Pν̂ = PG H∩GS∩Gϕ .

(b) If 3 is contained in a µSRB-hyperbolic product set, then ν̂ ∈ G H ∩ GS ∩ GSRB and

ρ(µSRB)= Pν̂ = PG H∩GS∩GSRB .

To our knowledge, the condition in part (b) of Theorem E can be arranged in all known
tower constructions.

Remark on results for tower maps. We will, as an intermediate step to proving
Theorems D and E, prove the corresponding results for tower maps with Markov holes.
These results are stated as Theorems 4 and 5 in §5.2.

An illustrative example: the two-dimensional periodic Lorentz gas. We conclude this
section by stating an application of our results to a concrete example. The setting here is
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as in [DWY]: let f : M 	 be a billiard map associated with a two-dimensional periodic
Lorentz gas with finite horizon whose scatterers are bounded by C3 curves with strictly
positive curvature. The holes we introduce into M are derived from two types of holes
in the billiard table X . We say σ ⊂ X is a hole of type I if σ is an open segment of an
arc in the boundary of one of the scatterers in X . We say σ is a hole of type II if it is an
open convex set in X whose closure is disjoint from any of the scatterers. The hole σ ⊂ X
induces a hole Hσ ⊂ M , which we also call a hole of type I or type II. See [DWY] for
more general holes and details on the geometry they induce in M .

THEOREM F. Let f be the billiard map in the last paragraph. Let Hσ be a hole of type I
or type II, and assume it is small enough in the sense of [DWY]. Then:
(a) ρ(µSRB)= PG H∩GS ; and
(b) there exists ν̂ ∈ G H ∩ GS such that Pν̂ = ρ(µSRB).

Theorem F is an immediate consequence of Theorems D and E together with [DWY]:
in [DWY], towers with exponential tails respecting arbitrary holes of types I and II are
constructed, and for small enough holes the spectral gap property is guaranteed. Thus,
the conditions for Theorem D are satisfied; however, [DWY] does not address variational
principles or pressure so Theorem D, parts (c) and (d), as well as Theorem F, are new
results for this class of billiards.

For the Lorentz gas µSRB = ϕµ, where ϕ = c cos θ , so we are in the setting of
Theorem E(a); however, ϕ = 0 only when θ =±π/2, so Gϕ = E since the set {θ =±π/2}
does not contain any invariant sets by the finite horizon condition and so cannot contain
the support of any invariant measure.

3. Ideas common to the proofs of Theorems A–C
In this section, we first give the ideas common to the proofs of Theorems A–C. Let f be the
mapping in question, let m be the reference measure (i.e. m = µϕ in Theorem A, m = µSRB

in Theorem B, and so on), and let G be the relevant set of ergodic invariant measures with
respect to which the pressure term is defined (i.e. G = G H ∩ Gϕ in Theorem A, and so on).
This ‘generic’ notation is used throughout §3.

If G = ∅, then PG =−∞ and the theorem is vacuously true. Consider ν ∈ G. Leaving
precision for later, our proof will proceed as follows: for n ≥ 0, we introduce dynamical
balls in Mn of the form

B(x, n, g)= {y ∈ M : d( f i x, f i y) < g( f i x), 0≤ i ≤ n} ∩ Mn,

where Mn
=
⋂n

i=0 f −i (M\H) and g : M→ R+ is a suitable function to be specified
(think of it as g ≈ ε for the moment). We will prove the following.
I. Relation to entropy. ν(B(x, n, g))∼ e−nhν ( f ).
II. Volume estimate. m(B(x, n, g))& e−nλ+ν , where λ+ν is the sum of positive Lyapunov

exponents for ν-a.e. x .
From estimate (I), we deduce that Mn contains &enhν ( f ) disjoint sets of the type
B(x, n, g). This, together with estimate (II), gives

m(Mn)& enhν ( f )
· e−nλ+ν . (5)
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Taking log, dividing by n and letting n→∞, gives ρ(m)≥ hν( f )− λ+ν , which is what
we need.

We now proceed to make these ideas precise.

I. Relation to entropy. For this part we cite the following very general result.

PROPOSITION 3.1. Let 8 : X 	 be a measurable transformation of a compact metric
space of finite capacity, and let θ be an ergodic invariant measure for 8. Let ĝε be a
family of functions satisfying |ĝε|∞ ≤ ε and

∫
X −log ĝε dθ <∞, and define

B̂(x, n, ĝε)= {y ∈ X : d(8i x, 8i y) < ĝε(8
i x), 0≤ i ≤ n}.

Then, for θ -a.e. x,

lim
ε→0+

lim inf
n→∞

−
1
n

log θ(B̂(x, n, ĝε))= lim
ε→0+

lim sup
n→∞

−
1
n

log θ(B̂(x, n, ĝε))= hθ (8).

Proposition 3.1 follows from [M, Lemma 2] and [BK, Main theorem]. Note that
although [BK] is phrased in terms of a continuous map, the proof does not use this fact.

In the proofs of Theorems A–C, Proposition 3.1 will be applied with 8= f , θ = ν ∈ G
and

ĝε(x) :=min{ε, d(x, S)}

(S = ∅ in Theorems A and B). Observe that intersecting B̂(x, n, ĝε) with Mn does not
affect its ν-measure since ν is supported on the survivor set. From ν(Nε(S))≤ Cεα , we
have ∫

M
−log(ĝε) dν ≤ −log ε +

∞∑
n=0

ν(Nεe−n (S)\Nεe−(n+1)(S))(n + 1− log ε)

≤ −log ε +
∞∑

n=0

Cεαe−αn(n + 1− log ε) <∞, (6)

so our ĝε satisfies the hypotheses of Proposition 3.1.

II. Volume estimate. Let gε = 1
3 ĝε. Continuing to let m denote the initial distribution and

ν ∈ G, we state the following desired volume estimate.

PROPOSITION 3.2. There exists a measurable set E ⊂� with ν(E) > 0 such that for ν-
a.e. x ∈ E,

sup
ε>0

lim sup
n→∞

−
1
n

log m(B(x, n, gε))≤ λ
+
ν . (7)

Proof of Theorems A–C assuming Proposition 3.2. Let ν ∈ G be given. We fix δ > 0, and
let σ := ν(E), where E is as in Proposition 3.2. Using Propositions 3.1 and 3.2, we may
choose first ε > 0 sufficiently small, and then n0 = n0(δ, ε) ∈ Z+ sufficiently large, and a
measurable set E ′ ⊂ E with ν(E ′)≥ σ/2 such that for every x ∈ E ′:
(i) ν(B(x, n, 3gε))≤ e−n(hν−δ) for all n ≥ n0; and
(ii) m(B(x, n, gε))≥ e−n(λ+ν +δ) for all n ≥ n0.
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For n ≥ n0, let Cn ⊂ E ′ be a maximal set of points such that B(xi , n, gε) ∩
B(x j , n, gε)= ∅ whenever xi , x j ∈ Cn , xi 6= x j . By the maximality of Cn , for every
y ∈ E ′, there exists xi ∈ Cn such that B(y, n, gε) ∩ B(xi , n, gε) 6= ∅. We will show
momentarily that y ∈ B(xi , n, 3gε). This will imply E ′ ⊂

⋃
xi∈Cn

B(xi , n, 3gε), and
hence |Cn| ≥ (σ/2)en(hµ−δ) by (i).

To show y ∈ B(xi , n, 3gε), it suffices to show d( f k y, f k xi ) < 3gε( f k xi ) for all k ≤ n
since y ∈ E ′ ⊂ Mn . Now, B(y, n, gε) ∩ B(xi , n, gε) 6= ∅ means there exists z ∈ M such
that d( f k xi , f k z)≤ gε( f k xi ) and d( f k z, f k y)≤ gε( f k y) for all 0≤ k ≤ n. Thus, the
assertion above boils down to the following lemma.

LEMMA 3.3. For any x, y ∈ M, if there exists z ∈ M with d(x, z)≤ gε(x) and d(z, y)≤
gε(y), then d(x, y)≤ 3gε(x).

Proof of lemma. It suffices to show gε(y)≤ 2gε(x), for that will imply

d(x, y)≤ d(x, z)+ d(z, y)≤ gε(x)+ gε(y)≤ 3gε(x),

proving the lemma. Observe that

d(y, S) ≤ d(y, z)+ d(z, x)+ d(x, S)
≤ gε(y)+ gε(x)+ d(x, S)≤ 1

3 d(y, S)+ 4
3 d(x, S),

the last inequality following from gε(·)≤ 1
3 d(·, S). Altogether, this gives d(y, S)≤

2d(x, S).
To finish, consider the following two cases.

Case 1: d(x, S) > ε. With gε(x)= 1
3ε, gε(y) is automatically <2gε(x) since it is ≤ 1

3ε.

Case 2: d(x, S)≤ ε. In this case, gε(y)≤ 1
3 d(y, S)≤ 2

3 d(x, S)= 2gε(x). 2

For each x ∈ E ′, we have B(x, n, gε)⊂ Mn by definition. Since the B(xi , n, gε) are
disjoint, we may estimate m(Mn) by

m(Mn)≥
∑

xi∈Cn

m(B(xi , n, gε))≥ |Cn| · min
xi∈Cn

m(B(xi , n, gε))≥
σ

2
en(hν−δ)e−n(λ+ν +δ).

This yields

lim inf
n→∞

1
n

log m(Mn)≥ hν( f )− λ+ν − 2δ.

The theorem is proved since δ was chosen arbitrarily. 2

To complete the proofs of Theorems A–C, it remains only to prove the volume estimate
in Proposition 3.2.

4. Volume estimates
In this section, we prove Proposition 3.2 in the various settings of interest. The basic
argument, which treats the case S = ∅, m = µ, and ν ∈ G H , is presented in §4.1. Proofs of
other cases in Theorems A–C are presented as modifications of this one.

4.1. Proof of Proposition 3.2: basic setup. We consider here the most basic setup,
namely where S = ∅, m = µ, and ν ∈ G H (as defined), and give a proof of Proposition 3.2.
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I. Plan. From the pointwise nature of the result and the fact that the quantity on the left
of (7) increases as ε→ 0, it suffices to show that, given κ > 0, for ν-a.e. x and arbitrarily
small ε > 0, there exists c(x, ε) such that

m(B(x, n, gε))≥ c(x, ε)e−n(λ+ν +κ) for all n ≥ 0.

Here, gε(·)≡ 1
3ε; remember that B(x, n, gε) is a dynamical ball in Mn (and not in M).

Such an object is cumbersome to work with since it involves both the dynamics and the
hole. To remove the hole from consideration, we introduce

B∗(x, n, ε, γ ) := {y ∈ M : d( f i x, f i y) < εe−γ i for 0≤ i < n}.

By definition of G H , for any γ > 0 and ν-a.e. x , B∗(x, n, 1
3ε, γ )⊂ B(x, n, gε) for small

enough ε. Thus, it suffices to prove, for a suitably chosen γ and arbitrarily small ε > 0,

m(B∗(x, n, ε, γ ))≥ c(x, ε, γ )e−n(λ+ν +κ) for all n ≥ 0. (8)

This is what we will do. Our strategy is to make these volume estimates in Lyapunov charts
and pass them back to the manifold.

II. Lyapunov charts and hyperbolic estimates. Let λ1 < · · ·< λp be the distinct
Lyapunov exponents of ( f, ν), with multiplicities m1, . . . , m p respectively, and let Ei (x)
be the subspace of Tx M corresponding to λi . For each i , we let Ri (r) denote the ball of
radius r centered at 0 in Rmi , and let R(r)=

∏p
i=1 Ri (r). We recall below the following

facts about Lyapunov charts, following the exposition in [Y2].

PROPOSITION 4.1. [Y2, §3.1] Let δ�mini 6= j |λi − λ j | be fixed. Then there is a
measurable set V ′ ⊂ M, ν(V ′)= 1, a measurable function ` : V ′→ [1,∞) satisfying
`( f ±x)/`(x) < e2δ , and a family of charts {8x : R(δ`(x)−1)→ M}x∈V ′ with the
following properties:
(a) (i) 8x (0)= x;

(ii) D8x ({0} × · · · × Rmi × · · · × {0})= Ei (x); and
(iii) for all z, z′ ∈ R(δ`(x)−1),

K−1d(8x z, 8x z′)≤ |z − z′| ≤ `(x)d(8x z, 8x z′),

where K is a constant depending only on the dimension of M.
(b) Let f̃x =8

−1
f x ◦ f ◦8x be defined where it makes sense. Then:

(i) eλi−δ|v| ≤ |D f̃x (0)v| ≤ eλi+δ|v| for v ∈ {0} × · · · × Rmi × · · · × {0};
(ii) Lip( f̃x − D f̃x (0)) < δ; and
(iii) Lip(D f̃x ) < `(x).

The following notation is used: let Tx M = Ecu(x)⊕ E s(x), where Ecu(x)=⊕
i :λi≥0 Ei (x) and E s(x)=

⊕
i :λi<0 Ei (x). We will estimate the volume of the sets in

question by looking at slices parallel to Ecu , and will do so in Lyapunov charts. Let Rcu

and Rs be the subspaces in the charts corresponding to Ecu and E s , and let Rcu(r) and
Rs(r) denote disks of radius r centered at 0 in Rcu and Rs , respectively. We will work
with compositions of chart maps, writing

f̃ n
x := f̃ f n−1x ◦ · · · ◦ f̃x ,

and study graph transforms by f̃ n
x of functions from Rcu(r) to Rs(r). The precise

assertions are as follows.
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(a) For all γ > 0 sufficiently small, there exist δ, σ > 0 small enough and a chart system
(with δ as in Proposition 4.1) such that the following holds for ν-a.e. x : let r ≤ δ`(x)−1,
and let g0 : Rcu(r)→ Rs(r) be a C1 function with |g0(0)|< 1

2r and ‖Dg0‖< σ . Then,
for i = 1, 2, . . . ,, there exists gi : Rcu(e−γ ir)→ Rs(e−γ ir) defined on exponentially
shrinking domains and with ‖Dgi‖< σ for all i such that, inductively,

f̃ f i−1x (graph(gi−1)) ∩ R(e−γ ir)= graph(gi ).

That is to say, if 0z is the graph transform by f̃z , then for each i , 0 f i−1x (gi−1)= gi .
(b) For g : Rcu(r)→ Rs(r) and y ∈ graph(g), let Tg(y) denote the tangent space to the
graph of g at y. If δ and σ in (a) are small enough, then for y ∈ graph(g0) such that
f̃ i
x (y) ∈ R(e−γ ir) for all i ≤ n,

|det[D f̃ n
x (y)|Tg0 (y)

]|< en(λ++3kδ),

where λ+ =
∑

i :λi>0 miλi and k = dim(Ecu).
Notice first that with 2δ < γ , we are assured that R(e−γ ir) lies in the chart at f i x ; this

is because `( f i x) > e−γ i`(x); see Proposition 4.1. Since most of the other assertions in
(a) and (b) follow from standard (uniformly hyperbolic) graph transform estimates, we will
only sketch the arguments for a few key points. (A version of these estimates can be found
in [Y2, §3.1]; see also [Y1, §B] for similar results.)

The ‘overflowing property’ of the graph transforms can be justified as follows. Consider
first the case where g0(0)= 0. By Proposition 4.1(b)(i), |D f̃x (0)v| ≥ e−δ|v| ≈ (1− δ)|v|
for v ∈ Rcu . By Proposition 4.1(b)(iii) together with the chart size, we have, for all
η ∈ R(r),

|D f̃x (η)v − D f̃x (0)v| ≤ Lip(D f̃x )r |v|< δ|v|.

This gives |D f̃x (η)v|> (1− 3δ)|v| ≈ e−3δ
|v| for v with a small enough component in Rs .

Thus, with δ and σ sufficiently small relative to γ , the overflowing property is assured
from step to step for g0 with g0(0)= 0. For graphs that do not pass through 0, we pivot
them at y ∈ W̃ s

loc ∩ graph(g0), where W̃ s
loc is the stable manifold of x in its chart. Since

| f̃ i
x (y)|< e(λs+δ)i , where λs =max{λi : λi < 0}, movements of f̃ i

x (y) in the Rcu-direction
are negligible, assuming γ � |λs |.

The assertion in (b) is proved similarly: we view det(D f̃ n
x ) as a product of determinants.

At each step, |det(D f̃ f i x (0)|Rcu )|< eλ
+
+kδ , and we may assume that approximations of

the type in the last paragraph increase the error by a factor <e2kδ .

III. Completing the proof. Putting assertions (a) and (b) in II together, we arrive at the
following: define

B̃∗(x, n, r, γ )= {y ∈ Rcu(r)× Rs( 1
2r) : f̃ i

x (y) ∈ R(e−γ ir) for i = 1, 2, . . . , n}.

We foliate B̃∗(x, 0, r, γ ) with planes {P} parallel to Rcu(r)× {0}, and view them as
graphs of constant functions. By the overflowing property of the graph transform at
each step, f̃ i

x (y) ∈ R(e−γ ir) for all i ≤ n is equivalent to f̃ n
x (y) ∈ R(e−γ nr). Pulling

back f̃ n
x (P) ∩ R(e−γ nr), we use the bound in assertion (b) to estimate the area of

P ∩ B̃∗(x, n, r, γ ). We then integrate over {P} to obtain

Leb(B̃∗(x, n, r, γ ))≥

(
r

2

)d−k

· (re−γ n)k · e−n(λ++3kδ), (9)

where d = dim(M).
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We now return to the argument outlined at the beginning of the proof. Let κ > 0
be given. Assuming always γ � |λs |, we now take it small enough that 4kγ < κ , and let
δ be small enough (with respect to γ ) for assertions (a) and (b) to hold in the chart system
{8x } associated with δ. For ν-typical x , we consider ε small enough that B( f i x, εe−γ i ) ∩

H = ∅ for all i ≥ 0. Choosing r < ε/K , where K is as in Proposition 4.1(a)(iii), we
define B̃∗(x, n, r, γ ) in the chart at x as above, and observe that 8x (B̃∗(x, n, r, γ ))⊂
B∗(x, n, ε, γ ). To finish, it remains to pass the estimate in (9) back to M .
Proposition 4.1(a)(iii) gives a bound on the Jacobian of 8x , allowing us to conclude that

m(8x (B̃
∗(x, n, r, γ )))≥ `(x)−d

· Leb(B̃∗(x, n, r, γ ))≥ ce−n(λ++κ)

for some constant c depending on x, ε and γ . 2

4.2. Adaptations of basic argument to various settings. We now explain how each of
the other results in Theorems A–C is deduced from the proof in §4.1.

1. The W s-neighborhood condition (O). We continue to assume S = ∅ and m = µ. To
relax the condition from the original definition of G H in §2.1 to the one given by (O), the
proof in §4.1 is modified as follows: given κ , we fix γ, δ, a chart system {8x }, and a ν-
typical x ∈ M . Let O , a W s-neighborhood, and ε be such that f i (O) ∩ B( f i x, εe−γ i )⊂

M\H for all i . We need to show m(O ∩ B∗(x, n, ε, γ ))≥ c(x, ε, γ )e−n(λ+ν +κ). Let
r < ε/K .

The following notation is used: for y ∈ R(r) and small η > 0, let R(y, η)= y +
R(η); if y = (ycu, ys) are the coordinates of y with respect to Rcu and Rs , we write
Rcu(ycu, η)= ycu

+ Rcu(η), and so on. To define the analog of B̃∗(x, n, r, γ ) in §4.1,
let z ∈ O ∩W s

loc(x) be sufficiently close to x , let z̃ :=8−1
x (z), and let r ′ < r be small

enough that 8x (R(z̃, r ′))⊂ O . Define

B̃∗(x, n, z, r ′, γ )

:= {y ∈ Rcu(z̃cu, r ′)× Rs(z̃s, 1
2r ′) : f̃ i

x (y) ∈ R( f̃ i
x (z̃), e−γ ir ′) for i = 1, 2, . . . , n}.

Since z ∈W s
loc(x), f̃ i

x (z̃)→ 0 as i→∞. It is straightforward to check that modulo a
constant, Leb(B̃∗(x, n, z, r ′, γ )) is bounded below by the quantity on the right side of (9),
and that 8x (B̃∗(x, n, z, r ′, γ ))⊂ (O ∩ B∗(x, n, ε, γ )).

In the settings below, we will revert back to G H as defined, leaving it to the reader to
extend the proof to include the condition (O) if they so choose.

2. Initial distributions with densities. Continuing to assume S = ∅, we let m = µϕ for
some ϕ ∈ L1(µ). Let ν ∈ G H ∩ Gϕ , and let Z and cν have the meaning in the definition
of Gϕ . Observe that for ν-a.e. x ∈ Z and small enough ε, one has µϕ(B∗(x, n, ε, γ ))≥
cνm(B∗(x, n, ε, γ )). An argument identical to that in §4.1 proves Proposition 3.2 with
E = Z .

3. SRB measures as initial distributions. Continuing to assume S = ∅, we let m =
µSRB, as in Theorem B. Given ν ∈ G H ∩ GSRB, we fix a µSRB hyperbolic product
set 5= (

⋃
0u) ∩ (

⋃
0s) with ν(5) > 0, and show that the volume estimate for

m(B∗(x, n, ε, γ )) in §4.1 holds for ν-a.e. x ∈5.
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Let x ∈ ωu
x ∩ ω

s
x ∈5 be a ν-typical point, where ωu

x ∈ 0
u and ωs

x ∈ 0
s . Note that as

a result of the uniform contraction of T nωs
x and T−nωu

x required by (W.1) of §2.1(B), x
can have no zero Lyapunov exponents. Let W̃ u

loc denote the image of the local unstable
manifold through x in its chart. Since local unstable manifolds are unique (up to size),
8−1

x (ωu
x )⊂ W̃ u

loc, which has the dimension of Ru and is tangent to it at 0. (Since no zero
Lyapunov exponents is an assumption for Theorem B, we have Ru instead of Rcu .) By
conditions (W.1) and (W.2), for all small enough r > 0, there exists 00 ⊂ 0

u such that (i)
µSRB(

⋃
ω∈00

ω) > 0 and (ii) for every ω ∈ 00, 8−1
x (ω) ∩ R(r) is the graph of a function

from Ru(r) to Rs(r) with the properties of g0 in §4.1. Define

B̃∗(x, n, r, 00, γ )=

{
y ∈

⋃
ω∈00

8−1
x ω : f̃ i

x (y) ∈ R(e−γ ir) for i = 0, 1, 2, . . . , n

}
.

With r small enough relative to ε, clearly 8x (B̃∗(x, n, r, 00, γ ))⊂ B∗(x, n, ε, γ ). To
estimate the measure of this set, it is more convenient to bring µSRB to the chart (instead
of doing it on M): let α be the measure (8−1

x )∗(µSRB|
⋃
ω∈00

ω) restricted to R(r). By (i)

above together with (W.3), α(B̃∗(x, 0, r, 00, γ )) > 0. We disintegrate α into conditional
probability measures on the leaves {8−1

x ω}, letting αT denote the measure in the transverse
direction. To estimate the α-measure of B̃∗(x, n, r, 00, γ ), we do it one 8−1

x ω-leaf at a
time, integrating with respect to αT afterwards. Condition (W.3) ensures uniform lower
bounds of the type in (9) for αT -almost all leaves.

4. Maps with singularities. We discuss the case m = µ, leaving the others to the reader.
Let ν ∈ G H ∩ GS , and observe the following lemma.

LEMMA 4.2. Let Eε,γ = {x ∈ M : d( f i x, S) > εe−γ i for all i ≥ 0}. Then, for any fixed
γ > 0, limε→0 ν(Eε,γ )= 1.

Proof. This follows from the simple estimate

ν(M\Eε,γ )=
∑
i≥0

ν[ f −i (Nεe−γ i (S))] =
∑
i≥0

ν[Nεe−γ i (S)] ≤
∑
i≥0

Cεαe−γαi
≤ C ′εα,

the first inequality coming from the definition of GS . (See also [KS, Part I, Lemma 3.1].) 2

This means that for x ∈ Eε,γ , we again have B∗(x, n, 1
3ε, γ )⊂ B(x, n, gε), for

gε( f i x)= 1
3 min{ε, d( f i x, S)} ≥ 1

3εe
−γ i .

Continuing to follow the proof in §4.1, we note that the definition of GS , together
with (3), implies that

∫
M log+ ‖D f ±1

x ‖ dν <∞, where log+ x =max{log x, 0}, so the
Lyapunov exponents are well defined ν-almost everywhere. In addition, the Lyapunov
charts described in Proposition 4.1 exist for this class of maps with some modifications
because of the presence of singularities.

Observe first that (a)(i), (a)(ii) and (b)(i) of Proposition 4.1 hold as stated since these
quantities depend only on D f at a typical point x (see [KS, Part I, Theorem 2.2])†.

† Although [KS] uses only a single splitting, Tx M = Eα(x)⊕ Eβ (x), one can just as easily split the tangent space
into

⊕
i Ei (x), one for each Lyapunov exponent, to obtain Proposition 4.1(b)(i) using an argument identical to

that in [Y2, §3.1].
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The other items of Proposition 4.1 are modified as follows. Fix δ as in Proposition 4.1.
Then there exist a set V ′ with ν(V ′)= 1 and a measurable function `(x) : V ′→ [1,∞),
with `( f ±x) < e2δ`(x), such that for all ε > 0 sufficiently small, the charts8x are defined
on R(δ`(x)−1gε(x)b), where b is the exponent from (4), and satisfy the following.
(a) (iii′) For all z, z′ ∈ R(δ`(x)−1gε(x)b),

K−1d(8x z, 8x z′)≤ |z − z′| ≤ `(x)d(8x z, 8x z′),

where K is a constant depending only on the dimension of M and c0 from (2).
(b) Let f̃x =8

−1
f x ◦ f ◦8x be defined where it makes sense. Then:

(ii′) Lip( f̃x − D f̃x (0))≤ δ; and
(iii′) Lip(D f̃x )≤ `(x)gε(x)−b.

Although the construction of these charts is similar to that found in [KS, P], we include the
necessary arguments in the Appendix since the statements we need are somewhat different
from those found in the literature.

With the charts {8x } in place, the proof follows a similar line to that given in §4.1,
with slight modifications because of the singularities. For example, assertion (a) is no
longer a uniform statement for all x ∈ V ′; rather, we need to choose r ≤ δ`(x)−1gε(x)b,
but only after ε is fixed depending on the rate of approach of x to the singularities. We
state precisely these changes below.

Fix κ > 0 and choose γ � |λs | such that (b + 4)kγ < κ . Using Lemma 4.2, we choose
ε > 0 such that ν(Eε,γ ) > 1− κ . Next we choose δ > 0 with 2δ < γ , so that there exists
a chart system {8x }x∈V ′ with the modified properties as listed in (a)(iii′)–(b)(iii′) above.
Note that ν(V ′ ∩ Eε,γ ) > 1− κ .

We now choose x ∈ V ′ ∩ Eε,γ and prove estimate (8). Note that B( f i x, εe−γ i ) ∩ (H ∪
S)= ∅. Finally, choosing r ≤ δ`(x)−1gε(x)b guarantees that the assertions (a) and (b)
of §4.1 hold along the orbit of x with γ replaced by γ (b + 1), for then R(re−iγ (b+1))

lies in the chart at f i x by definition of Eε,γ and choice of r . In particular, f̃ f i x is
defined on R(re−iγ (b+1)). We shrink r further if necessary so that r < ε/(3K ) and define
B̃∗(x, n, r, γ (b + 1)) as in §4.1. Then, by item (a)(iii′) above, 8x (B̃∗(x, n, r, γ (b +
1)))⊂ B∗(x, n, 1

3ε, γ ) and the rest of the proof follows line by line with only minor
changes to constants. For example, (9) has the factor (re−γ n(b+1))k , as indicated above.

This proves Proposition 3.2 for all x ∈ Eε,γ . But since κ > 0 was chosen arbitrarily, by
Lemma 4.2, we conclude that Proposition 3.2 holds for ν-a.e. x .

5. Towers with holes
This section is exclusively about escape dynamics on towers. Section 5.1 reviews basic
facts and notation for towers, making precise (A.1)–(A.4) in §2.2. In §5.2, we formulate
results analogous to Theorems D and E for towers with Markov holes. Proofs are given in
§§5.3 and 5.4.

5.1. Review of definitions and basic facts

I. Closed systems (without holes). Let f : M 	 be a (piecewise) C1+ε diffeomorphism.
The material below is taken from [Y3]. We recall only essential definitions, referring the
reader to [Y3] for details.
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Generalized horseshoes. The idea of a generalized horseshoe with infinitely many
branches and variable return times, denoted (3, R), is as follows: 3⊂ M is a compact
subset with a hyperbolic product structure, i.e. 3= (

⋃
0u) ∩ (

⋃
0s), where 0s and 0u

are continuous families of local stable and unstable manifolds, and µω{ω ∩3}> 0 for
every ω ∈ 0u , where µω is the Riemannian measure on the unstable manifold ω. We say
3s is an s-subset of 3 if 3s

= (
⋃
0u) ∩ (

⋃
0̃s) for some 0̃s

⊂ 0s , and u-subsets are
defined similarly. Modulo a set the restriction of which to each ω ∈ 0u has µω-measure
0, 3 is a countable disjoint union of (closed) s-subsets 3 j with the property that for each
j , there exists R j ∈ Z+ such that f R j (3 j ) is a u-subset of 3. The function R :3→ Z+
given by R|3 j = R j is called the return time function to 3.

The definition of a generalized horseshoe includes conditions on hyperbolicity
formulated as (P1)–(P5) in [Y3]. We will omit them and focus instead on the estimates
derived from these conditions that we will need. Let ωs(x) and ωu(x) denote, respectively,
the elements of 0s and 0u containing x .
• There is a separation time s :3→ Z+ with the properties that:

(i) s(x, y)= s(x ′, y′) for x ′ ∈ ωs(x), y′ ∈ ωs(y);
(ii) for x, y ∈3 j , s(x, y)≥ R j ; and
(iii) for x ∈3 j , y ∈3 j ′ , j 6= j ′, s(x, y)≤min(R j , R j ′).

• There are constants C > 0 and α ∈ (0, 1), related to the hyperbolicity and distortion
of f , such that if y ∈ ωs(x), then d( f n x, f n y)≤ Cαn for all n ≥ 0.

The following facts about the Jacobian in the unstable direction are useful. For ω, ω′ ∈
0u , the holonomy map2ω,ω′ : ω ∩3→ ω′ ∩3 is obtained by sliding along stable curves,
i.e. 2ω,ω′(x)= ωs(x) ∩ ω′. Fix an arbitrary leaf ω̂ ∈ 0u . We let 2̂(x) be the unique
point in ωs(x) ∩ ω̂, and define a(x)= log

∏
∞

i=0(det D f u( f i x)/det D f u( f i (2̂x))), where
det D f u(x)= det(D f (x)|Eu(x)) is the unstable Jacobian of f . This function is used to
define a family of reference measures {mω, ω ∈ 0

u
}, where mω is the measure on ω

whose density with respect to µω is ea
· 1ω∩3. For x ∈ ω ∩3i , let ω′ be such that

f Ri (ω ∩3i )= ω
′. We define J u( f R)(x)= Jmω,mω′

( f Ri |(ω ∩3i ))(x), the Jacobian of
f R with respect to the measures mω and mω′ .

Remark on notation. It is convenient in this section to follow the notation in [Y3], some of
which conflicts, however, with earlier notation. For example, m in the last paragraph is not
intended to signify any relation to initial distributions in escape dynamics, and C1 below is
not related to the same notation in §2.1, paragraph III. We do not believe this will lead to
problems as the contexts are quite different.

LEMMA 5.1. [Y3, Lemma 1]
(a) For all ω, ω′ ∈ 0u , (2ω,ω′)∗mω = mω′ .
(b) For each ω ∈ 0u and x ∈ ω, J u( f R)(x)= J u( f R)(y) for all y ∈ ωs(x).
(c) There exists C1 > 0 (depending on C and α) such that for each ω ∈ 0u , i ∈ Z+ and

all x, y ∈3i ∩ ω, ∣∣∣∣ J u( f R)(x)

J u( f R)(y)
− 1

∣∣∣∣≤ C1α
s( f R x, f R y)/2. (10)

(d) supx∈3 a(x) <∞ and |a(x)− a(y)| ≤ 4Cα
1
2 s(x,y) on each ω ∈ 0u .
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We say (3, R) has exponential return times if there exist C0 > 0 and θ0 > 0 such that
for all ω ∈ 0u , µω{R > n} ≤ C0θ

n
0 for all n ≥ 0. This property (in fact, integrability of R

is sufficient) plus the requirement that g.c.d. {R} = 1 guarantees that f has a unique SRB
measure µSRB with µSRB(3) > 0 [Y3, Theorem 1].

‘Hyperbolic’ Markov towers. Given f with a generalized horseshoe (3, R), it is shown
in [Y3] that one can associate a Markov extension F :1→1, which focuses on the
return dynamics, to 3. The set 1 is the disjoint union

⋃
`≥0 1`, where 1`, the `th

level of the tower, is defined to be 1` = {(x, `) : x ∈3, R(x) > `}, and F is defined by
F(x, `)= (x, `+ 1) for ` < R(x)− 1 and F(x, `)= ( f R x, 0) when `= R(x)− 1; that
is to say, F maps (x, 0) successively up the tower until the return time for x is reached.
A projection π :1→ M with π ◦ F = f ◦ π is uniquely defined, assuming the natural
identification of 10 with 3.

For notational simplicity, we will often refer to a point in 1 as x when the level ` is
made clear by context.

The separation function s(·, ·) above defines a countable partition {1`, j } on 1: for
x, y ∈10, s(x, y)= inf{n > 0 : Fn x, Fn y lie in different 1`, j }. It is easy to see that
{1`, j } is a Markov partition for F with10 as a single element. Let1∗`, j =1`, j ∩ F−110.
Note that F |1∗`, j

maps 1∗`, j bijectively onto a u-subset of 10, and if we rename the

collection {F−`1∗`, j } as {(10)i }, then {(10)i } is a countable collection of closed subsets
of 10, the π -images of which are precisely the {3i } in the paragraph on generalized
horseshoes.

Stable and unstable sets for 1`, j are defined as follows: let 0s(π(1`, j )) and
0u(π(1`, j )) be the stable and unstable families defining the hyperbolic product set
π(1`, j ). We say ω̃ ⊂1`, j is an unstable set of 1`, j if π(ω̃)= ω ∩ π(1`, j ) for some
ω ∈ 0u(π(1`, j )). Since there can be no ambiguity, we will use 0u(1`, j ) to denote the set
of all such ω̃, and let 0u(1)=

⋃
`, j 0

u(1`, j ). Stable sets of 1`, j and 0s(1) are defined
similarly.

Two reference measures µ̃ω and m̃ω are defined on ω ∈ 0u(1) as follows: on 10,
identifying ω ∈ 0u(10) with ω′ ∩3 for ω′ ∈ 0u(3), µ̃ω is simply µω′ |ω′∩3 and m̃ω is
mω′ . Once these measures are defined on ω ∈ 0u(10), there is exactly one way to extend
them to

⋃
`>0 0

u(1`) so that if J u
µ(F) and J u(F) denote the Jacobians of F on unstable

sets with respect to µ̃ω and m̃ω, respectively, then J u(F)= J u
µ(F)= 1 on 1\F−1(10).

Notice also that if we extend a to
⋃
`>0 1` by a(x)= a(F−1x), then dm̃ω = ea dµ̃ω on

all ω ∈ 0u(1).

Quotient ‘expanding’ towers. Associated with F :1→1 is a quotient tower F :1→
1 obtained by collapsing stable sets to points, i.e. 1=1/∼, where, for x, y ∈1, x ∼ y
if and only if y ∈ ω(x) for some ω ∈ 0s(1). Let π :1→1 be the projection defined by
∼. We will use the notation 1` = π(1`), 1`, j = π(1`, j ), and so on.

Lemmas 5.1(a) and (b) together imply that there is a natural measure m on 1 with
respect to which the Jacobian of F , J F , is well defined: specifically, we have J F ≡ 1

on 1\F
−1
(10), and for x ∈10, J F

R
(x)= J u( f R)(y) for any y ∈ ωs(x). Finally, with

the definition of separation time inherited from 10, the distortion bound in Lemma 5.1(c)

holds for J F
R

on 10.
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II. Systems with holes. The setting is as in paragraph I. We fix an open set H ⊂ M and
call it ‘the hole’.

Towers with Markov holes (following [DWY]). Let (F, 1) be the tower arising from the
horseshoe (3, R). We say (F, 1) respects the hole H if the following conditions are
satisfied:
(H.1) π−1 H is the union of countably many elements of {1`, j }; and
(H.2) π(10)⊂ M\H , and there exist δ > 0, ξ1 > 1 such that all x ∈ π(10) satisfy

d( f n x, S ∪ ∂H)≥ δξ−n
1 for all n ≥ 0.

Because of (H.1), we refer to π−1 H , the hole on 1, as a ‘Markov hole’. This implies in
particular that for every i and ` with 0≤ ` < Ri , f `(3i ) either does not meet H or it is
completely contained in H . Equivalently, on the tower (F, 1), each (10)i either falls into
the hole completely on its way up the tower or returns to 10 intact.

Earlier on we used ( f, M; H) to denote an open system. Observe that (F, 1; π−1 H)
and (F, 1; H), where H = π(π−1 H), are open systems of the same type. As before, we
write

1n
=

n⋂
i=0

F−i (1\π−1 H)= {x ∈1 : F i x /∈ π−1 H for 0≤ i ≤ n},

and 1∞ =
⋂
∞

i=0 1
n . In particular, 10

=1\π−1 H . The notation F̊n
= Fn

|1n for n ≥ 1
is sometimes used to distinguish between systems with and without holes. Corresponding
objects for (F, 1; H) are denoted by 1

n
and 1

∞
, etc.

III. Abstract towers and the notion of spectral gap. In paragraphs I and II, we considered
towers that arise from generalized horseshoes. Towers can, in fact, be defined in the
abstract. Leaving details to the reader, an abstract expanding tower is a dynamical system
F :1→1, where 10 is a compact set, 1=

⋃
`≥0 1` has a tower structure, F moves

points up the tower until their return time R; there is a countable Markov partition {1`, j }

on 1 which is a generator and a reference measure m with respect to which we have (i)

J F = 1 on 1\F
−1
(10) and (ii) modulo a set of m-measure zero, 10 =

⋃
i (10)i , where

F
R

maps each closed set (10)i homeomorphically onto 10 with the distortion bound in
Lemma 5.1(c). Abstract expanding towers with Markov holes H are defined in the obvious
way, as are abstract hyperbolic towers.

Given (F, 1) with m{R > n}< C0θ
n
0 for some C0 ≥ 1 and θ0 < 1†, we fix β with

1> β >max{θ0,
√
α}, where α is as in Lemma 5.1(c), and define a symbolic metric

on 1 by dβ(x, y)= βs(x,y). Since β >
√
α, Lemma 5.1(c) implies that J F is log-

Lipshitz with respect to this metric. Let B = {ψ ∈ L1(1, m) : ‖ψ‖<∞}, where ‖ψ‖ =
‖ψ‖∞ + ‖ψ‖Lip and

‖ψ‖∞ = sup
`, j

sup
x∈1`, j

|ψ(x)|β`, ‖ψ‖Lip = sup
`, j

Lip(ψ |1`, j
)β`.

Lip(·) in the last displayed formula is with respect to the symbolic metric dβ , and (B, ‖ · ‖)
so defined is a Banach space.

† Our default rule is to use the same symbol for corresponding objects for f, F and F when no ambiguity can
arise, given context. Thus, R is the name of the return time function on 3, 10 and 10.
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Now consider the open system (F, 1; H), where H is a Markov hole.
Following [BDM], we let L denote the transfer operator associated with F |

1
1 defined

on B, i.e. for ψ ∈ B and x ∈1,

Lψ(x)= 1
1

0(x)
∑

y∈1
0
∩F
−1
{x}

ψ(y)(J F(y))−1.

We say (F, 1; H) has a spectral gap if:
(i) L is quasi-compact with a unique eigenvalue r of maximum modulus; and
(ii) r is real with β < r< 1; it is simple, with a one-dimensional eigenspace.
Notice that if h ∈ B satisfies Lh = rh, then hm defines a conditionally invariant measure
for F with eigenvalue r, i.e. F∗(hm)|1̄\H̄ = r · hm.

Finally, if (F, 1) is an abstract hyperbolic tower that projects onto (F, 1), and H̃ ⊂1
is a Markov hole which projects onto H , then we say (F, 1; H̃) has a spectral gap if
(F, 1; H) does.

The conditions (A.1)–(A.4) in §2.2 have now been made precise.

5.2. Variational principles for (F, 1; H) and (F, 1; π−1 H). As noted earlier, our aim
in this section is to prove, as an intermediate step for Theorems D and E, a version of the
corresponding results for the open system (F, 1; π−1 H). These results are deduced from
some previously known results for (F, 1; H), which we first recall.

I. Results for expanding towers. We consider here an abstract expanding tower
(F, 1; H) with Markov holes. The following notation is used: let B be the function space
above, and define B0 to be the set of bounded functions in B whose Lipschitz constant is
also bounded, i.e. the definition of B0 is the same as that of B, but with the weights β`

removed. Let M F (1
∞
) denote the set of invariant measures on 1

∞
, and define

G1 = {η ∈M F (1
∞
) | η(log J F) <∞}.

THEOREM 3. (Mostly [BDM]; see remark below) Assume m{R > n}< C0θ
n
0 , and

(F, 1; H) has a spectral gap with largest eigenvalue r. Let h∗ ∈ B be the unique
eigenfunction of r with

∫
h∗ dm = 1. Then:

(a) there exist constants D > 0 and τ < 1 such that for all ψ ∈ B,

‖r−n Ln
ψ − d(ψ)h∗‖ ≤ D‖ψ‖τ n, where d(ψ)= lim

n→∞
r−n

∫
1

n
ψ dm <∞.

Assume additionally that:
(∗) there exist C̄ > 0 and θ̄ ∈ (r−1θ0, 1) such that log J F

n
|10∩{R=n} ≤ C̄ θ̄−n for all

n ≥ 0;
(b) log r= PG1 := supη∈G1{hη(F)−

∫
1

log J F dη};
(c) let ν be defined by

ν(ϕ)= lim
n→∞

r−n
∫
1

n
ϕh∗ dm for all ϕ ∈ B0.

Then ν ∈ G1 and attains the supremum in (b);
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(d) other properties of ν are that (F, ν) is ergodic, and enjoys exponential decay of
correlations between ϕ and ψ ◦ F

n
for ϕ ∈ B0 and ψ ∈ L∞.

Remark. The restriction η(log J F) <∞, which appears in the definition of G1, is omitted
in [BDM], as is the condition (∗), which is extremely mild†, but a condition of this type is
needed to ensure that ν ∈ G1. Since a main novelty of Theorem 3 is the non-compactness
of the phase space1, and these conditions are directly connected to the finiteness of various
quantities, we will provide sketches of corrected proofs of Theorem 3(b) and (c) in §5.3.
The proofs of parts (a) and (d) in [BDM] are unaffected.

II. Results for hyperbolic towers arising from ( f, M; H). We now return to the setting of
§2.1, where f : M 	 is a C1+ε diffeomorphism with or without singularities. Let H ⊂ M ,
and assume that the open system ( f, M; H) satisfies (A.1)–(A.4) in §2.1.

We first recall the following result proved in [DWY] as part of our study of billiard
systems with holes. Let B̃ be the class of measures σ on 1 with the following properties.
(i) σ has absolutely continuous conditional measures on unstable leaves.
(ii) π∗σ = ψσ dm for some ψσ ∈ B.

THEOREM 4. [DWY] Under the conditions above, the following hold for (F, 1; π−1 H).
(a) For all σ ∈ B̃ with d(ψσ ) > 0, where d(ψσ ) > 0 is as in Theorem 3(a),

log r= lim
n→∞

1
n

log σ(1n) i.e. ρ(σ)= log r.

(b) There exists a conditionally invariant distribution µ̃∗ ∈ B̃ such that F̊∗µ̃∗ = r µ̃∗,
π∗µ̃∗ = h∗m, and for which the following hold: for all σ ∈ B̃,

lim
n→∞

r−n F̊n
∗ σ = d(ψσ ) · µ̃∗, and if d(ψσ ) > 0, then lim

n→∞

F̊n
∗ σ

F̊n
∗ σ(1)

= µ̃∗,

where the convergence is in the weak* topology.

The measure µ̃∗ can be thought of as the physical measure for the leaky system
(F, 1; π−1 H).

We formulate in Theorem 5 the results which, along with Theorem 4, will give the
analogs of Theorems D and E for (F, 1; π−1 H). Let M F (1

∞) denote the set of invariant
probability measures supported on 1∞, and define

G1 = {η ∈M F (1
∞) | η(log J u

µF) <∞}.

Furthermore, let C0
b(1) be the set of bounded functions on 1 which are continuous on

each 1`, j . We postpone the definitions of Lips(1) and Lipu(1) (other function spaces
that will appear) until after the theorem.

THEOREM 5. Let (F, 1; π−1 H) be as above. Then the following hold.
(a) log r= PG1 = supη∈G1{hη(F)−

∫
1

log J u
µF dη}.

† We observe that (∗) holds for all the towers constructed in [BDM]; indeed, in that setting, log J F
n
|
10∩{R=n} ≤

Cn and all measures η ∈M F (1
∞
) satisfy η(log J F) <∞.
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(b) Let ν̃ be defined by

ν̃(ϕ)= lim
n→∞

r−n
∫
1n
ϕ dµ̃∗ for all ϕ ∈ C0

b(1).

Then ν̃ ∈ G1 and it attains the supremum in (a).
(c) Other properties of ν̃ are that (F, ν̃) is ergodic, and exhibits exponential decay of

correlations between ϕ and ψ ◦ Fn for ϕ ∈ Lipu(1) and ψ ∈ Lips(1).

The function spaces Lips(1) and Lipu(1) are defined as follows. For ωs
∈ 0s(1)

and x, y ∈ ωs
⊂10, we denote by ds(x, y) the distance between π(x) and π(y),

according to the Riemannian metric on M , and extend ds to ωs
∈
⋃
`>0 0

s(1`) by setting
ds(F`x, F`y)= α`ds(x, y) for all ` < R(x) and y ∈ ωs(x). It then follows from §5.1.I
that ds(Fn x, Fn y)≤ Cαn for all n ≥ 0 and x, y ∈1, y ∈ ωs(x). For ϕ ∈ C0

b , let |ϕ|sLip
be the supremum of Lipshitz constants of ϕ|ωs with respect to ds , as ωs ranges over all
stable sets in 0s(1). Then Lips(1)= {ϕ ∈ C0

b : |ϕ|
s
Lip <∞}. The function space Lipu(1)

is defined similarly using |ϕ|uLip, where |ϕ|uLip is the Lipschitz constant of ϕ restricted to
unstable sets in the metric dβ .

5.3. Outline of proof of Theorem 3(b), (c): [BDM] amended. We assume part (a) of
Theorem 3 has been proved, and proceed to the proofs of parts (b) and (c), following
mostly [BDM] and highlighting several finiteness issues.

1. Return map to 1
∞

0 and the full shift T :6∞ 	. Since F is not defined everywhere on
1, let us first make precise the definition of the survivor set 1

∞
. Recall from §5.1 that

modulo a set of m-measure zero, 10 is the disjoint union of a countable number of closed
subsets (10) j with the properties that:

(i) in the absence of H , F
R

maps each (10) j homeomorphically onto 10; and
(ii) with H present, each (10) j either falls entirely into H on its way up the tower or

returns to 10 intact.
We rename the subcollection {(10) j } that returns to 10 in (ii) as {Ai }, and define

1
∞

0 :=1
∞
∩10 =

⋂
n≥0

(F
R
)−n

(⋃
i

Ai

)
.

It is easy to see that there is a bijection π0 :1
∞

0 →6∞ =5
∞

i=1{1, 2, 3, . . .} such that

π0 ◦ F
R
= T ◦ π0, where T :6∞ 	 is the full shift. Moreover, with1

∞

0 , given its relative
topology as a subset of 10, and 6∞, given the topology defined by cylinder sets, π0 is a
conjugating homeomorphism.

Let Zn denote the set of cylinders in 6∞ defined by coordinates 1, . . . , n, and write
Z = Z1. We introduce a metric d̂ on 6∞ compatible with its topology, defined by
{Zn}: for x, y ∈6∞, define ŝ(x, y)=min{i ∈ N | T i x, T i y lie in different Z ∈ Z}, and
let d̂(x, y)= β ŝ(x,y) (where β is as in §5.1). We say a function φ :6∞→ R is locally
Hölder continuous if

sup
Z∈Z
{|φ(x)− φ(y)| · β−ŝ(x,y)

: x, y ∈ Z}<∞.
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2. Sarig’s abstract results on the pressure of T :6∞ 	. We recall here a few relevant
results for T :6∞ 	. These results were proved in [S] in more general settings of
topologically mixing countable Markov shifts. Given φ :6∞→ R, let Snφ =

∑n−1
i=0 φ ◦

T i . The Gurevic pressure of φ is defined to be

PG(φ, Z)= lim
n→∞

1
n

log
( ∑

T n x=x;x∈Z

eSnφ(x)
)
,

where Z is any fixed element of Z . For φ locally Hölder continuous, it is shown in [S,
Theorem 1] that the limit above exists and is independent of Z . This number is ≤∞ in
general, and is equal to∞ for many φ, given that T is an infinite shift.

We will also need the following definitions: the transfer operator associated with φ is
given by

Lφψ(x)=
∑

T y=x

eφ(y)ψ(y) for bounded ψ.

Let MT (6∞) be the set of T -invariant Borel probability measures on 6∞. Given a
potential φ :6∞→ R, we say η ∈MT (6∞) is a Gibbs measure for φ if there exist
constants C > 1 and Pη ∈ R such that for any n ≥ 1, Zn ∈ Zn and x ∈ Zn ,

C−1eSnφ(x)−n Pη ≤ η(Zn)≤ CeSnφ(x)−n Pη . (11)

The following version of results from [S] are adequate for our purposes.

THEOREM 6. Let T :6∞ 	 be as above, and let φ :6∞→ R be locally Hölder
continuous. Assume |Lφ1|∞ <∞. Then:
(a) [S, Theorem 1] PG(φ) <∞;
(b) [S, Theorem 3]

PG(φ)= sup
{

hη(T )+
∫
φ dη

∣∣∣∣ η ∈MT (6∞) and η(−φ) <∞

}
;

(c) [S, Theorem 8] Suppose η is a Gibbs measure for φ, and η(−φ) <∞; then

PG(φ)= Pη = hη(T )+
∫
φ dη.

It follows from (a) and (b) above that for η ∈MT (6∞), hη(T ) <∞, provided
|Lφ1|∞ <∞ and η(−φ) <∞.

Notation. In what follows, we will identify F
R
:1
∞

0 	 with T :6∞ 	 and use the
two sets of notations interchangeably. We also introduce the following notation: given
η ∈M F (1

∞
), let η0 denote the measure ((1/η(1

∞

0 ))η)|1∞0
. It is easy to see that

η0 ∈M
F

R (1
∞

0 ).

3. Relating pressure on (F, 1
∞
) to that on (F

R
, 1
∞

0 ). Let φ =−log(rR J F
R
). The aim

of this step is to prove that for every η ∈M F (1
∞
) with η(log J F) <∞,

η(1
∞

0 )
−1
{hη(F)− η(log J F)− log r} = hη0(F

R
)+ η0(φ)≤ PG(φ) <∞. (12)

The last two inequalities follow from Theorem 6(a) and (b) once we check (i) φ is locally
Hölder continuous with respect to the metric d̂, (ii) |Lφ1|∞ <∞, and (iii) η0(−φ) <∞.
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For (i), notice that by Lemma 5.1, φ is locally Hölder continuous with respect to the
separation time metric dβ , and ŝ(x, y)≤ s(x, y).

For (ii), let Z(y) denote the element of Z containing y ∈1
∞

0 . We fix x ∈1
∞

0 and use

the bounded distortion of J F
R

given by Lemma 5.1(c) to write

Lφ1(x) =
∑

T y=x

r−R(y)(J F
R
(y))−1

≤ C
∑

T y=x

r−R(y)m(Z(y))

≤ C
∑
n≥1

r−nm{R = n} ≤ C ′
∑
n≥1

r−nθn
0 <∞.

Here, we have used r> θ0 and the fact that F
R

maps each Z ∈ Z bijectively onto 1
∞

0 .
For (iii), we will show η(log J F) <∞ implies η0(−φ) <∞: since J F ≡ 1 on

1\F
−1
10,∫

1
∞

0

log J F
R

dη0 = η(1
∞

0 )
−1
∫

F
−1
1
∞

0

log J F dη = η(1
∞

0 )
−1
∫
1
∞

log J F dη.

Thus, if η(log J F) <∞, then, noting η(1
∞

0 )
∫

R dη0 = 1, we have

η0(−φ) =

∫
1
∞

0

log(rR J F
R
) dη0 =

∫
1
∞

0

R log r dη0 +

∫
1
∞

0

log J F
R

dη0

= (log r+ η(log J F)) · η(1
∞

0 )
−1 <∞. (13)

This completes the verification of (i)–(iii).
The equality in (12) follows from (13) together with the general formula of

Abramov [A], which says that hη(F)= hη0(F
R
)η(1

∞

0 ). In all the references we know
of (e.g. [Pe, §6.1]), this equality is proved assuming the invertibility of the transformation.
In the situation above, F is clearly not invertible, but the same result is easily deduced by
passing to natural extensions; see Appendix B.

4. Existence of a pressure-maximizing invariant measure ν. Let ν be the linear functional
on C0

b(1) defined by

ν(ψ)= lim
n→∞

r−n
∫
1

Ln
(h∗ψ) dm = lim

n→∞
r−n

∫
1

n
ψh∗ dm.

We refer the reader to [BDM] for verification that ν is a well defined, F-invariant
probability measure on 1

∞
.

The aim of this step is to show that plugging η = ν into (12), we get

hν0(F
R
)+ ν0(φ)= PG(φ)= 0 and hν(F)− ν(log J F)= log r. (14)

Observe from the definition of φ in step 3 that eSnφ(x) = r−Sn R(x)(J (F
R
)n(x))−1. The

following lemma shows that ν0 is a Gibbs measure for the potential φ, with Pν0 = 0.

LEMMA 5.2. [BDM, Lemma 5.3] There exists a constant C > 1 such that for any n ≥ 1,
any n-cylinder Zn ∈ Zn , and any y∗ ∈ Zn ,

C−1r−Sn R(y∗)(J (F
R
)n(y∗))

−1
≤ ν0(Zn)≤ Cr−Sn Rn(y∗)(J (F

R
)n(y∗))

−1.
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It remains only to check that ν(log J F) <∞, for this bound implies ν0(−φ) <∞ (see
step 3 above), and once we have that, Theorem 6(c) gives the first equation in (14). The
second equation follows from (12) and the first.

In what follows, C will be used as a generic constant, the value of which is permitted to
vary from line to line. To prove ν(log J F) <∞, we first estimate

ν0{R = n} =
∑

Z∈Z :R(Z)=n

ν0(Z)≤
∑

Z∈Z :R(Z)=n

Cr−n(J F
R
(y∗))

−1

≤ C
∑

Z∈Z :R(Z)=n

r−nm(Z)≤ Cθn
0 r−n, (15)

where y∗ is an arbitrary point in Z . The first inequality comes from Lemma 5.2, the second
from Lemma 5.1(c), and the third from the tail bound for (1, F). Using the invariance of

ν and the fact that J F ≡ 1 on 1\F
−1
(1), we obtain

ν(log(J F)) =
∑
n≥1

∑
R(Z)=n

∫
Z

log(J F
n
) dν =

∑
n≥1

ν{R = n}|log J F
n
|∞

≤ C
∑
n≥1

(θ0r
−1)n θ̄−n <∞.

The inequalities above come from condition (∗) in Theorem 3; this is the only place in the
entire proof that uses this condition. We have also used the fact that ν{R = n} is bounded
by ν(1

∞

0 ) times the last quantity in (15).
Parts (b) and (c) of Theorem 3 follow immediately from steps 3 and 4. 2

5.4. Proof of Theorem 5. We will prove this theorem by leveraging the corresponding
results for expanding towers.

Variational principle (Theorem 5(a), (b)). First, we show

sup
η∈G1

{
hη(F)−

∫
log J u

µ(F) dη

}
≤ sup
η∈G1

{
hη(F)−

∫
log J (F) dη

}
, (16)

which follows immediately from the following lemma.

LEMMA 5.3. Let η ∈ G1 and define η = π∗η. Then η ∈ G1 and:
(i)

∫
1

log J u
µF dη =

∫
1

log J F dη;

(ii) hη(F)= hη(F).

Proof of Lemma 5.3. Let η ∈ G1. The fact that η = π∗η ∈M F (1
∞
) is clear. That η ∈ G1

will follow once we prove assertion (i) of the lemma: from §5.1.I, we see that log J u
µF and

J F are related by J F ◦ π = J u
µF · ea◦F−a for a bounded function a (Lemma 5.1(d)). It

follows that∫
1

log J u
µF dη =

∫
1

(log J F ◦ π + a − a ◦ F) dη =
∫
1

log J F dη, (17)

the invariance of η being used in the second equality.
Assertion (ii) follows from (a) the entropy of a transformation is equal to that of its

natural extension, and (b) the natural extension of (F, η) is isomorphic to that of (F, η).
See Appendix B for more detail on (b). 2
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To complete the proof, we will show that (i) the results of Theorem 3 are applicable
to the quotient tower, and (ii) ν̃ as defined in part (b) is in G1 and projects to ν. These
two steps together will show that (16) is in fact an equality, and the quantity on the right
is = log r.

To apply Theorem 3, it suffices to show that condition (∗) holds in the present setting,
i.e. for the quotient tower of a hyperbolic tower arising from ( f, M; H) and satisfying
(A.1)–(A.4). Notice first that (∗) holds if ‖D f ‖ is bounded, for J u

µFn can grow at

most exponentially, and J F
n

on the corresponding set is ≤J u
µFn
· e|a|∞ , where a is as

in Lemma 5.3. Thus, there is a potential problem only in the setting of Theorem C, where
‖D f ‖ may become arbitrarily large as one approaches the singularity set S . Here, it is
(H.2) of §5.1.II and (3) in §2.1.III that give what we need: since F− j1 j = {x ∈3 : R(x) >

j}, we have d(π1 j , S)≥ δξ− j
1 for some δ > 0 and ξ1 > 1 by (H.2). This, together with

(3), implies that on π(1 j ), |det(D f |Eu )| ≤ (C1δ
−aξ

aj
1 )

p, where p is the dimension of Eu .
Thus, on 10 ∩ {R = n}, we have

log J u
µFn
=

n−1∑
j=0

log |det(D f |Eu ) ◦ f j
| ≤ const n2,

which, as explained above, gives (∗).
It remains to produce ν̃ with the properties in (ii). Let µ̃∗ be the physical conditionally

invariant distribution from Theorem 4. For ϕ ∈ Lipu(1), define µ̃ϕ to be the measure
such that dµ̃ϕ = ϕ dµ̃∗. Notice that since π∗µ̃∗ ∈ B and |ϕ|∞ + |ϕ|uLip <∞, we also

have π∗µ̃ϕ ∈ B. Let ψϕ denote the density of π∗µ̃ϕ with respect to m. Now, using
Theorem 4(b),

lim
n→∞

r−n
∫
1n
ϕ dµ̃∗ = lim

n→∞
r−nµ̃ϕ(11n )= lim

n→∞
r−n F̊n

∗ µ̃
ϕ(1)= d(ψϕ).

Let Q(ϕ)= d(ψϕ). Then Q is clearly linear in ϕ, positive and satisfies Q(1)= 1. Also,
|Q(ϕ)| ≤ |ϕ|∞Q(1) so that Q extends to a bounded linear functional on C0

b(1). By the
Riesz representation theorem, there exists a unique Borel probability measure ν̃ satisfying
ν̃(ϕ)= Q(ϕ) for each ϕ ∈ C0

b(1). Since 11n = 11n−1 ◦ F̊ , the invariance of ν̃ follows
from

ν̃(ϕ ◦ F̊) = lim
n→∞

r−nµ̃∗(ϕ ◦ F̊ · 11n )= lim
n→∞

r−n F̊∗µ̃∗(ϕ · 11n−1)

= lim
n→∞

r1−nµ̃∗(ϕ · 11n−1)= ν̃(ϕ),

by the conditional invariance of µ̃∗.
Since (π∗µ̃∗)|1n = (h∗m)|1n for every n, it follows that π∗ν̃ = ν. To place ν̃ ∈ G1,

we need to show ν̃(log J u
µF) <∞. This is true by (17) with η = ν̃ and the fact that the

integral on the right is known to be finite.

Other properties of ν̃. The ergodicity of ν̃ follows from that of ν. To show that ν̃
enjoys exponential decay of correlations, we begin by decomposing ν̃ into conditional
measures ν̃s on ωs-leaves and a transverse measure ν̃T on the set of stable leaves in each
1`, j . For ϕ ∈ C0

b , define ϕ(x)=
∫
ωs (x) ϕ d ν̃s . Since each ν̃s is a probability measure, we
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have ϕ ∈ C0
b . By definition, ϕ is constant on ωs-leaves and ν̃(ϕ)= ν̃(ϕ)= ν(ϕ). Also, if

ϕ ∈ Lipu(1), then ϕ ∈ Lipu(1) so that we may consider ϕ ∈ B0 as a function on 1.
Now let ϕ ∈ Lipu(1) and ψ ∈ Lips(1) with ν̃(ϕ)= ν̃(ψ)= 0. Define ϕ as above and

let ψk(x)=
∫
ωs (x) ψ ◦ Fk d ν̃s . Note that ν̃(ψk)= ν̃(ψ)= 0. Then, setting n = k + `, we

write

ν̃(ϕψ ◦ Fn)= ν̃(ϕ(ψ ◦ Fn
− ψk ◦ F`))+ ν̃((ϕ − ϕ)ψk ◦ F`)+ ν̃(ϕψk ◦ F`). (18)

Since ϕ and ψk are constant on ωs-leaves, we have ν̃(ϕ ψk ◦ F`)= ν(ϕψk ◦ F
`
) and

ν(ϕ)= ν(ψk)= 0. Then, since ϕ ∈ B0 and ψk ∈ L∞(1), the last term in (18) is
≤Cτ `‖ϕ‖B0 |ψ |∞ for some τ < 1 by Theorem 3(d) (see also [BDM, Proposition 2.8]).

The second term of (18) is identically 0 since,

ν̃(ϕψk ◦ F`) =
∫
0s (1)

(∫
ωs
ϕψk ◦ F` d ν̃s

)
d ν̃T =

∫
0s (1)

(∫
ωs
ϕ d ν̃s

)
ψk ◦ F` d ν̃T

=

∫
0s (1)

ϕψk ◦ F` d ν̃T = ν̃(ϕψk ◦ F`).

To estimate the first term in (18), notice that |ψ ◦ Fn
− ψk ◦ F`|∞ ≤ |ψ ◦ Fk

− ψk |∞.
Then, since ψ ◦ Fk is continuous on each ωs , there must exist x, y ∈ ωs such that
ψ ◦ Fk(x)≤ ψk(ω

s)≤ ψ ◦ Fk(y). Thus,

|ν̃(ϕ(ψ ◦ Fn
− ψk ◦ F`))| ≤ |ϕ|∞|ψ ◦ Fk

− ψk |∞ ≤ 2|ϕ|∞|ψ |sLipCαk, (19)

by definition of ds . Taking both k and ` to be approximately n/2 completes the proof.

6. Proof of Theorems D and E
We now return to the original open system ( f, M; H), where f is any dynamical system
admitting a tower with the properties in §2.2 (see §5.1 for details).

6.1. Proof of Theorem D. Let µ̃SRB be the SRB measure for F on1 before the removal
of the hole. Note that π∗µ̃SRB = µSRB, the unique SRB measure for f with µSRB(3) > 0.
It follows from [Y3, §2] that µ̃SRB ∈ B̃, so that ρ(µ̃SRB)= log r by Theorem 4(a). Since
µSRB(Mn)= π∗µ̃SRB(Mn)= µ̃SRB(1

n) for each n ≥ 0, we have ρ(µSRB)= log r and
part (a) of Theorem D is proved.

To prove part (b), define µ∗ = π∗µ̃∗, where µ̃∗ is the conditionally invariant measure
from Theorem 4. We use f̊ n

= f n
|Mn to describe the surviving dynamics at time n. It

follows from the relation f̊ ◦ π = π ◦ F̊ that for any Borel subset A of M\H , we have

µ∗( f̊ −1 A)= µ̃∗(π
−1( f̊ −1 A))= µ̃∗(F̊

−1(π−1 A))= rµ̃∗(π
−1 A)= rµ∗(A), (20)

so that µ∗ is a conditionally invariant measure for f̊ with eigenvalue r. By Theorem 4(b),

lim
n→∞

f̊ n
∗ µSRB

f̊ n
∗ µSRB(M)

= lim
n→∞

π∗(F̊n
∗ µ̃SRB)

F̊n
∗ µ̃SRB(1)

= π∗(µ̃∗)= µ∗,

proving part (b).
To prove part (c), define ν̂ = π∗ν̃, where ν̃ is from Theorem 5. Arguing analogously

to (20), we see that ν̂ is an invariant measure for f supported on π(1∞)⊆�. Write
J u f (x)= |det(D fx |Eu(x))|. We will show:

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 20 Sep 2012 IP address: 64.202.81.95

Entropy, Lyapunov exponents and escape rates in open systems 1297

(i)
∫
1

log J u
µ Fd ν̃ =

∫
M log J u f d ν̂; and

(ii) hν̃(F)= hν̂( f ).
Integrating over sets of the form

⋃n−1
i=0 F i (10 ∩ {R = n}) before summing over n, we

see that the left side of (i) is equal to
∫
10

log J u
µF R d ν̃ and the right side is equal to∫

M log J u f R dπ∗(ν̃|10), the latter using the invariance of ν̃ and the relation π∗(F i )∗ =

( f i )∗π∗. These two integrals are easily seen to be equal: let J uπ denote the Jacobian with
respect to µ̃ω for ω ∈ 0u(1) and µω′ , where π(ω)= ω′. Then, on 10, J uπ ≡ 1, as 10 is
an isometric copy of 3, we have

J u f R
◦ π = J u

µF R
·

J uπ ◦ F R

J uπ
= J u

µF R .

For (ii), that hν̂( f )≤ hν̃(F) is obvious. The reverse inequality follows from [Bu,
Proposition 2.8] since π is at most countable-to-one. Combining (i) and (ii) and using
Theorem 5(b),

ρ(µSRB)= log r= hν̃(F)−
∫
1

log J u
µF d ν̃ = hν̂( f )−

∫
M

log J u f d ν̂ = Pν̂ .

The following lemma completes the proof of part (c).

LEMMA 6.1. ν̂ ∈ G H ∩ GS .

Proof. That ν̂ is ergodic follows immediately from the fact that ν̃ is ergodic. In order to
show that ν̂ ∈ G H ∩ GS , we will show that there exist C, α > 0 such that for each ε > 0,
ν̂(Nε(S ∪ ∂H))≤ Cεα . Once this is established, we conclude by an argument similar to
Lemma 4.2 that ν̂-a.e. point approaches S ∪ ∂H at an arbitrarily slow exponential rate.

To establish this bound, we need estimates on how ν̃ decays up the levels of the tower.
Recall ν = π∗ν̃. In the proof of Theorem 5, we established that d(π1`, S ∪ ∂H)≥ δξ−`1 ,
`≥ 0, by using (H.2) of §5.1.II. Thus, we have

ν̂(Nε(S ∪ ∂H))≤ ν̃

( ⋃
`:δξ−`1 ≤ε

1`

)
≤

∑
`≥log(δ/ε)/log ξ1

C ′θ`0 r−` ≤ C ′′(δ−1ε)log(rθ−1
0 )/log ξ1 ,

using (15) and ν̃(1`)= ν(1`). 2

Finally, we prove part (d). If ϕ is a continuous function on M , we define its lift to 1
by ϕ̃ = ϕ ◦ π . This lift is continuous on each 1`, j and |ϕ̃|∞ ≤ |ϕ|∞, so that ϕ̃ ∈ C0

b(1).
Using Theorem 5(b), we have

ν̂(ϕ)= ν̃(ϕ̃)= lim
n→∞

r−n
∫
1n
ϕ̃ dµ̃∗ = lim

n→∞
r−n

∫
Mn
ϕ dµ∗,

since µ∗ = π∗µ̃∗.
To complete the proof of Theorem D, it remains to show that ν̂ enjoys exponential decay

of correlations. Let C p(M) denote the Hölder continuous functions on M with exponent
p. If ϕ ∈ C p(M) and p ≥ log β/log α, then ϕ ◦ π ∈ Lipu(1). This can be proved as in
[D, §6]. Also, taking ψ ∈ C p(M), for x ∈1`, j , y ∈ ωs(x) and x0 = F−`x , y0 = F−`y,
we have

|ψ ◦ π ◦ Fn(x)− ψ ◦ π ◦ Fn(y)| ≤ |ψ |C p d(π(Fn+`x0), π(F
n+`y0))

p

≤ |ψ |C p d( f n+`(πx0), f n+`(πy0))
p
≤ |ψ |C p Cαnp.
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So, taking ϕ, ψ ∈ C p(M), we may apply (19) to ψ ◦ π . We follow (18), and note that

ν̂(ϕψ ◦ f n)= ν̃(ϕ ◦ π · ψ ◦ f n
◦ π)= ν̃(ϕ ◦ π · ψ ◦ π ◦ Fn),

to conclude that the exponential decay of correlations for ν̂ follows from that for ν̃.

6.2. Proof of Theorem E. As an immediate corollary of Theorem D, we have

ρ(µSRB)≤ PG H∩GS , (21)

since we have identified a measure, namely ν̂, in G H ∩ GS with Pν̂ = ρ(µSRB). We will
call upon the results in §2.1 to provide the reverse inequality—once we put ourselves in a
viable setup. Notice that ν̂ = π∗ν̃ necessarily gives positive measure to 3= π(10).
(a) µSRB = ϕµ with ϕ ≥ δ > 0 on a neighborhood of 3. In this case, ν̂ ∈ Gϕ since

we can simply take the set Z in the definition of Gϕ to be this neighborhood. By
Theorem C, ρ(µSRB)= ρ(µϕ)≥ PG H∩GS∩Gϕ . This, together with (21), gives the
desired result.

(b) 3 is contained in a µSRB-hyperbolic product set. Taking this set to be 5 in the
definition of GSRB, it is immediate that ν̂ ∈ GSRB. Theorem C and (21) then give the
two halves of the desired equality.

Acknowledgement. The first author’s research is partially supported by NSF grant DMS-
0801139.

A. Appendix. Lyapunov charts for maps with singularities
In this section, we prove the statements (a)(iii′), (b)(ii′), and (b)(iii′) made in §4.2.4
regarding the Lyapunov charts {8x }. All notation is as in §4.

We begin with ν ∈ GS and the set V ′ of regular points in the sense of Oseledec.
Each x ∈ V ′ has p distinct Lyapunov exponents λ1, . . . , λp with corresponding subspaces
E1(x), . . . , E p(x) such that Tx M =

⊕
i Ei (x). Let gε(x)= 1

3 min{ε, d(x, S)}.
Fix δ > 0. It follows by standard arguments (see [Y2, §3.1]) that for ν-typical x ,

one can define an inner product, 〈·, ·〉′x , on the tangent space Tx M such that item (b)(i)
of Proposition 4.1 holds. Denote by ‖ · ‖′x the norm induced by 〈·, ·〉′x , and by ‖ · ‖x

the Euclidean norm on Tx M . It follows from the same construction that there exists a
measurable function `0(x) : V ′→ [1,∞), with `0( f i x) < e2δi`0(x) for i ≥ 0 and

p−1/2
‖v‖x ≤ ‖v‖

′
x ≤ `0(x)‖v‖x for all v ∈ Tx M. (A1)

Define a linear map Lx : Tx M→ Rd which takes Ei (x) to {0} × · · · × Rmi (x) × · · · × {0}
for each i and such that 〈Lx u, Lxv〉x = 〈u, v〉′x . Then 8x := expx ◦ L−1

x is a Lyapunov
chart satisfying properties (a)(i) and (a)(ii) of Proposition 4.1.

The construction outlined thus far is standard and is not affected by the presence of
singularities (see [KS, Part I, Theorem 2.2]). We now proceed to prove the statements
of §4.2.4 which are affected by singularities. We drop the subscript x for simplicity of
notation and write ‖ · ‖ and ‖ · ‖′ in what follows.

Notice that in the notation of §4, R(r)= R(r; ‖ · ‖′) denotes the ball of radius r in the
(Lyapunov) norm ‖ · ‖′ since that is the norm of the Lyapunov charts 8x . To distinguish
between norms, we use R(r; ‖ · ‖) to denote the ball of radius r in the Euclidean norm on
Tx M . We identify Tx M and Rd and view Lx formally as a change of norm.
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Proof of (a)(iii′). Recall the injectivity radius from §2.1, ι(x,U )≥min{s, d(x, M\U )ς },
given by equation (2). Since we have assumed b ≥ ς , we have ι(x,U )≥ gε(x)b for ε ≤ s.
Thus, again using (2), for y ∈ B(x, 0, gε(x)b) and w = exp−1

x y, we have

‖D(expx )(w)‖ ≤ c0 and ‖D(exp−1
x )(w)‖ ≤ c0.

This implies that expx maps R(c−1
0 gε(x)b; ‖ · ‖) injectively into B(x, 0, gε(x)b). Thus,

for u, v ∈ R(c−1
0 gε(x)b; ‖ · ‖), we use (A1) to estimate

d(8x u, 8xv) ≤ d(expx ◦ L−1
x u, expx ◦ L−1

x v)≤ c0‖L
−1
x u − L−1

x v‖ ≤ c0
√

p‖u − v‖′

≤ c0
√

p `0(x)‖u − v‖ ≤ c2
0
√

p`0(x)d(8x u, 8xv),

which establishes (a)(iii′) with K = c0
√

p and `1(x)= c2
0
√

p `0(x). Note that by (A1),
R(`−1

1 (x)gε(x)b)⊆ R(c−1
0 gε(x)b ; ‖ · ‖), with room to spare.

Proof of (b)(iii′). Recall that

f̂x = exp−1
f x ◦ f ◦ expx while f̃x =8

−1
x ◦ f ◦8x = L f x ◦ f̂x ◦ L−1

x .

Taking u, v, h ∈ R(c−1
0 gε(x)b; ‖ · ‖), we use (A1) to estimate

‖D f̃x (u)h − D f̃x (v)h‖′

‖h‖′
≤
‖D f̂x (u)h − D f̂x (v)h‖

‖h‖
√

p`0(x)

≤ ‖D2 f̂x (z)‖‖u − v‖
√

p`0(x) (A2)

for some z ∈ R(c−1
0 gε(x)b; ‖ · ‖). By (4), ‖D2 f̂x (z)‖ ≤ C1d(expx (z), S)−b. Since

expx (z) ∈ B(x, 0, gε(x)b), we have d(expx (z), S)≥ gε(x), so that ‖D2 f̂x (z)‖ ≤
C1gε(x)−b. Finally, since ‖u − v‖ ≤

√
p ‖u − v‖′, we conclude that

Lip(D f̃x )≤ p `0(x)C1gε(x)
−b.

The statement follows by taking `(x) to be the larger of pC1`0(x) and `1(x)=
c2

0
√

p `0(x).

Proof of (b)(ii′). We use (A2) with v = 0 and u ∈ R(δ`(x)−1gε(x)b). This yields

‖D f̃x (u)− D f̃x (0)‖′ ≤ `(x)gε(x)−b
‖u‖′ ≤ δ.

This implies that, restricted to R(δ`(x)−1gε(x)b), we have Lip( f̃x − D f̃x (0))≤ δ as
required.

B. Appendix. Natural extensions of tower maps
Let T : (X, 6, ν)	 be a measure-preserving transformation (mpt) of a probability space.
Recall that the natural extension of T : (X, 6, ν)	, denoted here by T ] : (X ], 6], ν])	,
is defined as follows:

X ] =

{
(x1, x2, . . .) ∈

∞∏
i=0

X : T (xi+1)= xi

}
,

T ](x1, x2, . . .)= (T (x1), x1, x2, . . .).
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6] is generated by cylinder sets with 6 in each coordinate, and

ν]{x1 ∈ A1, . . . , xn ∈ An} = ν(An ∩ T−1 An−1 ∩ · · · ∩ T−(n−1)A1).

These following facts about tower maps (see §5.1 for notation) are used.
(1) Consider F : (1∞, 6, η)	, where η is any F-invariant Borel probability measure,

and let F : (1
∞
, 6, η)	 be the corresponding quotient system. We claim that the natural

extensions of these two mpt’s are isomorphic.

Proof. Define π] :1]→1
]

by π](x1, x2, . . .)= (π(x1), π(x2), . . .). Clearly, π] ◦

F] = F
]
◦ π], π]∗(η])= η], and π] is onto. The assertion follows once we show π] is

one-to-one.
Suppose π](x1, x2, . . .)= π

](y1, y2, . . .). Letting ωs(xn) denote the stable set of
xn , we have, by definition, x1 ∈

⋂
∞

n=1 Fn−1(ωs(xn)). The uniform contraction of F
along stable sets implies that this intersection consists of a single point. Likewise,
{y1} =

⋂
∞

n=1 Fn−1(ωs(yn)). Since π(xn)= π(yn) is equivalent to ωs(xn)= ω
s(yn), we

have proved x1 = y1. Applying the same argument to the sequences (xk, xk+1, . . .) and
(yk, yk+1, . . .), we conclude that xk = yk for all k ≥ 1. 2

(2) Next, given F : (1
∞
, 6, η)	 and 1

∞

0 ⊂1
∞

, we call F
R
: (1

∞

0 , 60, η0)	 with

η0 = η|10
normalized its induced map on 10, and claim that the induced map of F

]
on

1
]

0 = {(x1, x2, . . .) ∈1
]
: x1 ∈10} is the natural extension of F

R
. The proof is easy.

FACT. For an arbitrary mpt T : (X, A, ν)	, it is proved in [Ro] that hν(T )= hν](T
]).
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