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The quantification of the complexity of networks is, today, a fundamental problem in the physics of complex
systems. A possible roadmap to solve the problem is via extending key concepts of information theory to
networks. In this Rapid Communication we propose how to define the Shannon entropy of a network ensemble
and how it relates to the Gibbs and von Neumann entropies of network ensembles. The quantities we introduce
here will play a crucial role for the formulation of null models of networks through maximum-entropy argu-
ments and will contribute to inference problems emerging in the field of complex networks.
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I. INTRODUCTION

Complex networks �1–4� are found to characterize the
underlying structure of many biological, social, and techno-
logical systems. Following ten years of active research in the
field of complex networks, the state of the art includes a deep
understanding of their evolution �1�, an unveiling of the rich
interplay between network topology and dynamics �3�, and a
description of networks through structural characteristics
�2,4�. Nevertheless, we still lack the means to quantify, how
complex is a complex network. In order to answer this ques-
tion we need a new theory of information of complex net-
works. This theory will contribute to solving many challeng-
ing inference problems in the field �4–6�. By providing an
evaluation of the information encoded in complex networks,
this will resolve one of the outstanding problems in the sta-
tistical mechanics of complex systems.

In information theory �7� entropy measures play a key
role. In fact, it is well known that the Shannon entropy and
the von Neumann entropy are related to the information
present in classical and quantum systems, respectively.
Moreover, the aforementioned measures also have statistical
mechanics interpretations. Traditionally, in statistical me-
chanics, for configurations drawn from canonical ensembles,
the Shannon entropy corresponds to the entropy for classical
systems, while the von Neumann entropy provides the statis-
tical description of quantum systems.

In the context of complex networks a number of different
entropy measures have been introduced �5,8–13�. In Ref. �9�
the Gibbs entropy per node, in a network of N nodes, de-
noted by �, was introduced for microcanonical network en-
sembles following a statistical mechanics paradigm. Micro-
canonical network ensembles are defined as those networks
that satisfy a given set of constraints. Examples of some
popular constraints include fixed number of links per node,
given degree sequence, and community structure. The Gibbs
entropy of these ensembles is given by

� =
1

N
log N , �1�

where N indicates the cardinality of the ensemble, i.e., the
total number of networks in the ensemble. As demonstrated
further in �9� the statistical mechanics formalism enables us
to develop canonical network ensembles where the structural

constraints under consideration are satisfied, on average. In
classical statistical mechanics the microcanonical ensemble
is formed by configurations having constant energy E, while
the canonical ensemble is formed by configurations having
constant average energy �E�. By analogy, in the theory of
random graphs the G�N ,L� graph ensemble is formed by
networks of N nodes with a constant total number of links L.
In the conjugated-canonical G�N , p� ensemble, however, the
total number of links is Poisson distributed with average
�L�= p�N−1�. This construction of microcanonical and
conjugate-canonical ensemble can be further generalized �9�
to network ensembles with more elaborate sets of con-
straints. For example, we can define microcanonical network
ensembles with the given degree sequence ��i� and canonical
network ensembles �based on hidden variables �14,15�� in
which each node i has ki links, which is Poisson distributed
with average �ki�=�i.

In this Rapid Communication we show for this statistical
mechanics framework of networks, first, that the entropy of
canonical network ensembles is related to the Shannon en-
tropy and, second, that canonical network ensembles satisfy
a principle of maximal Shannon entropy. Moreover we will
study to what extent canonical and microcanonical network
ensembles are equivalent. Finally we will discuss the relation
between the Shannon entropy of a canonical network en-
semble, S, and the recent definition of von Neumann entropy
of networks, SVN, recently introduced in Ref. �12� of interest
in the field of quantum gravity �13�.

II. GIBBS ENTROPY OF A MICROCANONICAL
NETWORK ENSEMBLE

Microcanonical network ensemble are formed by network
satisfying a given number of constraints. Following the lines
of reasoning provided in �9�, on specifying the full set of
constraints and number of nodes N in the networks, one may
introduce a partition function Z for the ensemble. This parti-
tion function counts the number of networks, defined by their
adjacency matrices �aij�, that simultaneously satisfy all the
constraints under consideration. The adjacency matrix de-
scribes an undirected network, i.e., aij =aji, where each ele-
ment takes some positive integer values, aij ��, where
��N that indicates the weight of a link between nodes i and
j. For simple �connectivity� networks we take aij � �0,1�
while for weighted networks aij �N.
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Thus, we have

Z = 	
�aij�



k

�„constraintk��aij��…exp�− 	
i�j

	
�

hij����aij,�� ,

�2�

where the fields hij��� play the usual role of auxiliary fields
in statistical mechanics. Finally the Gibbs entropy �, defined
by Eq. �1�, and the probability �ij��� of having a link be-
tween nodes i and j, with weight �, are given by

N� = log Zhij���=0∀�i,j,��,

�ij��� =
� log Z

�hij���
. �3�

III. ENTROPY OF A CANONICAL NETWORK
ENSEMBLES

The canonical network ensemble can be built starting
from the marginal distribution �ij��� given by Eq. �3�. For a
network of N nodes, for each pair of nodes, �i , j�, one draws
a link of weight � with probability �ij���. The probability �
of the canonical undirected network ensemble defined by its
adjacency matrix �aij� is therefore given by

� = 

i�j

�ij�aij� , �4�

for which the logarithmic-likelihood function is given by

L = − 	
i�j

log �ij�aij� . �5�

The entropy of a canonical ensemble is the logarithm of the
number of typical networks in the ensembles and is given by

S = �L�� = − 	
i�j

	
�

�ij���log �ij��� , �6�

which takes exactly the form of a Shannon entropy. We will
therefore call this quantity the Shannon entropy of a network
ensemble. In particular, for the case of a simple undirected
network, where �� �0,1�, we have

S = − 	
i�j

pij log pij − 	
i�j

�1 − pij�log�1 − pij� , �7�

where pij =�ij�1� is the probability of having a link between
nodes i and j.

Maximizing the Shannon entropy of the network sub-
jected to different types of constraints gives rise to
maximum-entropy ensembles and generalizing the
maximum-likelihood arguments of �16�. In the following we
will consider few examples of such constraints for the cases
of simple undirected networks.

Fixing the total number of expected links, 	ij pij =L, the
maximum-entropy ensemble is G�N , �pij��, with pij = p
=L / �N�N−1� /2�. Alternatively, if we constrain the expected
degree of each node i, i.e., �i=	 j pij, the probabilities in the
maximum-entropy ensemble take the form pij =�i� j / �1
+�i� j�, where �i are hidden variables fixed by the constraints.
This ensemble is the canonical conjugated to the microca-
nonical ensemble of networks with fixed degree sequence

TABLE I. Maximum-entropy networks ensembles with given set of constraints. The community of each node is associated with a Potts
variable qi. The distance of the nodes is binned and indicated by a discrete variable dij =d. The hidden variables of each ensembles ��i�,
W�q ,q��, W�d�, ��i�, and �f ij ,gij� are fixed by respective conditions specified in the table.

Ensembles Probabilities pij / �1− pij� Conditions

Given expected number of links L p/�1 − p� pN�N − 1�/2 = L

Given expected community structure �Aq,q�� W�qi,qj� A�q,q��q�q� = 	
ij

pij�qi,q
�qj,q�

A�q,q� = 	
i�j

pij�qi,q
�qj,q

Given expected degree sequence ��i� �i�j �i = 	
j

pij

Given expected degree sequence ��i� community structure
�A�q ,q���

�i�jW�qi,qj� �i = 	
j

pij A�q,q��q�q� = 	
ij

pij�qi,q
�qj,q�

A�q,q� = 	
i�j

pij�qi,q
�qj,q

Given expected degree sequence ��i� and number of link
at distance d ,B�d�

�i�jW�dij� �i = 	
j

pij B�d� = 	
ij

pij�dij,d

Given expected degree sequence ��i� and number of
triangles for each node �Ti�

�i�je
fij��i+�j�+gij

�i = 	
j

pij

Ti = 	
jk

pijpjkpki

fij = 	
k

pikpkj

gij = 	
k

pik�kpkj
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��i�. In Table I we generalize this construction and report the
form of maximum-entropy network ensembles satisfying a
different sets of constraints. We leave to the reader the con-
struction of maximum-entropy weighted network ensembles
related to the canonical ensembles discussed in Refs. �9,17�.
The marginal probability for the microcanonical and conju-
gated canonical ensembles are equal by definition, but in
order to prove the equivalence between the two ensembles
also the entropy per node � and S /N must be equal in the
thermodynamic limit.

IV. COMPARISON BETWEEN THE ENTROPIES
OF THE G(N ,L) AND THE G(N ,p) ENSEMBLES

We study first the relation between the Gibbs entropy �
and the Shannon entropy per node for random graphs defined
for the G�N ,L� and G�N , p� ensembles, respectively. The
Gibbs entropy in the G�N ,L� ensemble is given by �8�

N� = log�N�N − 1�
2

L
� . �8�

As mentioned earlier, the corresponding probability of each
link in the conjugate G�N , p� ensemble is given by pij = p
=2L / �N�N−1��. Inserting this probability in the definition of
the Shannon entropy �Eq. �7�� we get

� = S/N +
1

2N
�log�N�N − 1�

2L
� − log�N�N − 1�

2
− L�� .

Therefore the Gibbs entropy � and the Shannon entropy per
node S /N of random graphs are equal in the thermodynamic
limit N→	.

V. COMPARISONS BETWEEN THE NETWORK
ENSEMBLES WITH GIVEN DEGREE SEQUENCE

AND STRUCTURAL CUTOFF

The microcanonical ensemble of networks with given de-
gree sequence ��i� has been fully characterized in �9�. For
simplicity, we consider the Gibbs entropy per node � in the
case where the maximal connectivity of the nodes satisfy a
structural cutoff, i.e., kmax�����N. In this limit the statistical
mechanics treatment gives the Bender formula �18� and the
Gibbs entropy per node � is given by

N� = log��2L − 1� ! !� − 	
i

log��i!� −
1

4�	
i

�i
2

	
i

�i�
2

. �9�

In the conjugate-canonical ensemble, the probability of hav-
ing a link is given by pij =�i� j / ���N. Inserting this expres-
sion into Eq. �7� we get for the Shannon entropy of the
ensemble

� = S/N − 	
i

�log��i ! /��i
�ie−�i��� + O„log�N�/N… . �10�

We observe that the entropy per node � and the Shannon
entropy per node S /N of the canonical conjugated network

ensemble are not equal in the thermodynamic limit. This
implies, for example, that the entropy per node of regular
networks is smaller than that of a Poisson network with same
average degree. In particular, suppose we take, for regular
networks, �i=c and for the conjugated-canonical Poisson
network, ki to be a Poisson distributed random variable with
a mean �ki�=�i=c. The entropy of regular networks �R and
the entropy of Poisson networks SER are related by the ex-
pression

�R = SER/N − log
c!

cce−c � SER/N −
1

2
log�c� , �11�

where in the last expression we have taken the Stirling ap-
proximation valid for large c.

The nonequivalence of � and S /N in the thermodynamic
limit can be also checked for network ensembles satisfying
further constraints as, for example, the networks ensembles
with given degree sequence and network community struc-
ture and network ensembles with given degree sequence and
given spatial dependence of the networks on the distance
between the nodes. In general it is possible to demonstrate
that as soon as we consider ensembles of networks with an
extensive number of constraints the Gibbs entropy per node
� and the Shannon entropy per node S /N are nonequal in the
thermodynamic limit.

VI. VON NEUMANN ENTROPY OF A NETWORK
ENSEMBLE

In �12� the authors have shown that is possible to define a
von Neumann entropy of a network. This entropy is con-
structed from a density matrix 
 associated with the network.
The density matrix must be a positive semidefinite matrix
with unitary trace. In order to construct a density matrix from
a network, in �12� it is proposed to consider the matrix 

=L /	ij aij, where L is the Laplacian matrix of the network,
with Lij =	r air�i,j −aij. The spectrum �19� of the Laplacian
matrix is important for the stability of O�n� models, synchro-
nization properties of networks, and determining the scaling
of the return times of random walk on the network �20�.
Given 
 as specified above, we can calculate the average von
Neumann entropy of an ensemble as

SVN = − �Tr 
 log�
���. �12�

The von Neumann entropy is therefore related to the spectra
of the Laplacian. The theoretical evaluation of the self-
averaging spectra of the Laplacian of complex networks en-
semble is a very challenging topic that has attracted recent
interest in the statistical mechanics community �19�. Here we
numerically explore how the von Neumann entropy SVN is
related to the Shannon entropy of canonical ensembles.

For G�N , p� networks the average von Neumann entropy,
SVN, is an increasing function of the average connectivity,
pN, while the Shannon entropy per node, S /N, has the typi-
cal bell-shape form given by Eq. �8�, in the limit of large N.
Therefore, for the G�N , p� random graphs ensembles, the re-
lation between SVN and S is nonmonotonic when we vary the
average connectivity p�N−1�. It is instructive to study the
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relation of the Shannon entropy of a network ensemble and
its average von Neumann entropy in networks with the same
average degree. In �9� it has been shown that networks with
power-law degree distribution P�k��k−� and constant aver-
age degree �k� have a Gibbs entropy per node � which is an
increasing function of the power-law exponent �. Similarly
the Shannon entropy per node S /N of canonical network
ensembles with fixed expected degree �i, where P�����−�

and fixed ��� is increasing with the power-law exponent �.
Therefore changing the power-law exponent � is a way to
modulate S by leaving the average degree constant. In Fig. 1
we report the von Neumann entropy SVN vs the Shannon
entropy per node S /N in canonical power-law network en-
sembles with constant ��� and variable value of the � expo-

nent. We find that the two entropies are linearly related

SVN = S/N + � , �13�

where  decays exponentially as a function of ��� for small
values of ����N. Therefore for scale-free networks the von
Neumann entropy is linearly related to the Shannon entropy
of the canonical ensembles measuring the number of typical
networks in the ensemble.

VII. CONCLUSIONS

In this Rapid Communication we have explored the con-
nection between different definition of entropy of network
ensembles. Interesting we have found that the Gibbs entropy
per node � is equal to the Shannon entropy per node S /N in
the thermodynamic limit for random graphs. However, when
we consider networks with and extensive number of con-
straints �as, for example, a given degree distribution� the
Gibbs entropy per node � and the Shannon entropy per node
S /N differ by O�1� terms. Moreover we have related the
Shannon entropy with the recently introduced von Neumann
entropy of networks. Interestingly we found that for scale-
free networks with constant average degree SVN and S /N are
linearly related. We believe that all the entropies of the net-
work ensembles, S and SVN as well as � �6� will play a
crucial role for the quantification of the complexity and in
inference problems in networks.
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FIG. 1. �Color online� The von Neumann entropy SVN versus the
Shannon entropy per node S /N calculated for ensembles of scale-
free networks with different expected average degree ���. The
points are calculated by averaging over 20 networks in the en-
semble of networks with N=1000 nodes and different power-law
exponents � of the distribution of the expected degrees P�����−�.
The inset report the slope  defined in �13� as a function of ��� and
the exponential fit indicated as a solid line.
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