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Abstract—Entropy, as a complexity measure, has been widely
applied for time series analysis. One preeminent example is
the design of machine condition monitoring and industrial fault
diagnostic systems. The occurrence of failures in a machine will
typically lead to non-linear characteristics in the measurements,
caused by instantaneous variations, which can increase the
complexity in the system response. Entropy measures are suitable
to quantify such dynamic changes in the underlying process,
distinguishing between different system conditions. However,
notions of entropy are defined differently in various contexts
(e.g., information theory and dynamical systems theory), which
may confound researchers in the applied sciences. In this paper,
we have systematically reviewed the theoretical development of
some fundamental entropy measures and clarified the relations
among them. Then, typical entropy-based applications of machine
fault diagnostic systems are summarized. Further, insights into
possible applications of the entropy measures are explained, as to
where and how these measures can be useful towards future data-
driven fault diagnosis methodologies. Finally, potential research
trends in this area are discussed, with the intent of improving
online entropy estimation and expanding its applicability to a
wider range of intelligent fault diagnostic systems.

Index Terms—Entropy, Fault diagnosis, Rotating machinery.

I. INTRODUCTION

Engineering machinery in modern industries is usually

operated in complex, and often harsh, environments. It is

of paramount importance to ensure safe and reliable system

operation. As a result, fault diagnosis is essential to detect and

identify potential failures as early as possible; so that necessary

machine maintenance can be performed to troubleshoot faults,

and performance degradation can be minimized. Commonly,

the dynamic response of a system, due to a change of state,

is reflected in the sensor measurements. By monitoring the

consistency between these measurements and the machine

operational regime, it is possible to predict the operating status

of the machine and potential faults.

Given a system or process, be it natural or man-made, its

evolution can be followed by a finite amount of measurements.
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A subject of special interest is how to analyze these measure-

ments - such as vibration and acoustic signals - to monitor and

diagnose different machine conditions in the system. In this

paper, non-linear time series complexity analysis is surveyed

from the perspective of entropy measures and their particular

application to machine fault diagnosis.

Entropy has been a transcendental and pervasive concept

in numerous disciplines, ranging from logic and physics to

biology and engineering. Although entropy has been studied

since the nineteenth century, it still attracts interest – due to its

flexibility and applicability into different contexts, and to the

multiple interpretations of its implications [1]. Entropy links

the notions of disorder and uncertainty with physical states –

which are interpreted as information communication channels.

The topic examined here corresponds to the case when these

channels are the sensors monitoring the responses of a system

or machine.

Historically, entropy arose after the invention of the heat

engine, through pioneering research towards clarifying ther-

modynamical processes and increasing the efficiency of such

machines [2]. This research led to the formulation of the

Second Law of thermodynamics, which reveals that entropy of

an isolated system can never decrease over time. Later, Ludwig

Boltzmann and Josiah Gibbs independently interpreted the

definition of entropy as a measure of the number of states that

a physical system can adopt from a molecular perspective,

giving rise to statistical mechanics [3]. They observed that

macrostates with a higher number of possible microstates

are more likely and exhibit larger entropy. More importantly,

Gibbs revealed that entropy could be described in terms of

statistical quantities, such as probabilities and their logarithms

– setting the path towards the usage of entropy as a tool for

non-linear signal analysis, which is the broader theme of the

literature reviewed in this paper.

Subsequent research by Hartley, Wiener and Shannon re-

sulted in the introduction of a parallel entropy formulation,

which lies at the center of information theory – known as

information entropy or Shannon entropy (ShanEn) [4]. ShanEn

was proposed to quantify the amount of information content

conveyed by messages from an information source [5]. It
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interprets the uncertainty and randomness of the system’s

events – i.e., its behavior – from a probability viewpoint. That

is, the examined system is understood as a random variable.

Inspired by ShanEn, various concepts of entropy were later

developed within complexity theory, particularly in the study

of dynamical systems. One example is the Kolmogorov-Sinai

(KS) entropy measure. Since its introduction, many studies

have attempted to estimate KS entropy for practical use,

among which the Eckmann-Ruelle entropy can potentially be

implemented in experimental cases [6].

Motivated by Eckmann-Ruelle entropy, some other fun-

damental entropy measures have been developed for time-

series complexity analysis. For instance, Approximate Entropy

(ApEn) was constructed to be thematically similar to the KS

entropy, and it is based on the Eckmann-Ruelle entropy [7].

ApEn estimates dynamical changes in time series by charac-

terizing the underlying deterministic or stochastic components.

Later, Sample Entropy (SampEn) [8] and Fuzzy Entropy

(FuzzyEn) [9] were proposed as improvements of ApEn for

entropy estimation. Besides, Permutation Entropy (PerEn) was

put forth by Bandt and Pompe to measure symbolic dynamic

changes that are encoded in ordinal patterns in time series [10].

All these measures are referred to as single-scale entropy

measures. By contrast, multiple-scale entropy measures are

derived from the above and consist in analyzing a time

series from different time scales. The concept of multiple-

scale entropy was initially introduced by Costa et al. [11].

A modified entropy definition, named Multiscale Entropy

(MSEn), was proposed to estimate entropy over a range of

scales enabled by a coarse-graining procedure [12]. Since

then, various definitions of scale-extraction mechanisms were

proposed leading to an increasing number of multiple-scale

entropy measures, in which single-scale entropy measures

provide the basis of entropy estimation under the multiple-

scale framework [13], [14].

One advantage of entropy measures is that they do not

rely on linear assumptions, and are suitable for distinguishing

regular, chaotic and random behaviors. Complex systems with

nonlinear dynamics present larger response diversity and un-

certainty; thus it is sometimes easier to characterize underlying

patterns in terms of dynamic changes, than to analyze the little

knowledge base data available. Entropy measures can directly

detect dynamic changes and quantify the degree of complexity

of a system, which would be challenging to assess by tradi-

tional statistical indicators [15], [16]. Since the performance

degradation of a machine will present more non-linear char-

acteristics, the analysis of the complexity of the measurements

has revealed that the change in the complexity value is related

to the deterioration of the machine component [17]. With the

significant advancements in sensor networks and computing

systems, data-driven fault diagnosis has become increasingly

attractive. Continuing advances in signal analysis and Artificial

Intelligence (AI) techniques have led to a growing number

of data-driven fault diagnostic systems. Such systems are

based on large amounts of sensor data and knowledge mining

techniques [18].

For data-driven machine fault diagnosis, extracting useful

underlying knowledge – related to fault patterns – is funda-

Fig. 1: Relations between the various entropy definitions

found within the contexts of statistical mechanics, information

theory, and dynamical systems (solid line arrows indicate

direct mathematical derivations, while dashed arrows show

conceptual association).

mental. The underlying knowledge represents fault features

capable of distinguishing between system states. Extracted

features usually represent the nature of the signal and the

evolution of the state of the system. Fault diagnosis can

be carried out by checking the consistency between feature

representations extracted from sensor readings and the values

predicted from a model - constructed upon historical signal

features. The most common statistical features can be either

time domain (e.g., mean, standard deviation, kurtosis and

skewness) or frequency domain (e.g., power spectrum).

One of the difficulties with these traditional methods is

that they rely on linearity and signal stationarity assumptions

– which may not appropriately extract signal symptoms,

especially under complex environments with interacting com-

ponents (systems of systems) and strong background noise.

In an actual example, the level of kurtosis was reduced as

damage in the machine bearings increased; when the vibration

pattern became more complex – due to the bearing damage,

the kurtosis matched that of undamaged bearings [19]. In

complicated industrial systems, the machine may exhibit non-

linear behavior due to instantaneous variations in friction,

damping, or load and speed conditions; thus quantifying

dynamic changes of system responses is significant to early

fault detection [20], [21].

The extensive flexibility of entropy analysis methods is ad-

vertised by their all-encompassing applicability to the analysis

of complex systems, be it natural or man-made; besides the

subject of monitoring industrial machines, entropy analysis

has been extensively applied for studying the complexity of

dynamical systems in multiple fields. Such areas of research

may be far more complex than mechanical systems, includ-

ing language [22], biological [23], financial [24] and other

complex systems [25]–[28]. However, much less work has

been reported on the comparative domain between different

definitions of entropy measures and their modular usages for

machine fault diagnosis.

Thus, this paper aims to arrive at an understanding of some

of the most significant principles of entropy measures and to
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clarify their relations. Their applicability to rotary machine

fault diagnosis is considered as the main illustrative example.

II. THEORETICAL BACKGROUND OF ENTROPY MEASURES

This section introduces several of the most widely used

entropy measures for time series complexity analysis. The es-

sential properties of these entropy measures are also discussed,

along with their mutual associations from an information-

theoretic perspective. Fig. 1 outlines the mathematical and

conceptual interrelationships between different entropy defini-

tions provided, while Table I comparatively summarizes their

characteristics.

A. Shannon Entropy (ShanEn) and Related Concepts

Occupying the center stage in information theory, ShanEn

measures the missing information about a random variable X .

When the random variable is understood as the outcome (ob-

servation) of a system, ShanEn can be interpreted as the rate

of generation of new information processed by the system [4].

According to Shannon, information and uncertainty are two

sides of the same coin: the reception of a certain amount of

information is equivalent to a reduction in uncertainty. Thus,

the larger the entropy about a system, the more uncertainty

about its response, and the more information can be gained by

observing the outcomes of the corresponding random variable.

For a discrete random variable X – with n ∈ N possible

outcomes – ShanEn is defined as

H(X) = −

n
∑

i=1

p(xi) log2 p(xi), (1)

where p(X) = {p(x1), p(x2), · · · , p(xn)} are the assigned

probabilities to the outcomes of X .

In (1), H(X) coincides with the average number of bits per

outcome yielded by X . H(X) ranges from 0 to log2 n. When

all the outcomes are equally probable – i.e., p(X) is uniformly

distributed – H(X) reaches its maximum value. In contrast,

when the outcome is certain, H(X) is zero, and there is no

information from the outcome.

Based on ShanEn, other related formulations were put forth

in information theory. Preeminent examples are conditional

entropy, mutual information, and cross-entropy. Conditional

entropy can be expressed as H(X|Y ) = H(X,Y ) − H(X),
where H(X,Y ) is the entropy of the joint probability dis-

tribution P (X,Y ). It measures the missing information and

uncertainty about X upon observing another measurement of

Y . Mutual information is defined as I(X,Y ) = H(X) −
H(X|Y ), and it captures the amount of information that two

variables X and Y share [39]. Moreover, cross-entropy is

expressed as H(p, q) = −
∑

x p(x) log2 q(x) where p(x) and

q(x) are typically the ground-truth and estimated probabil-

ity distributions, respectively. Cross-entropy minimization has

been popularly used in optimization algorithms, such as model

optimization in neural networks. Also, it has been proved that

ShanEn is no larger than cross-entropy1.

1H(p) = −
∑

x
p(x) log2 p(x) ≤ −

∑
x
p(x) log2 q(x) = H(p, q).

In addition to information theory, entropy is also a crucial

notion in complexity and chaos theory. Entropy is often linked

to the degree of chaos in an observed dynamical system

because uncertainty can be explained as unpredictability or

irregularity in a system. In dynamical systems theory, KS

entropy is an interesting concept, which is a generalization

of ShanEn employed in the study of seemingly random but

deterministic dynamical systems (i.e., deterministic chaotic

systems) [40]. KS entropy analyzes how the uncertainty about

a system evolves from its dynamical equations. That is, it

yields the rate of generation of new information by the

examined system. From an information-theoretic standpoint,

chaotic behaviors are described by KS entropy through a

partition of the state space [41]; thus, it is equally suitable for

discrete and for continuous dynamical systems. Positive values

of KS entropy are interpreted as an increase in uncertainty

with respect to the system’s responses [41]. Hence, systems

with positive KS entropy can be regarded as chaotic systems –

displaying sensitive dependence on the initial conditions [42].

In the study of non-linear dynamical systems, the Lya-

punov exponents are relevant indicators, suitable to quantify

the topological characteristics of the dynamics and system

stability. Pesin’s theorem establishes a relationship between

the KS entropy and Lyapunov exponents [43]. Nevertheless,

when performing numerical analysis by way of experimental

data, it is usually very hard to calculate Lyapunov exponents

and KS entropy directly. Added difficulty results from the fact

that KS entropy relies on arbitrarily fine partitions of the state

space, and from its lack of robustness to noisy measurements.

Typically, KS requires a large amount of measured data to

achieve convergence [7].

For this reasons, various studies on entropy have led to

alternative entropy formulations, which attempt to estimate

time-varying dynamic changes within a system (e.g., the

methods by Grassberger and Procaccia [44] and Eckmann and

Ruelle [6]). Thus many entropy analysis methods populate

literature, which is described in this section.

B. Rényi entropy

The discussion proceeds with a generalization of ShanEn:

Rényi entropy, defined as

Hα(p) =
1

1− α
log2

(

n
∑

i=1

pαi

)

, (2)

where α ∈ [0,∞) and α 6= 1. Eq. 2 becomes ShanEn when

α → 1.

Rényi entropy is characterized as a continuous family of

entropy measures (Hα) by way of a bias parameter α [45]; α
controls the degree of sensitivity of Hα(p) towards particular

probability distribution functions [45] and makes Hα(p) non-

negative for all α. Other special cases of Rényi entropy include

collision entropy (α = 2) and min-entropy (α → ∞). Collision

entropy is the negative logarithm of the probability that

two independent and identically distributed random variables

present the same outcome (or collide). As more likely events

are more probable to collide, these are more conspicuous under

the collision entropy measure than with ShanEn.
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TABLE I: List of advantages/limitations of various entropy measures for complexity analysis in dynamical systems.

Year
Entropy

measures
Advantages Limitations

Algorithmic

Complexity1

1948 ShanEn [4]
• foundational measure to estimate the amount of informa-

tion content of messages from probability viewpoint [5]

• dependence on the probabilistic model of uncertainty as

present in a probabilistic event space [29]

• neglect of temporal relationship between values [30]

O(n)

1991 ApEn [7]

• applicable to measuring the complexity change of deter-

ministic and chaotic dynamical systems

• suitable to medium-sized data [21]

• generation of more similarity than is present

• lack of consistency relative to SampEn

• heavily dependent on data length [8]
O(n

3

2 )

2000 SampEn [8]
• better consistency relative to ApEn

• robustness to small noisy data [31]

• discontinuity and mutation at the boundary [32]

• sensitive to parameter selection and data length O(n
3

2 )

2007 FuzzyEn [9]
• better consistency relative to ApEn and SampEn

• continuity at the boundary [33]

• sensitive to parameter selection

• membership function needs more physical meaning
O(n

3

2 )

2002 PerEn [10]

• partition naturally derived from ordinal patterns

• invariance with respect to non-linear monotonous trans-

formations [34], [35]

• dependence on parameter selection

• amplitude difference in values is neglected

• cases with many equal values are not considered [36]
O(n log

2
n)

2002
Multiple-scale

entropy [11]

• better classification accuracy relative to single-scale en-

tropy measure

• more robust to small degree of noise

• more information related to frequency characteristics

• efficiency differs depending on applied scale-extraction

mechanism and selected single-scale entropy

• more time consumption because of computation of en-

tropy measures via a range of scales [13]

O(mn)

.

.

.

O(mn
3

2 )

1 The algorithmic complexity of ApEn, SampEn, and FuzzyEn refers to optimized calculation algorithms in [37], [38]. For multiple-scale entropy measures, their computational

efficiency depends on mainly selected scale-extraction mechanism and single-scale entropy method for entropy estimation. Herein, n denotes the input size in units of bits needed

to represent the input, and m is the number of scales in multiple-scale entropy methods.

As α → ∞, Rényi entropy is increasingly determined by the

events of highest probability; thus, min-entropy is the negative

logarithm of the probability of the most likely outcome only.

C. Approximate Entropy (ApEn) and its Variants

1) ApEn: Another complexity indicator was introduced

by Pincus and known as ApEn [46]. ApEn was constructed

thematically similar to KS entropy.

During the 1980s, several studies attempted to directly

compute KS entropy, among which Eckmann-Ruelle entropy2

displays the greatest potential for practical implementation [6].

Later, Pincus modified Eckmann-Ruelle entropy for the anal-

ysis of finite and noisy time series derived from experiments.

ApEn assumes that, for fixed m, if two measures de-

scribing two different systems – that have distinct marginal

probabilities – it is sufficient to discriminate between these

two measures to classify the different underlying processes

in the two systems. In contrast to Eckmann-Ruelle entropy,

ApEn requires fewer points to estimate marginal probabilities,

usually allowing practical discrimination. [46]

This measure was employed initially for the study of

deterministic complex dynamical models (e.g., Rossler model,

logistic map, and Henon map) and later applied to the analysis

of biological signals – such as heart rate recordings – incor-

porating both stochastic and deterministic components [48].

ApEn is computed as follows. For a time series x1 . . . , xN

and a value m ∈ N < N the vectors

x
m(i) = (xi, xi+1, . . . , xi+m−1) ∈ R

m (3)

2Eckmann-Ruelle entropy approximates the KS entropy as
limr→0 limm→∞ limN→∞[Φm(r) − Φm+1(r)], and it is based on
the work by Grassberger and Procaccia [44] and Takens [47]. A nonzero
Eckmann-Ruelle entropy value assures the deterministic system is chaotic.

are considered (xm
k (i) = xi+k with k ∈ {0, . . . ,m − 1}).

These are referred to as templates. Then, given a template

x
m(i), the quantity Cm

ij (r) is defined as 1/(N −m+1) times

the number of templates such that

max
k

|xm
k (i)− x

m
k (j)| < r (4)

for a given r ∈ R
+, where i and j range from 1 to N−m+1.

Considering Φm(r) as the estimated probabilities of the

natural logarithm of Cm
ij (r)

Φm(r) = (N −m+ 1)
−1

N−m+1
∑

i=1

log2 C
m
ij (r), (5)

ApEn is defined:

ApEn(m, r,N) = Φm(r)− Φm+1(r). (6)

ApEn can be shown to be closely related to the notion of

conditional entropy. Thus, it estimates the uncertainty with

respect to future observations of a time series, given the

knowledge of the past observations. It is proposed that, when

the behavior of the process generating the time series becomes

irregular or chaotic, ApEn increases – although a nonzero

ApEn value does not certify that the dynamics are chaotic [48].

Several hyperparameters must be fine-tuned for optimal

performance (such as the embedding dimension m and the

tolerance r) – although empirical values are offered in the

literature; when m = 2, values of r ranging between 0.1
to 0.25 times the standard deviation (σ) of time series can

produce reasonable results [7]. For the analysis of rotating

machinery, the values m = 2 and r = 0.4σ have been

suggested [21]. In the same publication, it is claimed that

N = 750 − 5000 is sufficient for achieving consistent re-

sults. Lu et al. [33] have developed an automatic r selection
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approach that can reduce the computational cost while fitting

the hyperparameter r. Kaffashi et al. [49] have investigated the

influence of hyperparameter selection on analyzing real-time

series with ApEn.

Several modified ApEn algorithms have been proposed

with alleged improved performance. One example is Cross-

ApEn, also developed by Pincus, that measures the statistical

independence of two concurrent time series, by capturing both

spatial and temporal irregularity [50]. Another example is

SampEn, which is discussed next.

2) Sample Entropy (SampEn): SampEn refines the ApEn

algorithm through two differing aspects [51]: i) SampEn ex-

cludes self-matches while counting template matches (Eq. 4);

ii) in SampEn only the first N − m vectors are considered

(Eq. 5) – this ensures that for 1 ≤ i ≤ N − m both x
m
k (i)

and x
m
k (j) are defined [8].

To compute SampEn, first count the number of template

matches obtained from Eq. 4, where i ranges from 1 to N−m
and j 6= i. Then, define Cm

ij (r) as 1/(N −m − 1) times the

number of template matches.

Define Φm(r) as

Φm(r) = (N −m)
−1

N−m
∑

i=1

Cm
ij (r), (7)

And from (7) SampEn is defined:

SampEn(m, r,N) = log2

[ Φm(r)

Φm+1(r)

]

. (8)

Hence in the computation of SampEn, unlike that of ApEn,

the logarithm is applied after Φm is obtained. Because the

quantities Cm
ij (r) act as surrogates of the probabilities p(xi)

in (1), ApEn is closer to the mathematical formulation of the

original entropy. Nonetheless, it has been verified that SampEn

reduces bias and maintains relative consistency as compared

to ApEn [31]. That is, if a time series A arising from a

more ordered system than time series B, then ApEn of A
has been shown to be smaller than ApEn of B for all condi-

tions tested [48]. As an example, Yentes et al. comparatively

investigated the performance of ApEn and SampEn in time

series analysis. They found that SampEn is less sensitive to the

change of data length and shows better performance compared

to ApEn when analyzing clinical data sets in pathological

populations [52], [53].

There exist enhanced formulations of SampEn algorithm,

reducing its algorithmic complexity. For instance, Lu et al. [54]

presented a method to accelerate the computation of ApEn and

SampEn by exploiting vector dissimilarity. This method omits

the computation of distances between the most dissimilar vec-

tors, which further reduces the time complexity. Additionally,

Manis et al. [55] proposed three SampEn algorithms that yield

identical values but are less expensive computationally (by

avoiding the similarity check between points in m dimensional

phase space). Moreover, Silva et al. [56] extended SampEn to

two-dimensional time series analysis. This method was applied

to the analysis of image data.

A potential limitation of ApEn and SampEn resides in Eq. 4:

the method to select template matches consists in establishing

a crisp boundary. This may generate discontinuities and im-

plies a strong dependence on the parameter r. To address this

shortcoming, new methods have been proposed that introduce

the concept of fuzziness. These are discussed next.

3) Fuzzy Entropy (FuzzyEn): Chen et al. introduced the

notion of FuzzyEn to measure time series irregularity based

on SampEn [9]. In FuzzyEn, the concept of degree of ‘fuzzy

membership’, inherited from the framework of fuzzy logic,

was introduced. Fuzzy sets are characterized by ‘vague bound-

aries’, enabling continuous membership assignments through

a fuzzy membership function. A Fuzzy membership function

can be employed to quantify the degree of similarity between

two vectors – for example, by mapping two vectors to an

scalar in [0, 1]. Thus, these scalars can also be understood as

probabilities, and are subject to entropy analysis.

FuzzyEn uses the membership function exp(−dn/r), where

r and n control the width and gradient of the boundary

respectively, and d is the maximum absolute difference of the

corresponding scalar components according to Eq. 4. Other

membership functions have been considered in the literature,

such as exp(−dln(ln 2c)/lnr/c) in [57], exp(− ln 2(d/r)n)
in [58], and exp(−(d/r)p) in [59]. Moreover, other modified

FuzzyEn approaches have been developed for improved per-

formance: a piecewise fuzzy membership function proposed

in [60] and a modified Fuzzy Entropy, which operates by

increasing the number of samples during the computation of

the entropy [61].

Some comparative studies have investigated the perfor-

mance of FuzzyEn [62], [63], in terms of its relative con-

sistency, dependency on parameter choice, and robustness to

noise; FuzzyEn offers better consistency and is less dependent

on the size of the data set compared to SampEn [63].

D. Permutation Entropy (PerEn)

PerEn, proposed by Bandit and Pompe [10], measures the

underlying dynamic changes encoded in the ordinal patterns

of a time series. PerEn is essentially ShanEn over the empir-

ical probability distribution of the ordinal patterns naturally

originated from the time series data:

PerEn(m,λ,N) = −

m!
∑

j=1

p(πj) log2 p(πj) (9)

where λ is time delay and πj = (j1, j2, · · · , jm) is one of

m! possible permutation patterns; the ordinal pattern πj is

obtained from m ranked data points in ascending order. p(πj)
is the probability of a given ordinal pattern, and defined as

p(πj) =
#(xm(i) has type πj)

N − (m− 1)λ
(10)

where # denotes the cardinality of each permutation pattern.

Accordingly, PerEn can be interpreted as a measure of the

rate at which new permutation patterns are produced in the

process of a system. In contrast to ShanEn, PerEn results from

the symbolic dynamics of the studied system [30] thus is less

likely to be affected by transients in the data.

In the analysis of dynamical systems, PerEn is related to KS

entropy, when the partition is defined based on the order of a
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time series. More specifically, in PerEn, permutation patterns

(i.e., the partitions) result from a map, by translating into a

sequence of symbols. In addition, PerEn provides an upper

bound for KS entropy when m → ∞ [64] and is also related

to the Lyapunov exponents of a dynamical system [10].

PerEn presents a few limitations, which are caused by only

considering the order, and not the amplitudes in neighboring

elements [30], [34]. Thus, different time series may have

the same PerEn value, lowering its discriminating capacity.

Also, when repeated values emerge in the sensor data, PerEn

assigns their sequential order according to emergence order.

This results in ambiguity in the mapping from sensor data

to permutations, and may introduce bias in the empirical

distribution estimates. Typically repeated values are rare, but

this is not the case in quasi-stationary systems or systems in

an stationary operational regime [35].

To overcome these limitations, several variants of PerEn

have been proposed. Some of them take into account the

amplitude difference – by using weighting coefficients such

that the magnitudes of neighboring elements have different

contribution to the relative frequencies of the permutation

types [65]–[68]. Further, in order to tackle the problem of

repeated measurements mentioned above, Bian et al. [69]

presented a solution by mapping the repeated values onto the

same symbol.

E. Multiple-scale Entropy Measures

Multiple-scale entropy measures are generalized entropy

methods based on scale-extraction mechanisms, and the

already defined single-scale entropy methods. In general,

multiple-scale entropy algorithms consist of two steps: i) the

extraction of multiple time series of different scales from the

original data through a scale-extraction mechanism; ii) the

calculation of the entropy for each extracted time series via

a single-scale entropy method. Thus the performance of a

multiple-scale entropy method greatly depends on that of its

associated single-scale entropy measure.

One most common approach is MSEn, which consists in

measuring SampEn through a coarse-graining – or averaging –

procedure [11]. The algorithm to compute MSEn is described

in the following. Given a time series x1 . . . , xN of length N
and a scaling factor τ , the coarse-grained time series, y(τ), is

obtained by the relation

y
(τ)
j =

1

τ

jτ
∑

i=(j−1)τ+1

xi, for 1 ≤ j ≤
N

τ
, N > τ. (11)

When τ = 1, y(τ) coincides with the original time series x.

From y(τ), MSEn is defined as:

MSEn(x, τ,m, r) = SampEn(y(τ),m, r). (12)

Compared to its single-scale counterpart SampEn, MSEn

can extract coarse-grained time series representing the system

dynamics over a range of multiple temporal scales. More

information associated with the complexity change underlying

in measurements is then characterized from the coarse-grained

time series [12].

Beyond its advantages, the coarse-graining procedure has

several limitations. First, from a signal processing standpoint,

the coarse-graining procedure in (11) is a linear smoothing

operation, which abandons high-frequency information. Sec-

ondly, the down-sampling effect will result in increasingly

shorter time series, which may introduce bias when estimating

the entropy through SampEn [70]–[72].

Motivated by MSEn, several modified multiple-scale en-

tropy measures have been developed through various scale-

extraction frameworks and notions of single-scale entropy

algorithms [13], [14]. Multiple-scale entropy measures can be

classified into three main groups according to their operational

principles:

• Improved coarse-graining procedure based entropy ap-

proaches: modified coarse-graining procedures and vari-

ants of single-scale entropy algorithms are applied for

entropy analysis. Modified coarse-graining procedures

mainly focus on improving the efficacy of extracting

multiple-scale coarse-grained time series. The shortcom-

ing of generating time series with greatly decreasing

data length is alleviated using improved coarse-grained

techniques. Examples include composite MSEn [72], gen-

eralized MSEn [73], and refined composite MSEn [74].

Moreover, the use of different single-scale entropy algo-

rithms can improve the performance in analyzing coarse-

grained time series further, such as Multiscale Permuta-

tion Entropy (MPEn) [36], refined composite MPEn [75],

Multiscale Fuzzy Entropy (MFEn) [76], and modified

multiscale symbolic dynamic entropy [77].

• Filter-inspired scale-extraction based entropy

approaches: improved scale-extraction procedures

are applied for entropy analysis where both low- and

high-frequency information is refined and maintained

in extracted multiple-scale time series via filter-inspired

operations. For instance, a hierarchical decomposition is

used in [78], preserving the strength of the multiscale

decomposition with additional components of higher

frequency in different scales. A fine-to-coarse procedure

is developed in [79], aiming to generate multiple-scale

components with fine-grained low- and high-frequency

information, and to yield better consistent entropy values

even with high scales and strong noise.

• Multivariate analysis based entropy approaches: the

complexity of multichannel data is assessed with

multivariate extensions of MSEn where multichan-

nel data is analyzed with a definition of multivari-

ate single-scale entropy algorithm. Examples include

multivariate MSEn [80], refined composite multivariate

MFEn [81], and refined composite multivariate general-

ized MFEn [82].

Continuing research in entropy measures (i.e., single- and

multiple-scale entropy approaches) has driven the emergence

of more useful non-linear time series analysis, which can

effectively distinguish the different operational regimes of the

system. There exist many improved notions of single-scale

entropy approaches (e.g., increment entropy [83], joint distri-

bution entropy [84], and dispersion entropy [85]) and multiple-
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scale entropy approaches (e.g., composite interpolation-based

MFE [86] and multiscale fluctuation-based dispersion en-

tropy [87]) for time series complexity analysis. In the next

section, entropy-based applications are surveyed and summa-

rized for machine fault diagnosis.

III. ENTROPY-BASED APPLICATIONS FOR DATA-DRIVEN

MACHINE FAULT DIAGNOSIS

Data-driven analysis of system performance has shown that,

changes in complexity are often linked to machine degradation

and failure emergence. Entropy measures are suitable to detect

and quantify underlying dynamic changes in system response.

These changes in complexity allow for machine condition

monitoring, and for distinguishing among various operational

regimes. The entropy measures, discussed in Sec. II, facilitate

the usage for machine health condition monitoring in industrial

applications. With advanced signal analysis and AI techniques,

entropy measures have assisted in enhancing maintenance

strategies and increasing the reliability of machine fault di-

agnostic systems. With these applications in mind, entropy

analysis can be further classified in three categories: entropy

measure as a feature indicator, entropy criterion for parameter

selection, and entropy usage in pattern recognition.

A. Entropy Measure as a Feature Indicator

In data-driven fault diagnosis, entropy measures are mostly

employed as complexity indicators. Since existing faults of-

ten introduce non-linear characteristics in the measurements,

changes in complexity of a system are correlated with its

failure rate. Thus, entropy measures facilitate machine condi-

tion monitoring and can detect performance degradation in the

machine. A schematic of the entropy-based feature extraction

– towards machine fault diagnosis – is presented in Fig. 2.

Fig. 2: Schematic of the usage of entropy measure as a feature

indicator towards machine fault diagnosis.

With respect to feature extraction, ShanEn is typically

used to estimate the complexity and uncertainty in the mea-

surements, such as the analysis of vibration data [88]. The

occurrence of incipient failures in the machinery will introduce

coupling frequencies, resulting in changes in both, the energy

and the spectrum in the measurements. Thus, there exist some

entropy notions inspired by ShanEn, which enable entropy fea-

ture characterization from time- or frequency-domain sensor

data.

Specifically, energy entropy and spectral entropy are two

useful health monitoring indicators, which characterize com-

plexity changes from the time-domain and the frequency-

domain, respectively. Both are defined as ShanEn of a given

probability distribution. The probability distribution in en-

ergy entropy is associated with power energy distribution of

the transformed (decomposed) components in the time do-

main [89]. By contrast, the probability distribution in spectral

entropy is related to the power spectrum distribution of the

transformed components in the frequency domain [90]. These

two entropy measures are practical for distinguishing machine

health conditions, usually in combination with signal time-

frequency analysis techniques, such as wavelet analysis [89],

Fourier analysis [91], and Hilbert transform [92].

As non-linear complexity indicators, ApEn, SampEn, and

FuzzyEn have been examined in detecting structural defects

in mechanical systems [93]–[95]. Some studies have analyzed

their performance in entropy analysis using various parame-

ters. For instance, Yan [21] studied the effects of data length,

embedding dimension, and tolerance in the calculation of

ApEn for the analysis of bearing vibration signals. Moreover,

Sampaio et al. [96] studied the effectiveness of ApEn for

detecting rotating shaft deterioration; it was reported that

ApEn is applicable for detecting crack defects in rotating

shafts – when the crack depth is larger than 5% of the

shaft diameter. Further, Kedadouche [32] verified that ApEn

and SampEn enable detecting structural damage in gearboxes,

suggesting that m = 2 and r = 0.5σ are suitable for the

calculation of ApEn and SampEn values.

With respect to contrasting performance, FuzzyEn was com-

pared with ApEn and SampEn in [57], for the particular case of

rolling bearing fault diagnosis. The discriminatory capability

of these three methods was evaluated and their multiple-scale

entropy methods based on the coarse-graining procedure were

also studied. The results indicated that FuzzyEn – and its

multiple-scale counterpart – outperform ApEn and SampEn

in improved classification accuracy, and can yield smoother

entropy estimations [57].

PerEn applies to distinguish machine health conditions. One

example is the study in Yan [15], where a comparative study

was performed on the usage of PerEn in bearing diagnosis. In

their study, the efficiency of PerEn with different parameters

was investigated, such as data length, embedding dimension,

time delay, and computational efficiency. The authors con-

cluded that m = 6 and time delay λ = 3 could give reasonable

PerEn values for practical bearing diagnosis. Moreover, PerEn

values extracted from a healthy machine can be employed as

threshold indicators for anomaly detection in the operation of

machine [97].

We now provide an example of the usage of PerEn for

detecting early faults in roller bearings in a test rig. This

example is typical as the most common machine failures are

linked to structural damage, such as wear-out and corrosion.

The overall reliability of the machinery is highly dependent

upon the health state of the bearing, which accounts for

approximate 45% to 55% of the total number of failures [98].

Fig. 3 (a) shows a PT 500 series bearing test rig benchmark,

composed of a motor, a shaft, bearing, and belt drive [99]. Four
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(a) PT 500 test rig
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(b) PerEn measurement under different conditions.

Fig. 3: Comparison of PerEn values between from four types

of bearing vibration data (with embedding dimension m =
6 and time delay t = 1). The red line shows a threshold

empirically tuned at PerEn = 6.3.

bearing states are considered, including normal bearing and

faulty bearings with damage in the inner race, outer race, and

roller element. Vibration data was collected with an operation

at speed 2000 r.p.m and with sampling frequency of 8 kHz.

PerEn values are calculated from vibration signals with data

length of 1024. PerEn results are presented in Fig. 3 (b); it

demonstrates that machine faults can lead to higher complexity

within the system. Also, entropy indicators apply to perfor-

mance degradation detection and anomaly detection.

With respect to multiple-scale entropy measures, many

studies have explored their capability as fault indicators.

The majority of these studies has mainly focused on im-

proved single-scale entropy approaches and on enhanced scale-

extraction procedures. For instance, some works investigate

the performance of entropy measures for detecting failures

in the machinery, where different single-scale entropy val-

ues are calculated under a multiple-scale framework [100]–

[102]. Further, some modified entropy measures have been

proposed based on enhanced scale-extraction mechanisms.

Related studies include generalized composite MPE [103],

hierarchical entropy [104], modified hierarchical PerEn [105],

and fine-to-coarse MPE [79]. In general, these methods earn

higher consistency and reduced bias in time series complex-

ity analysis, as compared with single-scale methods. As a

result, multiple-scale entropy measures with improved scale-

extraction framework usually present higher fault classification

accuracy, specially when more machine conditions and vari-

able working condition are considered (e.g., various rotating

speeds, signal-to-noise ratios, and loads).

In summary, entropy measures display an extensive appli-

cation prospect in monitoring machine health states. Through

system complexity analysis, it is possible to distinguish dif-

ferent underlying processes in the system, therefore detecting

potential failures in the machine.

B. Entropy Criterion for Parameter Selection

Entropy measures bring up the possibility of specifying

desired parameters to characterize time-frequency represen-

tations in signal processing techniques. In the machinery,

the occurrence of defects in rotating components will excite

characteristic amplitudes and frequencies in both time- and

the frequency-domain. Usually, signal time-frequency analysis

methods are used to transform raw signals into time-frequency

representations, and then crucial fault symptoms of interest

are characterized with statistical indicators from the obtained

components. Nonetheless, not all components are directly

associated with fault symptoms, and some components contain

redundant information. Thus, the selection of prominent time-

frequency components is necessary. As larger entropy values

usually indicate more irregularity, entropy measures can help

to select salient components whose complexity degree may

increase – due to the existence of defects. Moreover, instead of

specifying parameters according to prior knowledge, entropy

measures facilitate the choice of the optimal parameters. Fig. 4

shows a schematic of entropy-criterion for parameter selection

in fault diagnostic systems.

Fig. 4: Schematic of the entropy-based criterion for selecting

parameters in signal time-frequency analysis towards machine

fault diagnosis.

One of such entropy methods for parameter selection is

wavelet analysis, that has been extensively applied for fault

diagnosis – by transforming signals into wavelet coefficients in

the time-scale domain. Examples of the studied wavelet analy-

sis methods are: Continuous Wavelet Transform (CWT), Dis-

crete Wavelet Transform (DWT), and Wavelet Packet Trans-

form (WPT) [106], [107]. In wavelet analysis, the selection

of appropriate mother wavelet and decomposition scale is the

key to capture crucial features from signals; however, it usually

requires prior knowledge to fine-tune these wavelet parameters
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TABLE II: Entropy-based criteria for optimal parameter se-

lection in wavelet analysis.

Criterion Description Application

Minimum

ShanEn

Energy content of a few wavelet

coefficients is high with the occurrence

of characteristic frequency components,

resulting in decreased entropy values.

Optimal coefficient

selection, suitable

for CWT [108]

Minimum-

entropy

A node is decomposed if and only if

entropy of its two child nodes is no

larger than that of their father node.

Optimal tree

selection, suitable

for DWT and

WPT [109]

Maximum

energy to

ShanEn ratio

Desired wavelet usually extracts

maximum amount of energy while

minimizing the ShanEn of

corresponding wavelet coefficients.

Optimal coefficient

selection, suitable

for CWT [110]
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Fig. 5: (a) Faulty bearing vibration presenting inner race

wear [116], (b) resulting raw vibration signal, and (c) obtained

wavelet coefficients through CWT analysis using maximum

energy to ShanEn ratio criterion.

for any signal. The most common criteria include minimum

ShanEn criterion [108], minimum-entropy criterion [109], and

maximum energy to ShanEn ratio criterion [110]. In other

related works [111]–[115], wavelet analysis methods – with

entropy-based parameters selection – are investigated. Table II

summarizes the description and applicability of three typical

ShanEn-based criteria for wavelet analysis.

An example of CWT analysis for extracting fault features

from the fault-deduced transient vibration signals is now

presented (Fig. 5). In this case, an appropriate mother wavelet

was selected using the maximum energy to ShanEn ratio

criterion. A bearing with wear damage on the inner race was

studied with vibration data contributed by the Xi’an Jiaotong

University [116]. Fig. 5 (b) shows the vibration signal of the

bearing; it is apparent that fault features of the raw signal

are difficult to be identified, due to instantaneous variations

and background noise. For this purpose, CWT is then applied

for the identification of underlying fault symptoms in the

bearing signal. The maximum energy to ShanEn ratio values

are calculated based on the wavelet coefficients to select an

appropriate mother wavelet that can best match the shape of

the bearing signal. For this purpose, the vibration sensor data

is decomposed into 64 sub-signals using five different mother

wavelets: Meyer, Morlet, Mexican, Daubechies 4, and Haar.

It is observed that the coefficients using Morlet wavelet at

scale 18 achieve the highest maximum energy to ShanEn ratio

value – their waveform is shown in Fig. 5 (c). The figure

suggests characteristic fault symptoms that are related to the

successive periodic pulses, caused by fundamental frequency

in the bearing with inner race fault.

In summary, several entropy-based criteria are available for

specifying appropriate parameters in multi-resolution signal

analysis. Through maximizing the total amount of extracted

information, fault detection is enhanced via optimal transfor-

mation of raw signals – and the extraction of characteristic

fault features.

C. Entropy Usage in Pattern Recognition

Various entropy based methods can be employed for pattern

classification and model optimization. In pattern recognition,

designing reliable and optimized data-driven models [117] is

the key to guarantee accurate diagnostic decision-making. As

ShanEn evaluates the uncertainty in the variables of a system,

based on an empirical probability distribution, it can be used

to describe the closeness of two probability distributions - the

ground-truth and prediction probability distribution. This is

done via a generalization of ShanEn known as cross-entropy

(Sec. II-A). Smaller cross-entropy values indicate that the

probability distribution of a model is closer to the empirical

distribution in the data. Fig. 6 shows a schematic of entropy-

based pattern recognition techniques towards machine fault

diagnosis.

Fig. 6: Schematic of entropy-based model optimization in

pattern recognition towards machine fault diagnosis.

For these reasons, cross-entropy is among the most com-

monly used loss functions for training and evaluating the

performance of artificial neural network classifiers [118].
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Regarding probabilistic classification, the estimation of the

effectiveness of the acquired models is usually required [119],

by which hyper-parameters are fine-tuned through minimizing

the cross-entropy over a development and a test set – not used

during the training phase. The cross-entropy function [120] is

expected to perform better at improving the efficacy of train-

ing models, compared with traditional square error objective

functions. Related works where cross-entropy is used for the

construction of deep learning models refer to [121]–[125].

(a) Deep recurrent entropy adaptive model
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(c) Entropy of gas turbine engine with compressor fault

Fig. 7: Illustration of ShanEn in neural networks for industrial

gas turbine fault diagnosis [126]. The dashed lines indicate

entropy-based thresholds for warning and a faulty system.

LSTM: Long Short-Term Memory.

Because ShanEn is always smaller or equal than cross-

entropy (Sec. II-A), minimizing cross-entropy can be under-

stood as estimating ShanEn. The usage of cross-entropy for

industrial gas turbine compressor fault diagnosis is explored

in [126]. A regressor recurrent neural network model was con-

verted into a classifier by bucketing the outputs. An example

of this model is presented in Fig. 7. The model consists of

two long short-term memory layers, incorporating a gating

mechanism to control the memory retention operation. The

classifier – once trained through a cross-entropy approach –

yields ShanEn estimates, indicating the degree of uncertainty

in the system. After that, the entropy adaptive model is capable

of distinguishing between typical dynamics, corresponding to

healthy engines, and anomalous behaviour from faulty engines.

Also, it was shown that different changes of the uncertainty

values correspond to typical faults in industrial gas turbine

systems.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have provided a systematic overview of

many known entropy measures, highlighting their applicabil-

ity to machine fault diagnosis. The underlying principles of

the fundamental definitions are reviewed, including Shannon

entropy, approximate entropy, sample entropy, fuzzy entropy,

permutation entropy, and the multiple-scale entropy measures.

Their potential usages and roles in fault detection and diag-

nosis are summarized into three categories: entropy measure

as a feature or health indicator, entropy criterion for wavelet

parameter selection, and the usage of entropy in pattern recog-

nition. These practices are complemented with case studies.

The literature has shown that the entropy measures and their

extensions are an effective and low-cost method for machine

health monitoring and fault diagnosis, requiring little to none

domain knowledge.

Although the entropy measures are indicative for machine

condition monitoring, they only provide information on the

uncertainties of the system, and therefore are normally accom-

panied with other machine learning techniques, specialized in

fault classification. Entropy techniques are intuitive in nature

and cost-effective in computation, as compared with deep

learning techniques for instance. Therefore, they are suitable

for early stage anomaly detection in an industrial system, but

may not be sensitive enough for classifying specific types of

fault.

Subsequently, potential future work in this research area is

proposed as follows:

1) The development of entropy algorithms (i.e., single-scale

and multiple-scale entropy measures) to further enhance

performance in the complexity analysis of time series,

such as improved reliability and robustness under noisy

environmental conditions – while maintaining the com-

putational efficiency of entropy analysis;

2) The investigation of parameter selection in entropy esti-

mation procedures: more studies are needed to clarify

parameter interaction (e.g., embedding dimension and

time delay) in different entropy measures, and their effect

in the algorithm performance towards assessing machine

fault types and fault severity levels;

3) The extension of entropy usage from one-dimensional

time series to two or more-dimensional data. There are

interesting prospects on the usage of entropy techniques

for image and video analysis (e.g., infrared thermal

imaging) for fault diagnosis [118];

4) The application of entropy measures as non-linear feature

indicators for fault severity assessment and unit remaining

life estimation, by investigating the relation between the

component defect progression and the entropy values;

5) The development of entropy-based criterion for specify-

ing hyper-parameters in signal time-frequency analysis

and selecting appropriate time-frequency components that

contain crucial fault information;

6) The exploitation of multivariate entropy measures in

machine health monitoring, as multichannel sensor data

incorporate richer fault information in monitoring the

system state simultaneously compared to a single sensor;

7) The application of entropy feature fusion from the

feature-level or the decision-level, to yield more compre-

hensive feature indicators that incorporate less redundant

information and achieve better diagnosis performance – in

fault type identification towards machine fault diagnosis.
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ABBREVIATIONS

λ Time delay

τ Scale factor

m Embedding dimention

r Tolerance

AI Artificial Intelligence

ApEn Approximate Entropy

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

FuzzyEn Fuzzy Entropy

KS Kolmogorov-Sinai

MFEn Multiscale Fuzzy Entropy

MPEn Multiscale Permutation Entropy

MSEn Multiscale Entropy

PerEn Permutation Entropy

SampEn Sample Entropy

ShanEn Shannon Entropy

WPT Wavelet Packet Transform
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