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Abstract

The paper presents an analysis of the information properties of
delta-coded speech with channel encoding applications, Predictive
coding techniques for reducing the entropy of the average distribution
of the signal elements are described, and evaluated in comparison
with computations of the relative entropy of Markov process approx-
imations to the message-generating process for orders up to 9. The
optimal digital fixed-structure predictors are established for orders
up to 7, and also the optimal group codes for block lengths of

2 to 6 elements.

The redundancy is showm to be typically about one half, and a
predictor success probability of 0.9 is attainable with a

practical 6th~order discrete structure, The entropies of the
sequences generated by modulo—2 addition of the predictions and
source elements are found to be much closer to the process entropies
than the corresponding performance characteristics for group

encoding.

For encoding of the predictor error sequence to achieve message
compression, 5-element group encoding, atﬁaining a compression
factor of 0.5 with a 300-word buffer, is found to be superior to
run-length encodings. The combination transformation is much more

efficient than direct exact coding of blocks of source elements.



List of principal symbols

Bi = element block

A = quantization interval

E = predictor element

f, = channel data rate per source
fg; = sampling frequency

Fy = conditional entropy

Gy = group entropy

H = process entropy

Hy = geometric distribution entropy
ng = geometric distribution relative entropy
H. = relative entropy for run-length encoding

Hy = mod-2 adder sequence entropy

n = transmitter power saving

L, = geometric distributien sequence length

N = Markov process order
N, = average codeword length

Ny, = average queue length
N. = 5-element error sequence group encoding word length
Ni = codeword length
= number of sources multiplexed
N, = buffer capacity

P;, = element error probability

Poy = geometric distribution run-length probability
Poy = buffer overflow probability
P, = run probability

Pg; = predictor success probability

r = run—-length
Rp = group encoder compression factor
Ry = upper bound for group encoding

S = source element
5; = source state vector

T = transformed element

TGy = error sequence group entropy



TH = error sequence entropy
THy = error sequence mod-2 adder output entropy
TRp = error sequence group encoding compression factor

TRy = upper bound for error sequence group encoding

Abbreviations
AM = delta modulation
f.m. = frequency modulation
p.c.m. = pulse-code modulation
s.n.r., = signal-to-noise ratio
t.d.m, = time-division multiplex
1 Introduction

)

. 1- . , .
Delta modulation (&M)( & is an attractively economical source-

encoding technique for digital speech communication which can be readily
(5,6)

implemented by integrated semiconductor technology. For high transmitted

speech quality, however, the channel capacity requirements of the lowest
cost (single integration, non-adaptive) basic configuration are greater
than for encoding methods such as logarithmic companded pulse-code

)(7). With a sufficiently high sampling frequency fg, and

modulation (p.c.m.
appropriate choice of quantizing interval A, the basic delta modulator is
capable of any desired frequency response, dynamic range and signal-to-
quantizing-noise ratio (s.n.r.); but since AM channel bit-rate and sampling
frequency are equal, these performance characteristics are bought at the

(8)

. L . 2
expense of digital transmission system bandwidth. De Jager and Abate( )
have shown that AM s.n.r. improves about 9 dB per octave increase of fg,
which compares unfavourably with the exponential relation between s.n.r. and

channel bit-rate for p.c.m.
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(9)

Since the initial conception of AM by Deloraine et al , an
extensive theoretical and experimental research effort has therefore

been applied to the synthesis of more elaborate variants of the basic

(2,10,11) 12) 4

(15,16)

, overload prediction
(13,14)

encoder, Adaptive quantizing
syllabic companding by envelope detection or digital control
are among the numerous modification techniques which have been studied to
attain performance improvements at the expense of increased encoder

complexity rather than higher sampling frequency.

While communication networks of a local nature are often integrated
with expensive long-distance circuits such as satellite relays,
troposcatter links or submarine cables, the traffic volume carried by these
links is normally only a small proportion of the total originated.
Furthermore, the transmission media which it is anticipated will be
available to future overland communication systems are characterized by
wide bandwidth capability at much lower cost than those of today. Hp, mode
circular waveguide, for example, can provide a channel bandwidth of 40 GHz(172

while the inherent capacity of a single laser beam exceeds that required for

the total of present day telephone, radio and television world communicationms.

As a result, it may not prove cost-effective to equip every message
source with a complex encoder whose greater efficiency is justified only during
infrequent communication events involving high-cost channel capacity. As
an alternative approach, minimum-cost AM may be used for the individual
source encoders where these are required in large numbers, while bandwidth-
compressing channel encoders can be associated with the terminal equipment

which processes signals for transmission over the expensive major links.

It is possible to filter a AM signal and re-encode the message approximant

by p.c.m,, and Goodman(la) has shown that this can result in a reduction in

the chamnel bit-rate. The different quantizing and overload characteristics of
the two techniques result in an s.n.r., degradation which can be made small if

(19)

sufficient samples are filtered , but which would be cumulative if the
transcoding were repeated several times over a multi-circuit communications

route.



The communications system of a large naval vessel is another example
of a situation in which a local network, within which the cost and reliability
of the source encoders are more important factors than the line bit-rate,
is to be interfaced to a channel for which there is greater emphasis on
efficiency of bandwidth utilization., Here, a local line network may be
used to interconnect the many on-board crew stations using very reliable
simple delta—ceders, while it is required on occasions to route communications
from any of them over a more bandwidth-sensitive radio link to supporting

ships and aircraft.

This paper presents an analysis of the information properties of the
signal sequences generated by AM speech with a derivation of information

(20}

preserving (IP) transformations (exact coding schemes) suitable for
channel encoder applications. These transformations are such that the
entropies of the AM operand sequence and its transform are the same, but the
output transform sequences, from which the original AM signals can be
reconstructed exactly by an inverse operation in the channel decoders, are
generated at a lower bit-rate and hence require less channel capacity for

transmission.

1.1 AM signal processor

The magnitude of the compression attainable by an IP transformation
in such a channel encoder is determined by the extent to which the source
encoder sequences exhibit redundancy as a result of the nature of the
encoding scheme and constraints on the properties of the message-generating
process, Because of the difficulty of modelling speech, either sine~wave
excitation or stationary random (usually Gaussian) signal sources of
specified rational power spectral demsity have been considered extensively
in analytic, experimental and computer simulation studies of AM, such as

those of Van de Weg(21), Zetterberg(zz), Halijak and Tripp(zs), Abate(z),

Goodman(za), Aaron et a1(25), Iwersen(zs), Gersho(27) n(28) and

(29)

Greenstein .

, Slepia



To study the information properties of the signal sequences
generated by a delta modulator when the exciting waveform is an actual
speech message, we have implemented a hybrid signal processor with dual
analog computers interfaced to a digital minicomputer. An f.m, magnetic
tape system is used to scale message spectra appropriately for the analog
computers by frequency division by a factor of 64, The test source
message(SO), which has been subjected to detailed study for speech
synthesizer applications, is low-pass filtered by a 7th-order Butterworth
active filter with a cut-off frequency of 3,85 kHz. The message

corresponds to a AM sequence of about 4 X 10° bits.

A precision delta modulator with a resolution of 1 part in 10° of the
maximum echelon signal range is implemented with an integrator and error
amplifier of an analog computer, outboard differential comparator and
accurate increment/decrement pulse generators. Thus the analyses are not
biased by the implementation-dependent hysteresis, integrator drift or

(3D

asymmetric idle channel noise properties of more practical delta

modulators.

The digital computer interface transfers sequences of AM code to a
cyclic data buffer by direct memory access and synchronises program
execution with the AM sampling frequency by interrupts. The results of the
on~line analyses are recorded in a format which allows them to be read by

Fortran programs for subsequent off-line analysis,

In the discussion which follows, the constituent O or 1 symbols of the
binary delta-coder output are termed the elements of the message, while the
state i of the source at any time is defined by a multi-dimensional vector
whose components are a number of the symbols which have been generated
prior to that time. Nth—order Markov process approximations to the source
are studied for which an element is considered to have a statistical

dependence limited to the preceding N symbols.



2 Relative entropy

*

Three entropy measures”™ are of interest. There is first the

entropy of the process

_— _Z Lp(i) p(ili) log p(i|i) (1)
1 ]

in which p(jli) is the conditional probability of occurrence of state j

following state 1,

Second, there is the entropy of blocks B; of N elements of the signal

sequence,

1
Gy = "_N_E P(Bi) log P(Bi) (2)
i

And third, for an Nth-order approximation to the source in which the
N-element block B; determines the conditional distribution from which the

next symbol Sj is drawn, the entropy
FN = _E E P(Bi,sj) log P(Sj]Bi) (3)
i ]

By adoption of the finite state (1 < i S_ZN) representation of the
signal source, Fy may be equated with the process entropy H and evaluated
by (1) which involves the conditional rather than the joint probabilities,
For this analysis, the on-line software generates a set of oN square state
transition probability matrices for N = 0 to 9, together with listings
of the occurrence probabilities of the appropriately masked operand states.

As the channel capacity required for direct transmission of a AM message

* - .
Apart from explicit exceptions, entropy measures are per element of

the signal sequence,
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is equal to the average element entropy', relative entropies are referred
to the H = 1 bit per element value for a source for which the Sj are
equiprobable and independent of preceding elements. Fig. 1 presents the
results of five test runs with f, = 48 kHz and values of A increment
ranging from coarse quantization to that causing frequent slope
overloading. We find that in all cases, the redundancy of the AM message
exceeds one half for N > 4. The characteristics define the lower bounds

of the channel capacity required for transmission of the AM signal after

IP transformation by an enceder processing N contiguous elements only.

Information properties found to be subject to wide variation with
choice of AM design parameters would entail elaborate presentation and be
of limited application. Fortunately the relative entropy characteristics
prove to be substantially independent of changes in sampling frequency and
A increment provided their choice is appropriate (ie. they are altered in
inverse proportion). This invariance is shown by the constant overload
probability groups of Fig. 2, which contain members for f, = 32, 48 and
96 kHz, and comparison of the corresponding transition probability matrices
shows that this property extends to the individual state transitions also.
In general, parameter values f = 96 kHz, peak-peak message amplitude 1284,
are considered, these being typical for good communications quality with
infrequent overloading. Agreement between repeat test runs is better than
0.1%, and adequate test message duration is indicated by differences of
less than 0,57 between results for the complete passage and its halves

processed separately.

3 AM Predictive coding

(32)

Procedures for redundancy reduction by predictive coding lower

the average element entropy by a transfeormation utilizing such information

+'Average element entropy' is used concisely throughout with the
meaning 'entropy of the average distribution of the elements' and should be
distinguished from the average of the entropies of the distributions of the

elements, which is the entropy of the process.
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about the conditional probability p(Slei) as it 1s economically viable to
compute at sender and receiver for limited size blocks B, of past elements.
For a AM message, an estimator processing N previous elements can make a
binary prediction of the next element in sequence and the transformation

effected as shown in Fig. 3 by modulo-2 addition of the element and its

prediction,

T = SE + SE (4)

At the receiver, the same prediction is generated by an identical

estimator processing the same elements and the new element is determined

by processing inversely.
For T = (E + S-E)-(E + 8E)
So that T'E + TE = § : (5)

The binary symbols which in conventional AM have the significance:

(a) { 0: Decrement approximant by A
a

1: Increment approximant by A

assume in this predictive coding scheme the indirect significance:

0: Predictor output correct, interpret it as (a)

1: Predictor output wrong, complement it and interpret as (a)

As the transformations are one-one the process entropy computed by (1)
for N + «, the weighted average of the entropies of the conditional
distributions for all possible states, is the same for operand and tramsform

sequences, but for a predictor success probability P> 0.5, the entropy

Hp = —[Pslog Ps + (l—PS)log(l—PS):l (6)

of the average distribution of the elements of the new sequence is lower.
While schemes for encoding the transformed sequence to achieve a reduction
in channel bit-rate are described later (Sectiomn 5), it is noted here that its

direct transmission in an application in which binary 1 is signalled by an
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output pulse, binary O by pulse absence, results in a transmitter power

economy of

n = 100(2pg - 1)7 (P, > 0.5) (7)

3.1 Predictor structures

In generating matrix element listings for all vector source
states and a rangé of values of N, the system implicitly defines the
optimal fixed-structure predictors operating on blocks of a corresponding
number of signal elements. For, cn identification of the current state,
the next element is merely predicted such that the subsequent state is

that for which the transition probability is known to be a maximum,

While the asymptotic process entropies for the AM source signal and
the modulo-2 adder output sequence of Fig. 3 are the same, the entropy of
a zero-order approximation to the latter, computed for three values of
A increment and shown by the characteristic of Fig. 4, is much less than
that of a zero-order approximation to the former. For a range of N and
A, the average element entropy of the transformed sequence for N-element
prediction does not greatly exceed the process entropy of an Nth-order
approximation to the AM message source and, for the typical median
characteristic, an N = 6 predictor achieves P, = 0.9, corresponding to
n = 80%. The average element entropy is within 147 of the 6th-order
process entropy, and the redundancy in both cases exceeds one half. The
optimal predictors for this characteristic and N = 1 te 7 are given in

Table 1,

While increase of N by one order doubles the number of distinguishable
states, the optimal predictor structure and performance changes only if
the transition probability distributions for two or more of the states
previously considered together have maxima for complementary next elements.
In the case of characteristic (a) for N = 3-4 and {¢) for N = 1-2 in
Fig. 4, for example, this does not occur so that the predictors operating

on the shorter signal sequences are as effective as those processing the
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Table 1
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OPTIMAL PREDICTORS FOR DELTA-CODED SPEECEH

Sampling frequency 96 kHz Pk-pk message amplitude 128A
(Vecteor states in octal)
N = | N = 2 = 3
STATE PRED 0 0 0 0 4 1
1 0 1 G 5 0
2 1 2 i 6 |
3 i 3 ] T 1
N = 4 N =
60 0 10 1 66 0 10 1 20 @ 30 0O
G1 ] 11 0 01 0 i1 D 21 0 31 0
gz 1 12 1 02 0 12 1 22 1 32 1
03 0 13 0 03 1 13 0 23 0 33 0D
ba 1 la 1 ba |1 ia 1 24 1 34 D
05 0 15 0 s 0 15 0 25 0 35 |
Je | 16 1 e 1 16 | 26 1 36 1
07 0 17 1 07 l 17 1 27 0 37 1
N =6
0g 0 10 1 21 ] 30 1 40 0 50 1 60 9 70 0
01 0 11 0 21 0 31 0 4] 0 51 @ 61 0 71 0
D2 0 i2 1 22 1 32 1 42 0 52 ] 62 1 72 1
03 1 13 0 23 19 33 0 43 D 33 0 63 0 73 1
da 0 14 1 24 1 34 1 44 1 54 1 64 | T4 D
05 0 15 0 25 0 35 1 45 0 55 0 65 0 75 |
e |} 16 | 26 1 36 | 46 1 56 1 66 1 76 1
07 @ 17 1 27 0 37 1 47 0 57 1 67 0 77 1
N = 7
ogo 0 6z0 0 04 0 460 H 180 0 120 0 140 0 160 0D
cot 0 0zl 0 Dal 0 06l | 101 0 121 0 lal 0 161 0
g0gz2 o0 o2z 0 a2 @ ez 1 102 0 122 1 taz D lez 0
003 1 023 0 043 ¢ 063 0 103 1 123 0 1a3 0 163 1
004 9 24 | Dag | 64 | 144 © 124 1 144 § 164 D
0o0s 0 gz2s 0 045 D 065 0 105 O 125 0 145 0 165 0
0ope | 026 | t4aé 1 066 | 10e | I2e 1 lag | 166 1
Qo7 1 027 1 047 0 te7 0 167 0 127 0 147 0 167 1
010 o0 030 1 050 1} G70 1 1101 130 1 1so0 0 170 0
011 9 831 0 051 © 071 0 1110 131 D 151 0 17t 0
012 1 32 1 052 1 (1 RER-R | 112 | 132 i 152 1 172 1
13 | 033 t 053 0 673 1 113 0 133 0 153 0 173 1
014 1 034 | 054 ] 074 0 114 1 134 1 124 1 174 0
15 1 035 1 855 0 075 1 119 0 135 1 155 1 175 1
016 1 036 | 056 .1 076 1 116 1 136 |} 156 1 176 |
017 1 037 ! 057 1 b7y i 117 1 137 | 157 ) Y77 1
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longer. Digital predictors of this type may be realised by a 2N x 1 bit
read-only memory addressed by the current state vector and programmed
with the next element prediction. Read-mostly memory(33) or even |
random access memory may be used if adaptation of the predictor function

to the source statistics encountered in service is envisaged.

3,2 6th~order predictive coder

As a consequence of the asymptotic equipartition property the
source state ensemble for N large comprises a 2N pember set of high
probability and a remaining set of low probability. While a distinct
set boundary does not occur for N = 6, H = 0.41, the on-line analysis
confirms that a number of the 64 states of the ensemble have quite low
probabilities, Eight states have occurrence probabilities of less than
107, and in a chain of over 4 X 10® states, there are no occurrences at
all of 34y, all transitions to 703 and 71 being from 745. This property
may be exploited to derive practically convenient predictor functions
which represent worthwhile simplifications at the expense of negligible

performance degradation from that of the optimal structure.

States with low occurrence probabilities, and those with high
occurrence probabilities but near equiprobable transition probabilities
(high state entropies) may be assigned arbitrary predictions where logic
minimisation techniques indicate that this results in a hardware
simplification., Veitch-Karnaugh mapping of the 6th-order predictor
defined in Table 1, for example, reveals that the introduction of four
such 'don't care' predictions allows the 1's factoring to be carried out
in groups of four or fewer variables by combining four or more elements

per term to yield the sub—optimal predictor function
a-b-cee + c-f + e-f-(d +b) + c-d-(e + b) + d-e-f-(a + b) (8)
in which the order of generation of the sequence is ...a...f...

A complete predictive coder for this example is shown in Fig. 5. The

output of the modulo-2 adder conditions the encoder output flip—flop omn
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the arrival of the shift pulse which clocks inte the first position of the
shift register the most recent signal element with which the prediction
has been compared. Obvious modifications of the configuration form the
corresponding decoder, in which the input signal drives the mod-2 adder

but the output sequence enters the shift register.

By prefixing the analysis system by this coder, transition matrices
for the predictive coded message are generated which can be processed in
the same way as these for the AM signal direct. The results show that
P; for the former case and N = O is less than for the latter case and
N = 6 by 0.14%, which only slightly exceeds the variation between repeat
test runs. So the performance of the practical predictor described is
little degraded from that of the optimal structure by the simplifications

allowed in its derivation.

3.3 Data errors

In direct AM transmission, signal detection errors due to channel

(34)

noise result in an output s.n.r. reduction which Braun et al have
reported ranges from 1 dB for error probability P, = 0.001 to 15 dB for

P, = 0.1. When the redundancy of the signals generated by an information
source is reduced, the susceptibility of the message to mutilation by

noise is increased. For the predictive coding of AM speech, incorrectly
detected elements cause immediate signal reconstruction errors on reception,
but in addition Pg is reduced by the impairment of the decoder predictor's
assessment of the subsequent N states and the increased entropy of the data

sequence,

The sensitivity of the 6th—order predictor performance to data errors
is determined by a series of signal processor runs in which random element
errors are introduced with a range of controlled probabilities Py. During
each sampling interval, the software generates a random number from a
uniform distribution over 0-4095, and causes the hardware to introduce an
error when the numbers are less than a threshold parameter which is Py as a

12-bit binary fraction. Fig. 6 shows the degradation of Pg with increasing
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data error rate, with the corresponding rise in Hy as the sequence
properties change from the constrained statistics of AM speech to those of
binary random noise. The predictor remains effective for error rates up

to that causing an appreciable reduction in output s.n.r. However, as with
all differential transmission schemes, it is advisable to inhibit error
accumulation by the periodic clearing of encoder and decoder memories, in

this case to the qulescent states 125 or 254.

4 AM Group encoding
. . (35)
Instantanecus group encoding procedures considered by Shannon s
Fano(36) and Huffman(B?) effect redundancy reduction by the assignment, to

N-element blocks By of the signal sequences generated by a source, of
uniquely decipherable W;-element codewords in a manner determined by their
occurrence probability set. For all precedures, the average channel
capacity required for transmission of the encoded signal, expressed per
element of the source output, approaches Gy given by (2) as N increases,
while Gy converges to H for large N, so that the coding schemes are
asymptotically completely efficient. But for finite N the Huffman approach
yields group codes with optimal efficiency, and it is therefore applied to

AM speech for comparison with predictive coding.

4.1 Group entropy

The relative entropies of (N+1l)-element blocks of signal elements
are computed from the transition matrices and the results are shown in
Fig. 7. The group entropies are compared with the Markov process and
modulo-2 adder output sequence entropies based on the same total number of
signal elements, including the immediate elements in the last two cases,
direct transmission corresponding to a zero—order approximation or
encoding in groups of one element, The characteristic defines a lower
bound to the required channel capacity for signal transmission after

contiguous element group encoding by any procedure.

By optimal coding it is always possible to establish a transformation
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Block length elements
N =1 N 3 "N 4
0 1 (3> 00 1 4 0o 5 (4) 20 21 (8
1 1 C1> 01 01 <6 01l 20 8y 21 24 (8)
2 1 (2> 02 5 (4) 02 11 «7) 22 06 (5)
3 0 3 03 0! (8 843 002 12 23 001 <¢10)
04 & (4) 04 08 (5) 24 gD (5)
05 2 () 05 0C (3> 25 2 (2)
N =2 06 09 (5) D6 D02 (9 26 Bl (3
07T D3 (6 07 000 <12 27 g2 (7
0 3 4 10 02 (6) 1o 13 (7 30 401 <12)
1 02 (3) 11 08 (5) 11 07 (5> 31 901 (%)
2 1 1) 12 3 (2) l2 3 2> 32 03 (5)
3 D0 %) 13 7 C4) 13 02 (5) 33 D9 (51
4 B3 (5) l4 00 (&) 14 003 (9 34 003 12
5 1 (2 15 2 a4l 15 05 (5> 35 03 (7))
& 09 (5) 16 01 (7)) le 25 (&) 36 63 (8>
7 2 (4 17 3 4 17 82 (8) 37 07 (42
N =25
0o 03 (5 29 01 <8 40 053 (93 60 00t ¢123
01 052 (%) 21 21 (8> 41 010 (9> 61 2201 (163
02 0a (8 22 07 (5) 42 23 (8 62 083 (102
03 221 12> 23 683 (10> 43 11001 <C19) 63 000 C12)
04 a1 (7 24 09 (35 44 03 (6> 64 082 (102
05 111 <1 25 2 (2 45 0D <(5) 65 08 (5)
26 1101 (¢15) 26 0E (53 46 gal Cido 66 15 7
07 201 <123 27 0ol <1l 47 22000 <203 &7 a3 7))
10 13 (7)) 30 08801 (18) 50 003 <11 70 D05 12y
11 16 (7 31 0al (10> 51 0F (5) 71 0B81 (14
12 0B (3 32 0C (33 52 3 2) 72 101 <11
13 002 ¢10) 33 17 ¢7) 53 CA (5> 73 05 (7
14 D441 132 34 22001 <20 54 081 ¢10) 74 200 (12>
15 089 (107 35 24 (82 55 62 (5> 75 09 (8)
16 04401 (17) 36 011 <9 56 25 (8) 76 045 (9)
17 004 <12) 37 051 (9 57 0s ¢8> 77 06 (5>
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resulting in an average codeword length E P(Bi)Ni within one element of

1
the average block total entropy NGy, so that an upper bound, alsc shown in

Fig. 7, is set by
MRy < NGy +1 = NRy (9)

B

in which the ratio of the channel capacity required for the encoded

signal to that for direct transmission
N
2
Z p(Bi)Ni
RB = i —-—-ﬁ-—'—— (10)
i=1
indicates the redundancy reduction produced.

4,2 Optimal group codes

The optimal group codebooks for 2 to 6 signal elements are given
in Table 2. For compactness of presentation, each right-justified
codeword is expressed as a hexadecimal number, followed in parentheses by
the (decimal) number of binary digits which are valid. Codes for larger
blocks are unlikely to be of practical interest because of their complexity
and the long word lengths associated with low-probability states. To
evaluate the efficiencies of the group codes, the codeword lengths Nj
elements, indicated for each block by Table 2, are assigned to the
appropriate groups B, of the source sequence. Each element is considered
to be the first of a following group, so that the evaluation for each
group length N is the average for N effective test rums with time origins
at each of the elements of the leading AM code block. Values of Ry are

shown in Fig. 7.

In appraising the group encoding results, it is noted that even for
small N, the codes are efficient in the sense that Ry is near the lower
bound set by the relative entropy of groups of (N+1) elements of the source
sequences, and the performance characteristic converges to Gyyq much

faster than does the upper bound Ry. But the convergence of Gy to the
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process entropy H is slow, so that large blocks must be encoded to achieve
a high overall coding efficiency. In comparison, the relative entropy
(zero-order) HT of the modulo-2 adder output sequence for an N-element
optimum predictor remains much closer to H for all N, so that a predictive
coding approach is found to be superior to optimal group encoding for AM
speech. Hy for a 3-element predictor, for example, which has a quite
elementary structure (Table 1), is lower than the attainable Ry for blocks
of 8 elements, although the group encoder for the latter is complex in

form and generates very long codewords.

5 Error sequence coding

We now consider applications to channel encoding and transmitter
power economy of the 6th-order near—optimal predictive coder example
defined in Section 3.2, The binary signal sequence generated by modulo-2
addition of the AM message and predictor output is termed the encoder
error sequence, for it has the function of indicating the errors in the
decoder predictions. Direct transmission and three methods of variable-
length coding the error sequence to achieve channel bandwidth compression

are evaluated and compared.

5.1 Direct error transmission

As was noted earlier, a transmitter power saving is possible by
direct transmission of the predictive coded sequence instead of the
original AM message, and for the 6th-order predictor with P, = 0.9 this
has value n = 80%Z. In a pack-set application in which the low-level
circuits are microminiaturized and the power input to the final transmitter
stages is a large proportion of the total, operational iife from a primary
power source is thus extended by a factor of several times. 1In addition,
use of this mode extends to pulse systems the operational advantages
brought to analog communications by suppressed-carrier voice-controlled
(VOX) working. For both techniques result in there being no output from
a sender except during speech utterances, so that single-channel

conversational mode operation becomes possible among the contributing
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members of a communications net, bit synchronisation being estabiished by
the transmitting member and no frame synchronisation being required to

decode the transmitted sequences.

The entropy characteristics of Fig. 7, and the corresponding predictor
performances, were computed by processing a speech message generated by
the continuous reading of a prepared text. In the case of duplex
communications, the power saving (and also the detection immunity)
compared with direct AM are therefore further enhanced by the occurrence
of intervals during which the transmitting output of a listening operator
is zero, although his talk channel remains active for interruption of the

sender at any time. The power saving for this case becomes

n = 1o0(t - 2Pt + ZPSPt)Z (P3 > 0.5) (11)

in which Pt is the channel activation probability, so that an extension
of operational life by a factor of 10 is indicated in this service for

Py = 0.5. At fixed stations for a tramsmitter limited by output device
mean dissipation the encoding gains are more usefully expleoited to allow
an increase in channel signal power., The thermal time-constants of the
dissipating structures of high-power tubes and semiconductors are typically
sufficient to smooth the fluctuations during speech and allow close to a
factor of 1/{2(1 - PS)} increase {7 dB for the éth~order predictor), but
they are not sufficient to average the dissipated power over active and
inactive periods in duplex working. For the case of a peak power limited
sender, and for other ways of exploiting the redundancy of AM speech, we

must consider further processing of the encoder error sequence.

5.2 Error sequence entropy

In the channel encoder situation, it is required to translate the
attainable average element entropy reduction to a decrease in bit-rate,
either to increase the size of the t.d.m. group, or to cascade the
operation of removal of the inefficient source redundancy with that of

substitution by the check digits of an error~correcting code chosen
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specifically for the particular channel noise properties encountered.

By processing the transition probability matrices for the encoder of
Fig. 5 by the information analysis programs, the error sequence information
properties summarized in Fig. 8 are determined. The process entropy
characteristic given indicates the reduction of the statistical inter-
dependence of sequential elements resulting from the coding; for the
invariant distribution for the zero-order case with element probabilities
Pg,

conditional distributions for N = 1 to 9 by more than 16%. The variation

1-P;, has entropy not exceeding those computed from the sets of

with N of THT, the average element entropy of the sequences generated by

a second application of predictive coding (using optimal predictors of
order N) to the error sequence generated by coding with the near—optimal
6th-order predictor, is even less over this range. In fact an extension
of the initial predictor order by 1 achieves an entropy reduction which it

requires a second application predictor order N > 9 to match,

5.3 Run—length encodings

The zero-order approximation to the error sequence suggested by
the entropy results of Fig, 8 implies a geometric probability distribution
for the lengths of runs of consecutive 0 symbols in the sequence. The
probability of a run of length r (r > 0, so that every symbel 1 both

terminates and starts a rum) is

r
Poy = Pg (1 = Py) (12)

and the entropy per selection from the distribution,

oD

Hg = E Pgr log Pgr , (13)

r=0

has value 4.66 bits for the b6th-order predictor.

The average sequence length per run,

o

L, = E Por (r + D) (14)

r=0
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is 9.83 elements and the relative entropy per element

ng = Hgng = 0.474, corresponding to THp for N = O. Similar form

relations derive from the actual run probabilities P..

Error sequence run—length distributions for r < 256 are determined
by the on-line analysis programs for AM speech with predictive coding.
Fig. 9 compares the run-length distribution for the typical AM parameter
case with the geometric distribution for the same Pg, and distributions
for other cases are similar. Deviations for small r are caused by the
previous element dependence of the error element distribution remaining
after coding, and for r > 7, P, is always less than Pgr‘ From the run
probability results, the average entropy per run is computed as 4.31 bits
and the average sequence length per run as 9,75 elements so that the
relative entropy per element H. = 0.442 is rather lower than for the
geometric distribution. While Huffman encoding of the run-lengths in
accordance with their occurrence probabilities allows this compression to
be closely attained, the codebook is quite large (64 entries to include
98% of the run lengths) and the encoder, although very much simpler than
that which would be required to achieve the same compression by a direct

application to the source sequence (32K entries), is still unattractively

complex,

Considering only comma-free codes for direct transmission through
binary channels, a first practical alternative is fixed length binary
number coding of the run-lengths, which of course is still a variable-
rate encoding procedure overall because of the distribution of element
sequence lengths selecting each number, For this approach é-bit coding
yields a compression of 0.615, while encoding only run lengths 0 to 31
(which includes 94% of the total) by 5 bits results in a ratio of 0.513.
The occurrence of the longest runs, which are associated with quiet
intervals between spoken words, is a function of the system noise and
reverberation prior to source encoding and is likely to be less frequent
in the average communications situation than for the studio environment in
which the test message is prepared and the precision laboratory equipment

by which it is processed.
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Table 3

RUN LENGTH CODEBOOK

m=6 geometric distribution

r codeword
0 D0 €3 16 a6 (6)
| D1 (3> 17 37 6
18 38 (6)
2 04 <a> 19 39 (6)
3 05 ¢4
4 06 C4) 20 T4 (7))
5 07 4> 21 75 (7))
6 08 c4) 22 76 (7
7 09 Ca» 23 77 ¢7)
24 78 (73
8 14 (5) 25 79 (7
9 15 (5>
10 16 (5 26 F4q (85
11 17 (5> 27 F5 (8)
12 18 (53 28 Fe (8>
13 19 (5) 29 F7T (8)
30 FE (B)
14 34 (63 31 F9 (g

15 35 (&)
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For a second procedure of intermediate complexity, the set of P_ may

(38)

be approximated by a geometric distribution which Golomb has noted is

favourable to Huffman coding for integer values of

log 2
m = --—— (15)
log Py
For the 6th-order predictor, m = & is appropriate and the initial entries
for the run-length codebook are given in Table 3, examination of the

structure of which reveals the following encoding rule for a run—length

of r elements:

By division of r by 6, obtain 6A + R. (integers A > 0,
0 <R<S5)
Encoding rule: OQutput A binary l's, followed by

{ for 0 £ R £ 1, the 3-bit binary representation of R

for 2 £ R £ 5, the 4-bit binary representation of R+2

An equally straightforward decoding rule applies.

Evaluation of this encoding procedure for the actual run-length
distribution of Fig. 9 indicates an average relative entropy (per element
of the error sequence) of 0.486, reduced to 0.406 by truncation of the
codebook at 32 entries. The approximation of the run—-length statistics by
a geometric distribution, and of Pg by a value giving m integer, thus
yields a practical run-length encoding scheme with performance within 10Z

of Hy.

3.4 Group error encoding

While predictive coding has been considered in earlier sections
as an IP transformation lowering the source sequence average element
entropy, significant reductions are effected in the entropies of blocks
of N elements for N > 2 also, The group entropy characteristic TGyyy
and upper bound for the optimal coding TRy shown in Fig. 8 are obtained
for the encoder error sequence by the processing method described in

Section 4 for the AM signal prior to coding. In the present case, TGN+1



Table 4

OPTIMAL ERROR SEQUENCE GROUP CODES

Block length

N+l elements

N = 1 N N 4
0 1 () g0 1 <1 6o i 1) 20 1 Ca
1 1 (29 01 4 (4 0l 7 C4) 21 24 7)
2 0 (3 ne 3 3 02 S (4 22 13 (6)
3 1 (3 03 02 <& 03 40 (8) 23 41 (83
D& 1 (3 04 I (3 24 03 7
05 05 ¢8> 05 21 79 25 001 <i0)
N =2 06 01 ¢6) bé oL <7 26 0ol <9
07 02 <8 a7 60Aa (%) 27 6o2 ¢12>
0 1 (1 10 5 (4D 10 6 (4 390 25 (7
1 2 (3 11 03 ¢35 I 01 ¢5? 31 610 <109
2 1 (3) 12 03 (&) 12 23 (7 32 083 (12)
3 02 (3) 13 01 <81 13 00B (%) 33 0001 (Clad
4 3 D 14 ba (6) 14 22 (7 34 goe (9
5 00 (3) 15 001 9 15 0000 <14) 35 go01 c¢12)
6 03 (3) 16 03 (& 16 011 €10 36 003 (92
7 0! (3 17 080 (93 17 fo2 (%) 37 400! <13
N =25
1] 1 (1> 20 4 (4 40 03 (5 60 p3 8>
01 5 (4 21 13 (8) 41 0B (6) 61 09 (8)
02 6 (4) 22 03 6 a2 05 (7)) 62 621 <105
03 pz21 (9> 23 01 8> 43 04l (9 €3 0201 <135
D4 3 4 24 15 (72 44 01 <&6) 64 203 <12)
05 14 (7) 25 083 (11) 45 681 <109 65 2001 <16)
g6 21 8 26 0oB (t0> 46 025 (9) 66 10003 <197
07 091 ¢l1) 27 202 cl2» 47 g0 <i0) 67 20001 <20
10 7 €4) 30 12 (7) 50 Il ¢8) 70 611 (9>
11 05 <6 31 020 <105 51 001 (9 71 0401 <13
12 11 (77 32 080t €15) S2 082 (11) 72 201 (12>
13 049 10 33 19002 (19> 53 04001 <17) 73 040080 (213
14 13 (7) 34 g1 (11> 54 0¢Aa (10 74 088 (10>
15 0800 <13) 35 0203 <13 55 10001 (19 75 10¢1 (15>
16 090 <11) 36 089 (103 56 0801 <14 76 0803 (15
17 00¢ <10 a7 0802 (153) 57 o202 <13 77T 040001 <219
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remains much closer to TH, even for N small, and is actually slightly
less than THT. As a third appreach, the group codes are therefore
constructed by the application, to the encoder error sequence transition
matrices, of the procedure used for group encoding for AM sequences
direct, and the optimal codebooks are given in Table 4. Evaluation of
these codes yields the characteristie TRp shown in Fig. 8 for the
reduction in required channel capacity., Convergence to the lower bound
occurs rapidly, an average bit-rate reduction of one half being obtained
with groups of 4 only, and TRp being less than THy for block length > 5.
An attractive case, compromising considerations of coding efficiency and

hardware complexity, i1s the 5-element group code which achieves TRy = 0.479.

Comparison of the most practical case performance for each of the
three error sequence encoding procedures described is now possible and

the compression factors attainable are summarized below.

(a) 6-element binary number coding of run-lengths: 0.615
(b) Geometric distribution run-length encoding: 0.486
(c) 5-element group encoding of error sequence: 0.479

Method (a) achieves simplicity at the cost of reduced efficiency, while
speed considerations will determine whether an implementation of method (c),
which attains the best performance with increased memory capacity, is
preferable to obtaining a similar compression with greater arithmetic logie

by method (b),

6 Channel buffer

In speech communication, as opposed to telegraphy, the rate of
reconstruction of the message for the recipient cannot be varied from its
rate of generation without distortion of the intelligence conveyed. Where
redundancy reduction is effected by a statistical encoding procedure, the
required channel capacity is proportional to the information content of
the source messages. At channel encoders and decoders, buffer stores are
therefore necessary to smooth the fluctuating data rate for transmission

and reconstruct its variation with time on reception.
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6.1 Queue organisation

For the specific numerical results, it is assumed that redundancy
reduction is achieved by the 6th-order predictor described in Section 3.2
followed by 5-element group encoding of the error sequence by the code
given in Table 4 (N = 4). Each AM source, with data rate f_, thus selects
for transmission codewords of length N, = 1 to 14 elements (excluding 2
and 11) at a rate fS/S. The sequence of codewords generated by successive
selections by the members of the t.d.m. group of N, sources is held in

the buffer store, of limited capacity N_ words, and this queue is serviced

q
in order by the sender which transmits corresponding signals over the
channel at a bit-rate Nypf.. For its complete transmission, each codeword
requires a holding time proportional to its length, after which the

channel becomes available to service the next codeword in the buffer.

When a codeword is generated, it encounters a number w of codewords
ahead of it awaiting or undergoing transmission. With a probability which
is small, w is zero and the codeword is processed immediately; while more
frequently it experiences a delay which will have duration > T if w-1 or
fewer codeword transmissions are completed during time T. Buffer capacity
and channel data rate require to be chosen such that T rarely exceeds
2 Nq/fs Ny, so that the probability of buffer overflow is small. Blasbalg
(20)

and Van Blerkom suggest degrading the source fidelity to maintain
transmission when buffer overflow occurs. Short codewords which approximate
the longer sequences selected may be sent until the overflow clears. The
requirement for the receiver is identical, codewords transmitted by the
channel entering the buffer store which receives sequential service from

the group decoder.

6.2 Codeword length distribution

From the information analysis of the predictor error sequence
described in Section 5 the total occurrence frequency of each 5-element
state is found and, by grouping those states for which the corresponding

codewords from Table 4 are equal in length, the probabilities of all N_
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are computed. The resultant integral distribution function p(>N.) is

given in Fig. 10 and the average codeword length

14
Na = E p(Nc) NC (16)
No=1

1s 2,40 elements.

As shown, a negative exponential approximation to the distribution

with the same average may be taken, for which

p(N) = o e (17)
a

For N, large, successive codewords in the buffer queue may be
considered to have lengths independently selected in accordance with this
probability set. The average channel holding time is Na/Nme, and the
probability that transmission of w-1 codewords is completed during time T

has the Poisson distribution

N L2
= Na (18)
Pu-1 N, (w - 1)! ©
6.3 Buffer capacity
(39)

) it

From the recurrence relations of queueing theory {(Molina
is readily shown that, for a total rate of selection of codewords of
N _f o . . .
m-5/5  the probability that a particular codeword is delayed in the buffer

for a time T and then the channel becomes available during the interval dt

1is
EN. N f. . - 82 TNnfe
= . s8a, ms 5f N
P. = 1 - 5t ) 5 e c a dt (19)

Hence the probability of a codeword being delayed greater than t before

transmission
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o
tN_E EgN,
o6) Npfq £5N, - N:C(l =)
pi>t = - e c t
5 5 d
t
tNpfc fsNa)
.| - -
_ 82 N, Sf; (20)
5f
c
The average number of codewords stored in the buffer is then
o
Npfsg
Nb = 5 t Ez'p(>t) dt
0
(fgNy)?
sMa (21)

(5f, - £gNu) 5f,
which is independent of the number of sources multiplexed.

While queue length increases without limit as (fCiNa)/(fSXS) + 1,
it falls rapidly to practical values as f. is increased above the
minimum permitted by TRp. From (21), the probability of buffer overflow

becomes

N (Sfc 1
£ N - FoN.
sha A fgNa (22)

Pov = 5§,

Fig. 11 gives representative channel buffer characteristics which allow
the selection of an appropriate compromise between attainable compression
factor fclfs and the required buffer capacity for a range of overflow
probabilities, For a 2 to 1 reduction in data rate, Py, < 107° is

cbtained with Nq = 270.
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