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ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS

Yujun Zhu, Zhaofeng Liu, Xueli Xu, and Wenda Zhang

Abstract. In this paper, the topological entropy and measure-theoretic
entropy for nonautonomous dynamical systems are studied. Some prop-

erties of these entropies are given and the relation between them is dis-
cussed. Moreover, the bounds of them for several particular nonau-
tonomous systems, such as affine transformations on metrizable groups

(especially on the torus) and smooth maps on Riemannian manifolds, are
obtained.

1. Introduction

In the study of the autonomous (i.e., deterministic) dynamical systems which
are induced by the iterations of a single transformation, entropies are important
invariants. It is well known that many deep results about entropies of the
deterministic dynamical systems have been obtained, see [2], for example. In
contrast with the autonomous case, the properties of the entropies for the
nonautonomous dynamical systems, which are induced by the compositions of
a sequence of transformations, have not been fully investigated.

Now we introduce some basic notations for nonautonomous dynamical sys-
tems. Let (X, d) be a metric space and {fi}∞i=1 a sequence of continuous maps
on X. The identity map on X will be denoted by Id. Let N be the set of all
positive integers. For any i ∈ N, let f0

i = Id and for any i, n ∈ N, let

fn
i = fi+(n−1) ◦ · · · ◦ fi+1 ◦ fi, f−n

i = (fn
i )

−1 = f−1
i ◦ f−1

i+1 ◦ · · · ◦ f
−1
i+(n−1)

(f−1
i will be applied to sets, we don’t assume that the maps fi are invert-

ible). Denote by f1,∞ the sequence {fi}∞i=1 and the induced nonautonomous
dynamical system (X; {fi}∞i=1).

For any n ∈ N, define a new metric dn on X by

dn(x, y) := max
0≤i≤n−1

d(f i
1(x), f

i
1(y)).
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Let K be a compact subset of X. For any ε > 0, a subset E ⊂ X is said to
be an (f1,∞, n, ε)-spanning set of K, if for any x ∈ K, there exists y ∈ E such
that dn(x, y) ≤ ε. Let r(f1,∞, n, ε,K) denote the smallest cardinality of any
(f1,∞, n, ε)-spanning set of K. A subset F ⊂ K is said to be an (f1,∞, n, ε)-
separated set of K, if x, y ∈ F, x ̸= y, implies dn(x, y) > ε. Let s(f1,∞, n, ε,K)
denote the largest cardinality of any (f1,∞, n, ε)-separated set of K. It’s easy
to prove that

r(f1,∞, n, ε,K) ≤ s(f1,∞, n, ε,K) ≤ r(f1,∞, n,
ε

2
,K).

Therefore, we have the following definition.

Definition 1.1. Let f1,∞ = {fi}∞i=1 be a sequence of continuous maps of a
metric space (X, d) and K a compact subset of X. Define

h(f1,∞,K) = lim
ε→0

r(f1,∞, ε,K) = lim
ε→0

s(f1,∞, ε,K),

where

r(f1,∞, ε,K) = lim sup
n→∞

1

n
log r(f1,∞, n, ε,K)

and

s(f1,∞, ε,K) = lim sup
n→∞

1

n
log s(f1,∞, n, ε,K).

The topological entropy of f1,∞ is defined by

h(f1,∞) = sup{h(f1,∞,K) : K ⊂ X is compact}.

We sometimes write hd(f1,∞) to emphasis the dependence on the metric d.
The above definition of topological entropy for nonautonomous dynamical

systems was introduced by Kolyada and Snoha in their paper [5]. As in the
autonomous cases, calculating the topological entropy for nonautonomous dy-
namical systems is not a easy task. However, one can give the estimation of
the topological entropy for some special nonautonomous systems. For exam-
ple, S. Kolyada, M. Misiurewicz and L. Snoha [4] showed that if f1,∞ is a finite
piecewise monotone, or a bounded totally long-lapped, or a Markov interval
nonautonomous dynamical system, then

h(f1,∞) = lim sup
n→∞

1

n
log c1,n,

where c1,n is the number of the laps of fn
1 . Zhu, Zhang and He [17] proved that

for a sequence of equi-continuous monotone maps on circles,

h(f1,∞) = lim sup
n→∞

1

n
log

n∏
i=1

| deg fi|,

where deg fi is the degree of fi. They also showed in another paper [11] that if
{fi}∞i=1 is a family of homeomorphisms on a finite graph X, then h(f1,∞) = 0.
In their proof they used another entropy-like invariant “preimage entropy”,
which is based on the preimage structure of the system. Recently, Zhang and
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Chen [11] gave the lower bounds of the topological entropy for nonautonomous
dynamical systems via the growths of topological complexity in fundamental
group and in degree. In particular, if {fi}∞i=1 is a family of C1 maps on M and
Dfi, i ∈ N, are equi-continuous, then

h(f1,∞) ≥ lim sup
n→∞

1

n
log

n∏
i=1

| deg fi|.

In the following, we introduce the measure-theoretic entropy for nonau-
tonomous dynamical systems. Let (X,B,m) be a probability space and f1,∞ =
{fi}∞i=1 a sequence of transformations. If all fi, i ∈ N, preserve the same proba-
bility measure m, then we call that f1,∞ preserves m, or m is an f1,∞-invariant
measure. Now we can define the measure-theoretic entropy of f1,∞ = {fi}∞i=1

as follows.

Definition 1.2. Let (X,B,m) be a probability space and f1,∞ = {fi}∞i=1

preserves m. If ξ is a finite partition of X, then

hm(f1,∞, ξ) = lim sup
n→∞

1

n
Hm(

n−1∨
i=0

f−i
1 ξ),

where Hm(
∨n−1

i=0 f−i
1 ξ) = −

∑
A∈

∨n−1
i=0 f−i

1 ξ m(A) logm(A), is called the entropy

of f1,∞ with respect to ξ.
The measure-theoretic entropy of f1,∞ is defined by

hm(f1,∞) = suphm(f1,∞, ξ),

where the supremum is taken over all finite partitions of X.

At first glance, it seems that the condition of fi, i ∈ N, preserving the same
measurem is in a sense strong. However, when each fi, i ∈ N, is taken from a set
of conservative systems, especially from a set of volume preserving systems, the
induced nonautonomous system satisfies this condition naturally. Furthermore,
we will see in Section 2 that many known results about entropy for autonomous
systems may not hold anymore for nonautonomous systems even under such
strong conditions. We also notice that some other aspects about the measure of
the nonautonomous systems were studied. For example, W. Ott, M. Stenlund
and L.-S. Young recently discussed the evolution of probability distributions
for certain nonautonomous systems in [9]. Exponential loss of memory was
proved in their paper for expanding maps and for one-dimensional piecewise
expanding maps with slowly varying parameters.

There are some reasons why we are interested in nonautonomous systems in
particular in their entropies. For example, when take a computational exper-
iment or study random dynamical systems, we often work with a sequence of
maps in place of a single map. We also note that the notion of sequence entropy
(with respect to an increasing sequence n1, n2, n3, . . . of positive integers) of an
autonomous dynamical system (X; f) is nothing else than the entropy of the
nonautonomous dynamical system (X; fn1 , fn2−n1 , fn3−n2 , . . .).
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Our goal is to study the properties of the entropies of the nonautonomous
dynamical systems. This paper is organized in the following way. In Section
2, we obtain some properties of the topological entropy. And the bounds of
the topological entropy for smooth maps on Riemannian manifolds and for
nonautonomous endomorphisms on torus are given. In Section 3 we give some
properties of the measure-theoretic entropy. The relation between the measure-
theoretic entropy and the topological entropy, especially for affine transforma-
tions on metrizable groups, are obtained. Moreover, we also try to explain
the reasons why we may not obtain the analogues of some known results for
deterministic systems in the case of nonautonomous systems.

2. Topological entropy

Through out this section (X, d) is a metric space, not necessarily compact,
and f1,∞ = {fi}∞i=1 is a sequence of continuous maps on X. It is obvious that
the topological entropy is independent of the metric.

Proposition 2.1. If d′ is another metric on X which is uniformly equivalent
to d and f1,∞ is a sequence of (equi-continuous) maps on X, then hd(f1,∞) =
hd′(f1,∞).

The following proposition will be useful to calculate the topological entropy
of the nonautonomous systems on non-compact metric spaces.

Proposition 2.2. Let δ > 0. Then

(2.1) hd(f1,∞) = sup{h(f1,∞,K) : K ⊂ X and diam(K) < δ}.

Proof. It is suffice to prove that for any compact subsets K ⊂
∪m

k=1 Ki of X
we have

(2.2) hd(f1,∞,K) ≤ max
1≤i≤m

hd(f1,∞,Ki).

Indeed, once this is done, any compact subset K of X can be covered by a
finite number of balls B1, . . . , Bm of diameter δ

2 and hence

hd(f1,∞,K) ≤ max
1≤i≤m

hd(f1,∞,K ∩Bi),

which gives (2.1).
Now we prove (2.2). It is clear that

s(f1,∞, n, ε,K) ≤
m∑
i=1

s(f1,∞, n, ε,Ki).

Fix ε > 0. For each n choose Ki(n,ε) such that

s(f1,∞, n, ε,Ki(n,ε)) = max
1≤i≤m

s(f1,∞, n, ε,Ki).

Then

s(f1,∞, n, ε,K) ≤ m · s(f1,∞, n, ε,Ki(n,ε))
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and so

log s(f1,∞, n, ε,K) ≤ logm+ log s(f1,∞, n, ε,Ki(n,ε)).

Choose nj → ∞ such that

lim
j→∞

1

nj
log s(f1,∞, nj , ε,K) = lim sup

n→∞

1

n
log s(f1,∞, n, ε,K)

and Ki(nj ,ε) does not depend on j (i.e., Ki(nj ,ε) = Ki(ε) for any j). Therefore
s(f1,∞, ε,K) ≤ s(f1,∞, ε,Ki(ε)). Choose εt → 0 such that Ki(εt) is constant.
Then

hd(f1,∞,K) ≤ hd(f1,∞,Ki) ≤ max
1≤i≤m

hd(f1,∞,Ki),

i.e., (2.2) holds. □

Theorem 2.3. Let M be a k-dimensional Riemannian manifold and f1,∞ =
{fi}∞i=1 a sequence of C1 maps on M which satisfy

sup
i∈N, x∈M

∥dxfi∥ < ∞.

Then

h(f1,∞) ≤ max{0, lim sup
n→∞

k

n

n−1∑
i=1

log sup
x∈M

∥dxfi∥}.

Proof. For i ∈ N, let ai = supx∈M ∥dxfi∥. By the mean-value theorem,

d(fi(x), fi(y)) ≤ aid(x, y), x, y ∈ M.

SupposeK is a compact subset ofM of diameter less than some positive number
δ. Assume δ is small enough such that we can select one convenient chart on
M that covers K. Let ||| · ||| denote the norm on Rk given by

|||u||| = max
1≤i≤k

|ui|

for u = (u1, u2, . . . , uk) ∈ Rk and let B(0, r) denote the open ball in Rk with
center 0 and radius r in this norm. Choose a differentiable map φ : B(0, 3) → M
such that K ⊂ φ(B(0, 1)). Let b > 0 be so that

d(φ(u), φ(v)) ≤ b|||u− v|||, ∀u, v ∈ B(0, 2).

For any c ∈ (0, 1), let

E(c) = {(t1c, . . . tkc) ∈ Rk | ti ∈ Z} ∩B(0, 2).

The cardinality of E(c) is at most ( 4c )
k. Each point of B(0, 2) is within distance

c of a point of E(c). The set φ(E(c)) is clearly an (f1,∞, n, (
∏n−1

i=1 ai)bc)-
spanning set of K. Given ε > 0 and put c = ε

(
∏n−1

i=1 ai)b
, then

r(f1,∞, n, ε,K) ≤
(4 n−1∏

i=1

aib

ε

)k

=
( n−1∏

i=1

ai
)k ·

(4b
ε

)k
.
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Therefore

r(f1,∞, ε,K) ≤ max{0, lim sup
n→∞

k

n

n−1∑
i=1

log ai}.

Letting ε tend to 0 we have

h(f1,∞,K) ≤ max{0, lim sup
n→∞

k

n

n−1∑
i=1

log ai}.

By Proposition 2.2,

h(f1,∞) ≤ max{0, lim sup
n→∞

k

n

n−1∑
i=1

log ai}.
□

In the following, we will give the lower and the upper bounds of the entropy
of the nonautonomous expanding endomorphisms on Rn and Tn.

Proposition 2.4. Let (X̃, d̃) and (X, d) be metric spaces and π : X̃ → X a
continuous surjection such that there exists δ > 0 with

(2.3) π|B(x̃,δ) : B(x̃, δ) → B(π(x̃), δ)

an isometric surjection for all x̃ ∈ X̃. If f̃1,∞ = {f̃i}∞i=1 and f1,∞ = {fi}∞i=1 are

two sequences of equi-continuous maps on X̃ and X, respectively, and satisfy
πf̃i = fiπ for any i ∈ N, then

h(f̃1,∞) = h(f1,∞).

Proof. If K̃ is compact in X̃ and diam(K̃) < δ, then π(K̃) is compact in X

and diam(π(K̃)) < δ. Every compact subset of X of diameter less than δ is of
this form, that is, if K is compact in X and diam(K) < δ, then there exists at

least one compact set K̃ in X̃ such that diam(K̃) < δ and π(K̃) = K.

Since f̃i, i ∈ N, are equi-continuous, we can take ε ∈ (0, δ) such that

(2.4) d̃(x̃, ỹ) < ε ⇒ d̃(f̃(x̃), f̃(ỹ)) < δ, x̃, ỹ ∈ X̃, i ∈ N.

Let K̃ be compact in X̃ with diam(K̃) < δ and Ẽ ⊂ K̃ an (f̃1,∞, n, ε)-

separated set. By (2.3) and (2.4), it is obviously that π(Ẽ) is an (f1,∞, n, ε)-

separated subset of π(K̃). Therefore

(2.5) s(f̃1,∞, n, ε, K̃) ≤ s(f1,∞, n, ε, π(K̃)).

To prove the converse inequality, suppose E is an (f1,∞, n, ε)-separated sub-

set of π(K̃). By (2.3) and (2.4), Ẽ = π−1(E) ∩ K̃ is an (f̃1,∞, n, ε)-separated

subset of K̃. Hence

(2.6) s(f1,∞, n, ε, π(K̃)) ≤ s(f̃1,∞, n, ε, K̃).

From (2.5) and (2.6),

s(f1,∞, n, ε, K̃) = s(f1,∞, n, ε, π(K̃)),
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and hence

h(f̃1,∞, K̃) = h(f1,∞, π(K̃)).

By Proposition 2.2,

h(f̃1,∞) = h(f1,∞). □

Corollary 2.5. Let f1,∞ = {fi}∞i=1 be a sequence of equi-continuous maps of

Tk. For i ∈ N, f̃i is a lift of fi. Then

h(f1,∞) = h(f̃1,∞),

where f̃1,∞ = {f̃i}∞i=1.

Lemma 2.6. Let A1,∞ = {Ai}∞i=1 be a sequence of linear operators on Rk,
m the Lebesgue measure on Rk and ρ a metric on Rk determined by a norm.
Then

hρ(A1,∞) = lim
ε→0

lim sup
n→∞

− 1

n
logm(Dn(0, ε, A1,∞)),

where Dn(0, ε, A1,∞) =
∩n−1

i=0 A−i
1 Bρ(0, ε). Also, hρ(A1,∞) does not depend on

the norm chosen.

Proof. Since all norms on Rk are equivalent, they induce uniformly equivalent
metrics on Rk, so by Proposition 2.1,

hρ(A1,∞) = hd(A1,∞),

where d is the Euclidean distance. Hence we may as well suppose ρ is the
Euclidean distance.

First note the fact that for any ε > 0 and x ∈ Rk,

Dn(x, ε,A1,∞) = x+Dn(0, ε, A1,∞),

where Dn(x, ε,A1,∞) =
∩n−1

i=0 A−i
1 Bρ(A

i
1(x), ε).

Let K be a compact subset of Rk with m(K) > 0. If F is an (A1,∞, n, ε)-
spanning set of K, then

K ⊂
∪
x∈F

Dn(x, 2ε,A1,∞) =
∪
x∈F

x+Dn(0, 2ε,A1,∞).

Therefore m(K) ≤ r(A1,∞, n, ε,K) ·m(Dn(0, 2ε,A1,∞)). This gives

r(A1,∞, n, ε,K) ≥ m(K)

m(Dn(0, 2ε,A1,∞))

and hence

hρ(A1,∞) ≥ r(A1,∞, ε,K) ≥ lim sup
n→∞

− 1

n
logm(Dn(0, 2ε,A1,∞)).

Therefore

(2.7) hρ(A1,∞) ≥ lim
ε→0

lim sup
n→∞

− 1

n
logm(Dn(0, ε, A1,∞)).
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Let Kq be the closed q-cube with center 0 ∈ Rk and side length 2q. If E is
an (A1,∞, n, ε)-separated subset of Kq, then

∪
x∈E Dn(x,

ε
2 , A1,∞) is a disjoint

union and ∪
x∈E

Dn(x,
ε

2
, A1,∞) =

∪
x∈E

(x+Dn(0,
ε

2
, A1,∞)) ⊂ Kq+ε.

Therefore

s(A1,∞, n, ε,Kq) ·m(Dn(0,
ε

2
, A1,∞)) ≤ 2k(q + ε)k

and so

s(A1,∞, ε,Kq) ≤ lim sup
n→∞

− 1

n
logm(Dn(0,

ε

2
, A1,∞)).

If K is any compact subset of Rn, then K ⊂ Kq for some q so

s(A1,∞, ε,K) ≤ s(A1,∞, ε,Kq) ≤ lim sup
n→∞

− 1

n
logm(Dn(0,

ε

2
, A1,∞)).

Therefore
(2.8)

hρ(A1,∞) = sup
K

lim
ε→0

s(A1,∞, ε,K) ≤ lim
ε→0

lim sup
n→∞

− 1

n
logm(Dn(0, ε, A1,∞)).

From (2.7) and (2.8), the desired equality

hρ(A1,∞) = lim
ε→0

lim sup
n→∞

− 1

n
logm(Dn(0, ε, A1,∞))

holds. □

Now we can give the main result of this section.

Theorem 2.7. Let A1,∞ = {Ai}∞i=1 be a sequence of equi-continuous linear
automorphisms of Rk. If for each i ∈ N, all eigenvalues of Ai are of modulus
greater than or equal to 1, then

(2.9) lim sup
n→∞

1

n

n−1∑
i=1

k∑
j=1

log |λ(j)
i | ≤ h(f1,∞) ≤ lim sup

n→∞

k

n

n−1∑
i=1

log Λ
(1)
i ,

where λ
(1)
i , . . . , λ

(k)
i are the eigenvalues of Ai, i ∈ N, counted with their multi-

plicities, and Λ
(1)
i is the biggest eigenvalue of

√
AiAT

i , i ∈ N.
In particular, in the case k = 1, we have

h(A1,∞) = lim sup
n→∞

1

n

n−1∑
i=1

log |λi|,

where λi is the proportionality constant of Ai : R → R, x 7→ λix, i ∈ N.
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Proof. Let d be the Euclidean distance on Rk. By Lemma 2.6, we have

hd(A1,∞) = lim
ε→0

lim sup
n→∞

− 1

n
logm(Dn(0, ε, A1,∞)).

Note that for any linear operator A : Rk → Rk and any Borel set B ⊂ Rk, we
have m(A(B)) = |detA|m(B). Since

Dn(0, ε, A1,∞) =
n−1∩
i=1

A−i
1 (Bd(0, ε)) ⊂ A

−(n−1)
1 (Bd(0, ε))

then

m(Dn(0, ε, A1,∞)) ≤ m(A
−(n−1)
1 (Bd(0, ε)))

≤ |detA−(n−1)
1 | ·m(Bd(0, ε))

=
1

n−1∏
i=1

|detAi|
·m(Bd(0, ε))

=
1

n−1∏
i=1

k∏
j=1

|λ(j)
i |

·m(Bd(0, ε)).

Therefore

− 1

n
logm(Dn(0, ε, A1,∞)) ≥ 1

n
log

n−1∏
i=1

k∏
j=1

|λ(j)
i | − 1

n
logm(Bd(0, ε))

=
1

n

n−1∑
i=1

k∑
j=1

log |λ(j)
i | − 1

n
logm(Bd(0, ε)).

Hence

(2.10) h(A1,∞) ≥ lim sup
n→∞

1

n

n−1∑
i=1

k∑
j=1

log |λ(j)
i |.

Note that for any linear operator A : Rk → Rk we have ∥A∥ = Λ(1), where

Λ(1) is the biggest eigenvalue of
√
AAT . So for any x ∈ Rk, ∥Ax∥ ≤ Λ(1)∥x∥

and hence

A−1(Bd(0, ε)) ⊃ Bd

(
0,

1

Λ(1)
ε
)
.

Therefore,

Dn(0, ε, A1,∞) ⊃ Bd

(
0,

1
n−1∏
i=1

Λ
(1)
i

ε
)
,

and so

− 1

n
logm(Dn(0, ε, A1,∞)) ≤ 1

n
log

n−1∏
i=1

(Λ
(1)
i )k +

1

n
logm(Bd(0, ε))
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=
k

n

n−1∑
i=1

log Λ
(1)
i +

1

n
logm(Bd(0, ε)).

Hence

(2.11) h(A1,∞) ≤ lim
n→∞

k

n

n−1∑
i=1

log Λ
(1)
i .

Form (2.10) and (2.11), the desired inequalities (2.9) hold. □
From Corollary 2.5 and Theorem 2.7, we can immediately deduce the result

we set out to prove.

Theorem 2.8. Let A1,∞ = {Ai}∞i=1 be a sequence of equi-continuous surjective

endomorphisms of Tk and Ã1,∞ = {Ãi}∞i=1 the corresponding linear automor-

phisms of Rk. If for each i ∈ N, all eigenvalues of Ãi are of modulus greater
than or equal to 1, then

(2.12) lim sup
n→∞

1

n

n−1∑
i=1

k∑
j=1

log |λ(j)
i | ≤ h(A1,∞) ≤ lim sup

n→∞

k

n

n−1∑
i=1

log Λ
(1)
i ,

where λ
(1)
i , . . . , λ

(k)
i are the eigenvalues of Ãi, i ∈ N, counted with their multi-

plicities, and Λ
(1)
i is the biggest eigenvalue of

√
ÃiÃT

i , i ∈ N.
In particular, in the case k = 1, we have

h(A1,∞) = lim sup
n→∞

1

n

n−1∑
i=1

log |λi|,

where λi is the degree of the automorphism Ai of S
1, i ∈ N.

It is well known that for the autonomous linear system, i.e., the system
generated by the iteration of a single linear map A of Rk, we have

(2.13) h(A) =
∑

|λ(j)|>1

log |λ(j)|,

where λ(1), . . . , λ(k) are the eigenvalues of A, counted with their multiplici-
ties. The proof of the formula (2.13) relies on the invariance of the Jordan
decomposition of A.

Let M be a closed Riemannian manifold and f a differentiable map on M .
For any x ∈ M , the sequence of differentials of f along the orbit of x naturally
generates a nonautonomous linear system. By the variational principle and
Ruelle’s inequality, we have

h(f) ≤ sup

{∫
M

∑
i

λ+
i (x)mi(x)dµ(x) | µ is an invariant measure of f

}
,

where λ+
i (x) are the positive Lyapunov exponents and mi(x) are their multi-

plicities.
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However, with respect to the nonautonomous linear system in the setting of
this paper, we can only obtain the lower bound and the upper bound (which
seems a little bit coarse) of the topological entropy for the expanding case. The
main reason that we can’t get the estimation of the topological entropy for the
general nonautonomous linear systems without the “expanding” assumption
is that there is neither invariant decomposition nor the theory of Lyapunov
exponents available any more. Therefore, it is not a easy task to calculate the
entropy of nonautonomous systems even under strong conditions.

Example 2.9. Let A and B be the hyperbolic automorphisms on T2 induced
by the matrices (

2 1
1 1

)
and

(
1 −1

−1 2

)
,

respectively. For the nonautonomous system A1,∞ = {Ai}∞i=1, where Ai = A
or B, its entropy relays on the frequency pA of A appearing in this sequence.
In fact, it is easy to prove that

h(A1,∞) = (1− 2min{pA, 1− pA}) log
3 +

√
5

2
.

3. Measure-theoretic entropy

We first give some basic properties of the measure-theoretic entropy of the
nonautonomous dynamical systems.

Proposition 3.1. Let (X,B,m) be a probability space and f1,∞ = {fi}∞i=1

preserves m. If ξ, η are finite partitions of X, then
(1) hm(f1,∞, ξ) ≤ Hm(ξ).
(2) hm(f1,∞, ξ ∨ η) ≤ hm(f1,∞, ξ) + hm(f1,∞, η).
(3) ξ ≤ η ⇒ hm(f1,∞, ξ) ≤ hm(f1,∞, η).
(4) hm(f1,∞, ξ) ≤ hm(f1,∞, η) +Hm(ξ|η).

Proof. We can get the desired results easily from the following facts respec-
tively.

(1)

1

n
Hm(

n−1∨
i=0

f−i
1 ξ) ≤ 1

n

n−1∑
i=0

Hm(f−i
1 ξ) =

1

n

n−1∑
i=0

Hm(ξ) = Hm(ξ).

(2)

Hm(

n−1∨
i=0

f−i
1 (ξ ∨ η)) = Hm(

n−1∨
i=0

f−i
1 ξ ∨

n−1∨
i=0

f−i
1 η)

≤ Hm(

n−1∨
i=0

f−i
1 ξ) +Hm(

n−1∨
i=0

f−i
1 η).
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(3) If ξ ≤ η, then for any n ≥ 1 we have

n−1∨
i=0

f−i
1 ξ ≤

n−1∨
i=0

f−i
1 η.

(4)

Hm(

n−1∨
i=0

f−i
1 ξ) ≤ Hm(

n−1∨
i=0

f−i
1 ξ ∨

n−1∨
i=0

f−i
1 η)

= Hm(

n−1∨
i=0

f−i
1 η) +Hm(

n−1∨
i=0

f−i
1 ξ|

n−1∨
i=0

f−i
1 η)

≤ Hm(

n−1∨
i=0

f−i
1 η) +

n−1∑
i=0

Hm(f−i
1 ξ|f−i

1 η)

= Hm(

n−1∨
i=0

f−i
1 η) + nHm(ξ|η).

□

Proposition 3.2. Let (X,B,m) be a probability space and f1,∞ = {fi}∞i=1

preserves m. If ξ is a finite partition of X, then for any i, n ∈ N, we have

(3.1) Hm(

n−1∨
j=0

f−j
i ξ) = Hm(ξ) +

n−1∑
j=1

Hm(ξ|
n−j∨
k=1

f−k
i+j−1ξ).

Proof. We show (3.1) by induction. For any i ∈ N and n = 1, it is clear.
Assume that it is true for any i ∈ N and n = p, then

Hm(

p∨
j=0

f−j
i ξ) = Hm(

p∨
j=1

f−j
i ξ ∨ ξ)

= Hm(

p∨
j=1

f−j
i ξ) +Hm(ξ|

p∨
j=1

f−j
i ξ)

= Hm(f−1
i

p−1∨
j=0

f−j
i+1ξ) +Hm(ξ|

p∨
j=1

f−j
i ξ)

= Hm(

p−1∨
j=0

f−j
i+1ξ) +Hm(ξ|

p∨
j=1

f−j
i ξ).(3.2)

For the first part of the right-hand side of the equation (3.2), we have by the
induction assumption,

Hm(

p−1∨
j=0

f−j
i+1ξ) = Hm(ξ) +

p−1∑
j=1

Hm(ξ|
p−j∨
k=1

f−k
(i+1)+j−1ξ)



ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS 177

= Hm(ξ) +

p∑
j=2

Hm(ξ|
(p+1)−j∨

k=1

f−k
i+j−1ξ).

For the second part of the right-hand side of the equation (3.2), we have

Hm(ξ|
p∨

j=1

f−j
i ξ) = Hm(ξ|

(p+1)−1∨
k=1

f−k
(i+1)−1ξ).

Therefore,

Hm(

p∨
j=0

f−j
i ξ) = Hm(ξ) +

p∑
j=1

Hm(ξ|
p+1−j∨
k=1

f−k
i+j−1ξ).

Hence (3.1) holds for all i, n ∈ N. □

Remark 3.3. Take i = 1 in the formula (3.1), we get

Hm(
n−1∨
j=0

f−j
1 ξ) = Hm(ξ) +

n−1∑
j=1

Hm(ξ|
n−j∨
k=1

f−k
j ξ).

Moreover, if we take fi = f for any i ∈ N, then we have

Hm(
n−1∨
j=0

f−jξ) = Hm(ξ) +
n−1∑
j=1

Hm(ξ|
j∨

k=1

f−kξ),

which is exactly the formula in the proof of Theorem 4.14 in [10] for the au-
tonomous dynamical system.

Similar to the autonomous case, we can show that the entropy map of the
nonautonomous systems is affine.

Theorem 3.4. Let (X,B) be a measurable space and f1,∞ = {fi}∞i=1 a sequence
of measurable transformations of X. Then for any f1,∞-invariant probability
measure m,µ and p ∈ [0, 1], we have

hpµ+(1−p)m(f1,∞) = phµ(f1,∞) + (1− p)hm(f1,∞).

Proof. As in the proof of Theorem 8.1 of [10], we have

(3.3) 0 ≤ Hpµ+(1−p)m(ξ)− pHµ(ξ)− (1− p)Hm(ξ) ≤ log 2

for any finite partition ξ of X.
If η is any finite partition of X, then by putting ξ =

∨n−1
i=0 f−i

1 (η) in (3.3),
we have

(3.4) hpµ+(1−p)m(f1,∞, η) = phµ(f1,∞, η) + (1− p)hm(f1,∞, η).

Clearly

(3.5) hpµ+(1−p)m(f1,∞) ≤ phµ(f1,∞) + (1− p)hm(f1,∞).
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We now show the opposite inequality. Let ε > 0, choose η1, η2 > 0 such that

hµ(f1,∞, η1) >

{
hµ(f1,∞)− ε if hµ(f1,∞) < ∞
1

ε
if hµ(f1,∞) = ∞.

hm(f1,∞, η2) >

{
hm(f1,∞)− ε if hm(f1,∞) < ∞
1

ε
if hm(f1,∞) = ∞.

Putting η = η1 ∨ η2 in (3.4) gives
hpµ+(1−p)m(f1,∞, η)

>

{
phµ(f1,∞) + (1− p)hm(f1,∞)− ε, if hµ(f1,∞), hm(f1,∞) < ∞
1

ε
, if either hm(f1,∞) = ∞ or hµ(f1,∞) = ∞.

Therefore

(3.6) hpµ+(1−p)m(f1,∞) ≥ phµ(f1,∞) + (1− p)hm(f1,∞).

From (3.5) and (3.6), the desired equality holds. □

It is well known that there is a power rule for the measure-theoretic entropy
of the autonomous system, that is, for any transformation f which preserves
m we have

hm(fk) = khm(f),

where k ∈ N. And we can apply the power rule to obtain the variational prin-
ciple which relates the topological and measure-theoretic entropies. However,
we do not know whether the power rule holds or not for the measure-theoretic
entropy of the nonautonomous system. So far, we can only get the following
inequality and have no idea to prove the reverse inequality.

Proposition 3.5. Let (X,B,m) be a probability space and f1,∞ = {fi}∞i=1

preserves m. Then for any k ∈ N, we have

hm(f
[k]
1,∞) ≤ khm(f1,∞),

where f
[k]
1,∞ is the nonautonomous system induced by the sequence of maps

{f [k]
i = fk

(i−1)k+1}
∞
i=1.

Proof. Note that for any finite partition ξ of X, we have

hm(f
[k]
1,∞, ξ) = lim sup

n→∞

1

n
logHm(ξ ∨

n−1∨
i=0

f−k
1 (f−k

k+1(· · · (f
−k
ik+1ξ) · · · ))

≤ k · lim sup
n→∞

1

nk
logHm(

nk−1∨
i=0

f−i
1 ξ)

≤ k · hm(f1,∞, ξ)

≤ k · hm(f1,∞).
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Therefore,

hm(f
[k]
1,∞) = sup

ξ
hm(f

[k]
1,∞, ξ) ≤ k · hm(f1,∞). □

Now we consider the relation between the topological entropy and the mea-
sure-theoretic entropies of the nonautonomous systems.

Theorem 3.6. Let X be a compact metric space and f1,∞ a sequence of con-
tinuous maps of X. Then for any f1,∞-invariant Borel probability measure m,
we have

hm(f1,∞) ≤ h(f1,∞) + log 2.

Proof. Let ξ = {A1, . . . , Ak} be a finite partition of M . For any a > 0, choose
ε > 0 so that ε < a

k log k . Since m is regular, there exist compact sets Bj ⊂
Aj , 1 ≤ j ≤ k with m(Aj \Bj) < ε. Let η be the partition η = {B0, B1, . . . , Bk}
where B0 = X −

∪k
j=1 Bj . We have m(B0) < kε and

Hm(ξ|η) = −
k∑

i=0

k∑
j=1

m(Bi)
m(Bi ∩Aj)

m(Bi)
log

m(Bi ∩Aj)

m(Bi)

= −m(B0)
k∑

j=1

m(B0 ∩Aj)

m(B0)
log

m(B0 ∩Aj)

m(B0)

≤ m(B0) log k

< kε log k < a.

Let δ = min1≤i,j≤k,;i ̸=j d(Bi, Bj). Choose a maximal (f1,∞, n, δ
2 )-spanning

set En of X with the cardinality r(f1,∞, n, δ
2 ). It is obvious that

X =
∪

x∈En

n−1∩
i=0

f−i
1 B̄d(f

i
1x,

δ

2
).

Since each δ
2 -ball in X intersects at most two elements of η, then we have

card(
n−1∨
i=0

f−i
1 η) ≤ r(f1,∞, n,

δ

2
) · 2n.

Hence

Hm(

n−1∨
i=0

f−i
1 η) ≤ log card(

n−1∨
i=0

f−i
1 η)

≤ log r(f1,∞, n,
δ

2
) + n log 2.

Therefore
hm(f1,∞, η) ≤ h(f1,∞) + log 2.

So by (4) of Proposition 3.1,

hm(f1,∞, ξ) ≤ hm(f1,∞, η) +Hm(ξ|η)
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≤ h(f1,∞) + log 2 + a.

This gives

hm(f1,∞) ≤ h(f1,∞) + log 2 + a.

Since a is chosen arbitrarily, we get the desired inequality

hm(f1,∞) ≤ h(f1,∞) + log 2

immediately. □

We ever tried to borrow some idea from [8] to prove the following inequality

(3.7) hm(f1,∞) ≤ h(f1,∞).

However, it seems that the definition of entropies for the Zn
+ action in this

paper are not reasonable and the proof of the first part of the corresponding
variational principle is not acceptable.

Question 3.7. Can we get a “nonautonomous version” of the variational prin-
ciple or the inequality (3.7)?

Now we study the Harr measure entropy and the topological entropy for the
nonautonomous affine transformations.

Theorem 3.8. Let G be a compact metrizable group and {fi = ai · Ai} a se-
quence of affine transformations of G. Let m denote normalized Haar measure
on G and d a left-invariant metric on G. Then hm(f1,∞) = hm(A1,∞) and
h(f1,∞) = h(A1,∞), and

(3.8) hm(A1,∞) ≥ lim
ε→0

lim sup
n→∞

− 1

n
logm(

n−1∩
i=0

A−i
1 B(e, ε)) = h(A1,∞),

where e denotes the identity element of G and B(e, ε) is the open ball center e
and radius ε with respect to the metric d (This limit clearly exists or is ∞).

Proof. Suppose d is a left-invariant metric on G. Put

Dn(x, ε, f1,∞) =
n−1∩
k=0

f−i
1 B(f i

1x, ε).

By induction we shall show that

f−k
1 (B(fk

1 x, ε)) = x ·A−k
1 B(e, ε).

It is true for k = 0 by the invariance of the metric d. Assuming it holds for k,
we prove it for k + 1:

f
−(k+1)
1 B(fk+1

1 x, ε) = f−1
1 (f−k

2 B(fk
2 (f1x), ε))

= f−1
1 (f1x ·A−k

2 B(e, ε))

= x · (A−k
1 B(e, ε)).
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Hence

Dn(x, ε, f1,∞) = x ·
n−1∩
k=0

A−k
1 B(e, ε) = x ·Dn(e, ε, A1,∞)

and
m(Dn(x, ε, f1,∞)) = m(Dn(e, ε, A1,∞)).

Let ε > 0 and ξ = {C1, . . . , Ck} be a partition ofG into Borel sets of diameter

less than ε. If x ∈
∩n−1

j=0 f−j
1 (Cij ), then

∩n−1
j=0 f−j

1 (Cij ) ⊂ x · Dn(e, ε, A1,∞).

Thus m(
∩n−1

j=0 f−j
1 (Cij )) ≤ m(Dn(e, ε, A1,∞)) and taking logarithms we see

that
k∑

i0,...,in−1=1

m(
n−1∩
j=0

f−j
1 (Cij )) logm(

n−1∩
j=0

f−j
1 (Cij ))

≤
k∑

i0,...,in−1=1

m(
n−1∩
j=0

f−j
1 (Cij )) logm(Dn(e, ε, A1,∞))

= logm(Dn(e, ε, A1,∞)).

Therefore

hm(f1,∞) ≥ hm(f1,∞, ξ) = lim sup
n→∞

1

n
Hm(

n−1∨
j=0

f−j
1 ξ)

≥ lim sup
n→∞

− 1

n
logm(Dn(e, ε, A1,∞)).

Since ε was arbitrary, we have

(3.9) hm(f1,∞) = hm(A1,∞) ≥ lim
ε→0

lim sup
n→∞

− 1

n
logm(Dn(e, ε, A1,∞)).

Consider now an (f1,∞, n, ε)-separated set E of G with cardinality s(f1,∞, n,
ε,G). Then ∪

x∈E

Dn(x,
ε

2
, f1,∞) =

∪
x∈E

x ·Dn(e,
ε

2
, A1,∞)

is a disjoint union because of the choice of E. Therefore

s(f1,∞, n, ε,G) ·m(Dn(e,
ε

2
, A1,∞)) ≤ 1

and so

s(f1,∞, n, ε,G) ≤ 1

m(Dn(e,
ε
2 , A1,∞))

.

Therefore

s(f1,∞, ε, G) ≤ lim sup
n→∞

− 1

n
logm(Dn(e,

ε

2
, A1,∞)),

and letting ε → 0 we see that

(3.10) h(f1,∞) = h(A1,∞) ≤ lim
ε→0

lim sup
n→∞

− 1

n
logm(Dn(e,

ε

2
, A1,∞)).
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If F is an (f1,∞, n, ε)-spanning set with cardinality r(f1,∞, n, ε,G), then

G =
∪
x∈F

Dn(x, 2ε, f1,∞) =
∪
x∈F

x ·Dn(e, 2ε,A1,∞).

Therefore

r(f1,∞, n, 2ε) ·m(Dn(e, 2ε,A1,∞)) ≥ 1

and so

r(f1,∞, n, 2ε,G) ≥ 1

m(Dn(e, 2ε.A1,∞))
.

Hence,

r(f1,∞, ε, G) ≥ lim sup
n→∞

− 1

n
logm(Dn(e, 2ε,A1,∞)),

and letting ε → 0 we see that

(3.11) h(f1,∞) = h(A1,∞) ≥ lim
ε→0

lim sup
n→∞

− 1

n
logm(Dn(e, 2ε,A1,∞)).

From (3.9), (3.10) and (3.11), the desired equation (3.8) holds. □

Corollary 3.9. Let Tk be the k-dimensional torus, m the Lebesgue probability
measure on Tk and A1,∞ = {Ai}∞i=1 a sequence of endomorphisms on Tk. Then

(3.12) hm(A1,∞) ≥ lim
ε→0

lim sup
n→∞

1

n
logm(Dn(0, ε, A1,∞)) = h(A1,∞),

where Dn(0, ε, A1,∞) =
∩n−1

i=0 A−i
1 B(0, ε).

Remark 3.10. It is obvious that if we have

hm(f1,∞) ≤ h(f1,∞),

then we can obtain the equality

hm(f1,∞) = h(f1,∞)

for both the nonautonomous affine transformations on a compact metrizable
group in Theorem 3.8 and the nonautonomous endomorphisms on torus in
Corollary 3.9.

From Proposition 3.5, Theorem 3.6 and Theorem 3.8 we can see that many
classical results on entropy for autonomous systems may not hold any more for
nonautonomous cases even under strong conditions such as the maps preserve
the same measure. However, we shall see that many things takes on a new
look if we consider the nonautonomous systems generated by applying at each
time a transformation chosen randomly from a given family according to some
probability distribution.

Let (X, d) be a compact metric space, B(X) the Borel σ-algebra and m
a probability measure on X. Denote by C0(X,X) the space of continuous
maps on X equipped with the C0-topology. Now consider the subspace U ⊂
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C0(X,X) of the maps preserving m. Let µ be a probability measure on
(U ,B(U)). Denote

(Ω,F ,P) = (UN,B(U)N, µN) =

∞∏
0

(U ,B(U), µ)

the infinite product of copies of the measure space (U ,B(U), µ). For each
ω = {ω0, ω1, . . .} ∈ Ω and n ≥ 0, define

f0
ω = id, fn

ω = ωn−1 ◦ ωn−2 ◦ · · · ◦ ω0.

It is very useful to study the dynamical behavior of these composed maps as n
tends to infinity for P-a.e. ω, and the random dynamical systems generated by
{fn

ω : n ≥ 0, ω ∈ Ω} will be referred to as F . The measure-theoretic entropy of
F with respect to the measure m is defined by

hm(F ) =

∫
Ω

hm(ω)dP(ω),

where hm(ω) is the measure-theoretic entropy of the nonautonomous systems
generated by ω. The topological entropy of F is defined by

h(F ) =

∫
Ω

h(ω)dP(ω),

where h(ω) is the topological entropy of ω.
In the setting of random dynamical system, we can improve some of the

results for the nonautonomous systems. Let τ be the left shift operator on Ω,
namely,

(τω)i+1 = ωi

for all ω = {ω0, ω1, . . .} ∈ ΩN, and Θ the induced skew product transformation
on Ω×X which is defined by

Θ(ω, x) = (ϑω, ϕ(ω)x).

Proposition 3.11. Let F be the RDS as above. Then for any k ∈ N, we have

hm(F k) = khm(F ),

where F k is the RDS generated by {fk
τnkω}, n ∈ N, ω ∈ Ω.

Proof. By the Abramov-Rokhlin formula in [1], we have

hP×m(Θ) = hP(τ) + hm(F ).

Therefore, by the power rules of hP×m(Θ) and hP(τ), we have

hP×m(Θk) = khP×m(Θ) = khP(τ) + khm(F )

and

hP×m(Θk) = hP(τ
k) + hm(F k) = khP(τ) + hm(F k).

Then the desired equality

hm(F k) = khm(F )
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holds. □
Proposition 3.12. Let U ⊂ C0(X,X) be the family of the equi-continuous
maps preserving m and F the RDS as above. Then

hm(F ) ≤ h(F ).

Proof. By Theorem 3.6,

hm(F ) ≤ h(F ) + log 2.

Since U ⊂ C0(X,X) is the family of the equi-continuous maps, we can easily
show that the power rule for the topological entropy h(F ) holds, i.e., for any
k ∈ N we have

h(F k) = kh(F ).

Together with the power rule for hm(F )(Proposition 3.11), we have for any
k ∈ N,

hm(F ) =
1

k
hm(F k) ≤ 1

k
h(F k) +

1

k
log 2 = h(F ) +

1

k
log 2.

Letting k → ∞ gives
hm(F ) ≤ h(F ). □

By Theorem 3.8, Corollary 3.9 and Proposition 3.12, we have the following
result immediately.

Theorem 3.13. Let F be a random equi-continuous endomorphism on Tk.
Then

hm(F ) = h(F ) =

∫
lim
ε→0

lim sup
n→∞

1

n
logm(Dn(0, ε, ω))dP(ω).

We emphasis that in our settings we only consider the random dynamical
systems generated by the particular collection of the transformations which all
preserve the same measure m. In fact, the notions invariant measures for ran-
dom dynamical systems can be given more generally. For more general theory
of RDS, we refer to [3], [6, 7]. And for some recent results about the entropy, es-
pecially the preimage entropy which relays on the preimage structure, of RDS,
we can see [13, 14, 15, 16].
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