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The Shannon entropy of a time series is a standard measure to assess the complexity of a dynamical process
and can be used to quantify transitions between different dynamical regimes. An alternative way of quantifying
complexity is based on state recurrences, such as those available in recurrence quantification analysis. Although
varying definitions for recurrence-based entropies have been suggested so far, for some cases they reveal
inconsistent results. Here we suggest a method based on weighted recurrence plots and show that the associated
Shannon entropy is positively correlated with the largest Lyapunov exponent. We demonstrate the potential on a
prototypical example as well as on experimental data of a chemical experiment.
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I. INTRODUCTION

First conceived to visualize the time-dependent behavior of
complex dynamical systems, recurrence plots (RPs) have been
shown to be a powerful technique to uncover statistically many
characteristic properties of such systems [1,2]. A crucial issue
in the study of time series originating from complex systems
is the detection of dynamical transitions, a task that RPs
have been accomplishing due to a set of RP-based measures
of complexity. Examples of their successful application in
real-world systems can be found in neuroscience [3–5],
earth science [6–9], astrophysics [10–12], and other areas of
research [13].

The measures defined by the RP framework, called re-
currence quantification analysis (RQA), are based on point
density and the length of diagonal and vertical line structures
visible in the RP, which are regarded as alternative measures
to quantify the complexity of physical systems. In order
to the uncover time-dependent behavior of nonlinear time
series, RQA measures are often computed by setting sliding
time windows, which then can be used to identify dynamical
transitions, such as periodic to chaos transitions [14] and even
chaos-chaos transitions [15].

Since the calculation of Lyapunov exponents is often
infeasible for systems whose equations of motion are not
accessible, various estimators for measuring the divergence
behavior of dynamical systems have been suggested. Entropy
based quantifiers of RPs, e.g., the normalized entropy of
recurrence times [16–18] or the Shannon entropy of the
distribution of length of diagonal line segments [14], are able
to detect points of bifurcation.

However, the entropy of the diagonal line segments
reveals, for some cases, a counterintuitive anticorrelation
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with the Lyapunov exponent, yielding high values within
periodic windows and low values within chaotic regimes [14].
To solve this apparent contradiction between the notion
of disorganization of a system and the value of the line
length entropy [14], another definition for a recurrence-based
entropy has been suggested, employing the nonrecurrent
(white) diagonal lines in the RP [19]. It is important to
emphasize that these definitions do not correspond to the
entropy of physical systems in a classical statistical physics
sense [13].

The property of recurrence is often represented by an
unweighted RP, i.e., a binary matrix whose elements indicate
that two points are recurrent, once the distance between them
is below a certain threshold [2]. The restriction of unweighted
RPs naturally introduces a free parameter in the analysis given
by the distance threshold. Here we present an alternative
definition of a RP-based entropy, by using a weighted variant
of the RP. More specifically, here we relax the condition
of defining distance thresholds by introducing the Shannon
entropy of weighted recurrence plots (WRPs), which is only
based on the distances between the points in the phase space.
We illustrate this concept on time series generated by the
logistic map and Rössler oscillator, showing that, in contrast
to the line length entropy, the entropy derived from WRPs has
a stable behavior through the range of bifurcation parameters.
Furthermore, we show that this definition is also positively
correlated with the Lyapunov exponent. An application to time
series from chemical oscillators demonstrates the potential
for studies of real-world experiments. Finally, we summarize
the differences, potentials, and pitfalls between the different
recurrence-based entropies.

This paper is organized as follows. In Sec. II we define RPs
and WRPs and review the definitions of the recurrence-based
Shannon entropies. Section III is devoted to the comparison
of different definitions of recurrence entropies for model
systems and experimental data. We summarize and give our
conclusions in Sec. IV.
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(a) (b) (c)

FIG. 1. (Color online) Recurrence plot of logistic map for (a) r = 3.5 (periodic regime) and (b) r = 4.0 (chaotic regime) and (c) weighted
recurrence plot of logistic map for r = 4.0 (chaotic regime).

II. RECURRENCE PLOTS AND ENTROPY

In a given m-dimensional phase space, two points are
considered to be recurrent if their state vectors lie in a
neighborhood characterized by a threshold ε. Formally, for
a given trajectory xi (i = 1, . . . ,N,x ∈ Rm), the recurrence
matrix R is defined as

Ri,j (ε) = �(ε − ‖xi − xj‖), i,j = 1, . . . ,N, (1)

where N is the trajectory length, �(·) is the Heaviside function,
and ‖·‖ is the Euclidean norm of the adopted phase space [2].
In a RP, elements Ri,j ≡ 1 (recurrence) are usually said to be
black dots, whereas Ri,j ≡ 0 (no recurrence) are usually called
white dots [Figs. 1(a) and 1(b)]. The trajectory phase space can
be reconstructed via time-delay embedding for a time series
{ui}Ni=1 [20],

xi = (ui,ui+τ , . . . ,ui+τ (m−1)), (2)

where m is the embedding dimension and τ is the embedding
delay. The dimension m can be found by nearest neighbors
and the delay τ by mutual information or autocorrelation [21].

The main diagonal of R, Ri,i ≡ 1∀i, shows the line of
identity (LOI). The RP is a symmetric and binary matrix.
The motifs of line segments in a RP occur according to the dy-
namical patterns of the underlying system. If the dynamics is a
uniformly distributed white noise, homogeneously distributed
black points are observed. If the system is deterministic,
the matrix displays diagonal line segments of black dots.
The length of these diagonals is related to the divergence
of the trajectories and is associated with the dynamics of
the system. Due to this intrinsic relationship between the
system’s dynamics and the distribution of line segments in
RPs, measures of complexity based on line segments have
been introduced in order to study the dynamical properties of
different systems [2,14].

Measures based on the length � of the diagonal in the
recurrence matrices (Ri,j = 1) are often used to quantify the
complexity of a given RP. As we have mentioned before,
the distribution of diagonal line lengths P (�) is linked to
the maximum Lyapunov exponent, since P (�) can be con-
sidered a quantification of the divergence behavior of the
dynamical system that originated the RP [2,22]. Among other
measures introduced within the RQA, the diagonal-line-based

entropy was empirically derived [13,14] by measuring the
complexity and variability of the occurring diagonal lines
formed from recurrence points [2], i.e.,

SRP = −
�max∑

�=�min

p(�) ln p(�), (3)

where �max is the length of the longest diagonal line, p(�) =
P (�)/N� is the probability of occurrence of a line of length
�, and N� is the total number of the line segments in
the RP. Although empirical studies have shown that SRP is
capable of identifying dynamical transitions, SRP is negatively
correlated with the maximum Lyapunov exponent λmax for
some cases [14]. As a given dynamical system changes from a
nonchaotic to a chaotic regime, it is expected that the entropy
increases as well, since it is a measure of complexity, but this
cannot always be observed with SRP [2,14,23].

This unexpected behavior is the result of the following
effect. When we consider, e.g., periodic dynamics, the RP
should, in principle, consist of infinitely long diagonal lines.
However, due to the finite time series length, these diagonal
lines are cut at the borders of the RP, finally resulting in their
different lengths, depending on their distance to the LOI, and
hence increasing artificially the entropy measure. This biasing
effect can also happen for nonperiodic dynamics as long as a
significant number of diagonals cross the border of the RP.
For chaotic dynamics, a majority of diagonal lines is not
cut by the RP border, therefore, the bias in the entropy is
negligible. Furthermore, the entropy measure also depends on
the number of diagonal lines in the RP (i.e., indirectly on the
recurrence threshold and the time series length), regardless of
their length distribution. One way to overcome these problems
is a correction scheme as suggested by [23]. However, it
implies additional computational costs due to normalizing
the line lengths depending on their distance to the LOI and
normalizing the entropy by the number of diagonal lines.

Seeking an alternative descriptor for the dynamical com-
plexity to be derived from RPs, another study has suggested the
calculation of the Shannon entropy of the length distribution
of diagonal segments of the nonrecurrence points (white dots)
instead of the diagonal lines formed from the recurrence
points (black dots) [19]. In other words, let Pwhite(�) be the
number of connected diagonal nonrecurrence segments. In
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order to compute the Pwhite(�) histogram, we define a different
recurrence matrix for white points Rwhite

i,j as

Rwhite
i,j = 1 − Ri,j . (4)

Using the Rwhite
i,j matrix, we can compute the histogram

Pwhite(�) of diagonal lines of length � as

Pwhite(�) =
N−1∑
i,j=1

(
1 − Rwhite

i−1,j−1

)(
1 − Rwhite

i+�,j+�

) �−1∏
k=0

Rwhite
i+k,j+k.

(5)
The entropy measure is then defined as [19]

Swhite
RP = −

�max∑
�=�min

pwhite(�) ln pwhite(�), (6)

where pwhite(�) = Pwhite(�)/Nwhite and Nwhite is the total
number of the nonrecurrence line segments in the RP. In
contrast to the results presented in [19], here we show that
this entropy definition does not solve the problem of the
anticorrelation between Swhite

RP and λmax.
In addition to the entropy definitions based on the length of

line segments �, it is worth mentioning that we can also define
entropic measures through the distribution of time returns in
RPs. An example is the recurrence probability density en-
tropy [16], which measures the uncertainty associated with the
distribution P (T ), where T is the recurrence time. Moreover,
the Kolmogorov-Sinai entropy has also been generalized in
the context of RPs in order to measure the complexity in the
distribution of time returns [17].

In order to provide a more intuitive RP-based entropy
measure, without anticorrelations with λmax, we propose a
generalization of a weighted RP. Instead of considering a
binary recurrence matrix, we take into account weights derived
from the distance matrix Wi,j = ‖xi − xj‖. Note that the
binary matrix R provides information on whether or not two
points i and j are close in a d-dimensional phase space,
whereas W represents the distances between pairs of points of
the time series (sometimes also referred to as an unthresholded
RP [24]). In order to consider the proximity between points of
the time series, we introduce the weight matrix

W̃i,j = e−‖xi−xj ‖, (7)

which will be the base for our further analysis [Fig. 1(c)].
As particular weights W̃i,j we have chosen the inverse of
the exponential distribution because it scales the distances
to the value range [0, 1], with the value 1 for close states
and 0 for distant states. For example, periodic regimes with
the occurrence of identical states at i and j = 2πki result in
W̃i,j = 1, whereas for diverging states with large distances
W̃i,j will tend to zero.

This definition of proximity comes with an additional
benefit, i.e., it does not require selection of the recurrence
threshold ε [as necessary for the other definitions (3) and (6)].
The selection of this threshold is not straightforward and a
general method is not available yet [25].

Based on W̃, we propose the following recurrence-based
entropy measure. We define the strength si of a point i in the

time series by

si =
N∑

j=1

W̃ij . (8)

In this way, the strength si quantifying the heterogeneity of
the density of a given point in the phase space allows us to
characterize the amount of statistical disorder in the system
through its distribution P (s). Therefore, the heterogeneity of
the distance matrix W̃ can be calculated by its associated
Shannon entropy, i.e.,

SWRP = −
∑
{s}

p(s) ln p(s), (9)

where p(s) = P (s)/S is the relative frequency distribution of
the distance matrix strength and S = ∑N

i si is the total number
of strengths.

This alternative definition of RP-based entropy has the
following differences with respect to the standard RP-based
definition of the entropy (3). Instead of measuring the
complexity of distributions p(�) of diagonals, SWRP measures
the complexity of scalar distributions (the strength si) for each
time point. Therefore, we get rid of the border effect that
results in deceptive entropy values for SRP. Moreover, as the
calculation for SWRP considers all time points, the results are
not biased by the number of diagonals, therefore the time series
length and the recurrence threshold are not crucial as in the
SRP case (the threshold is even unnecessary because we do
not need to apply a threshold here). Instead, the value of SWRP

depends on the estimation of p(s), i.e., the chosen binning.
For periodic or stochastic dynamics, the strength si will

be very similar for all time points i, resulting in a confined
distribution of p(s) and finally a very low entropy value
SWRP. For chaotic dynamics, the strength si will vary strongly
for different time points i, therefore the distribution p(s)
will be broad and SWRP will increase. Thereby, SWRP will
be more correlated with the Lyapunov exponent than the
diagonal-based entropies SRP and Swhite

RP .

III. COMPARISON OF THE ENTROPIES

In this section we compare the entropies [Eqs. (3), (6),
and (9)] on simulated data, namely, the logistic map as a
discrete case and the Rössler oscillator as a continuous one,
and on experimental electrochemical data.

A. Logistic map

Mathematically, the logistic map is written

xi+1 = axi(1 − xi), (10)

where xi is a real number between zero and one and a

is a positive constant. We analyze the logistic map within
the interesting range of the control parameter a ∈ [3.5,4.0]
with a step size of �a = 0.0005. In this range, the logistic
map shows rich dynamics, e.g., periodic and chaotic states,
bifurcations, and inner and outer crises. For each value of a, we
compute a time series of length N = 5000. In order to discard
transients, we use only the last 3000 values of this time series.
It was shown that RQA measures can distinguish different
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dynamical behavior of the systems, such as chaos-period and
chaos-chaos transitions [14,15]. As mentioned before, entropy
quantifies the disorder of the system. Thus, we would expect
that with an increasing chaotic nature of the system (i.e.,
increasing maximal Lyapunov exponent λmax), the entropy
values should increase. However, within periodic windows,
the entropy should significantly decrease.

For our study, we calculate the distance matrix and the
RP without embedding. For the logistic map, larger values of
the embedding dimension, i.e., dimension m = 2 or 3 and a
delay of τ = 1, do not change the result significantly because
the logistic map is one dimensional. The selection of the
recurrence threshold ε is crucial. Hence, in order to choose
an optimal threshold, we use the recurrence rate method [2],
i.e., selecting ε in such a way that the recurrence rate is
constant at 5%. Sufficient small values of ε decrease the
recurrence point density in RPs and lead to a better distinction
of small variations, whereas larger values cause denser RPs but
the sensitivity to detect small variations decreases. Weighted
RPs, as mentioned before, do not depend on the threshold
value ε.

Now we compare the entropies SWRP, SRP, and Swhite
RP . Note

that, in order to calculate SWRP, 50 bins are used to derive
the probability density function of strengths p(s). We mainly
find that the diagonal line entropy SRP detects the transitions
from periodic to chaotic and chaotic to periodic states. How-
ever, its correlation with the maximum Lyapunov exponent
λmax is opposite to what would be expected as mentioned
before. Moreover, the values within periodic windows are
not consistent, e.g., for a ∈ [3.50,3.54] and a ∈ [3.82,3.85],
SRP is larger than during chaotic regimes, but for periodic
windows at a ∈ [3.2 . . .] or a ∈ [3.75 . . .], SRP falls to zero [see
Fig. 2(b)].

Similarly, the general trend of Swhite
RP is also anticorrelated

to λmax [Fig. 2(c)]. In the larger periodic windows a ∈
[3.5,3.568] and a ∈ [3.82,3.85], Swhite

RP has the highest values.
However, the smaller periodic windows tend to have small
Swhite

RP .
In contrast, the weighted RPs entropy SWRP is in general

positively correlated with the maximum Lyapunov exponent of
the logistic map throughout the entire range of the bifurcation
parameter a. Within periodic states, SWRP(s) has lower values
and during chaotic regimes, it has higher values [Fig. 2(b)].
At the critical values of a = 3.544, 3.564, 3.630, 3.741, and
3.841, SWRP(s) reveals sharp jumps.

In order to quantify the correlation between the entropies
(SRP, Swhite

RP , and SWRP) and the Lyapunov exponent λmax, the
Pearson correlation coefficient is used,

ρxy = cov(x,y)

σxσy

, (11)

where cov(x,y) is the covariance of two time series x and y

and σx and σy are their standard deviations, respectively. As
we can see from Table I, SRP(�) and Swhite

RP (�) are anticorrelated
with the Lyapunov exponent. On the other hand, SWRP(s) is
positively correlated with the Lyapunov exponent. Moreover,
the absolute value of the correlation coefficients of the
diagonal-line-based entropies is less than that of the weighted
RP entropy.
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FIG. 2. (Color online) Comparison between (a) the Lyapunov
exponent λmax, (b) SRP(�) [Eq. (3)], (c) Swhite

RP [Eq. (6)], and (d) SWRP

[Eq. (9)] for the logistic map.

B. Rössler oscillator

Next we compare the different definitions of Shannon
entropy applied on a time series from a continuous system,
the Rössler oscillators [26](

dx

dt
,
dy

dt
,
dz

dt

)
= (−y − z,x + ay,b + zc), (12)

where the bifurcation parameter is b ∈ [0.0,2.0] and the other
parameters are a = 0.2 and c = 5.7. Here we analyze the
Poincaré section of the y component of the Rössler oscillator.
Contrary to the logistic map, increasing the control parameter
b drives the system from chaotic states to periodic ones
[Fig. 3(a)]. For each b value, we create a time series of
the length N = 6 × 105 and exclude the transient responses

TABLE I. Correlation between entropies and the Lyapunov
exponent λmax for the logistic map.

ρxy λmax

SRP(�) −0.52
Swhite

RP (�) −0.67
SWRP(s) 0.85
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FIG. 3. (Color online) Comparison between (a) the Lyapunov
exponent λmax, (b) SRP(�) [Eq. (3)], (c) Swhite

RP [Eq. (6)], and (d) SWRP

[Eq. (9)] for the Rössler oscillator.

by using only the last 5 × 104 data points for the following
analysis. We apply the Poincaré section on the phase space and
use only the inner points of the Poincaré section to calculate W
and R and to estimate the Shannon entropies. For each control
parameter b, approximately 1000 inner points of the Poincaré
section are used to compute the RPs. In order to calculate
SWRP, we also use 50 bins to construct the probability density
function of strengths p(s) as in the logistic map case.

We estimate the different entropies for the Rössler os-
cillations analogously to the logistic map. Although SRP

is anticorrelated for the logistic map case, this measure is
correlated up to some degree with the Lyapunov exponent of
the Rössler oscillator [Fig. 3(b)]. The entropy has higher values
for the chaotic states and lower values for the periodic ones. A
similar behavior can be observed for SWRP [Fig. 3(d)]; SWRP is
also positively correlated with the Lyapunov exponent λmax.

However, the entropy Swhite
RP , based on nonrecurrence line

segments, reveals a different behavior. The general tendency
is similar to the findings in the logistic map example: During
periodic regimes, Swhite

RP is higher than during the chaotic
regimes [Fig. 3(c)], in contrast to SRP and SWRP, which
presented a similar dependence on b.

C. Application to electrochemical experiments

In this section we compare the three entropy definitions
applied to experimental data from electrochemistry. The goal is
to demonstrate the capability of the RP framework to grasp the
complexity of patterns emerging from a real process. The ki-
netics of nickel electrodissolution include charge transfer steps
that exhibit negative differential resistance (NDR); this NDR
behavior generates a range of nonlinear behavior in which
the rate of metal dissolution (current) exhibits simple and
complex periodic and chaotic behavior [27–29]. We employed
30 nickel wires (1 mm diameter) as working electrodes in an
electrochemical cell with Hg/Hg2SO4/(sat)K2SO4 reference
and a Pt-coated Ti-rod counterelectrode in 4.5M sulfuric
acid solution at 10 ◦C. The Ni wires were connected through
1.2-k� external resistances to a potentiostat (GillAC, ACM
Instruments) that maintains constant circuit potential (V). The
current time series for each wire (oscillator) is digitized at a
rate of 200 Hz. Previous investigations showed that in this
configuration there is negligible coupling among the wires
and the oscillators can be regarded as independent [30]. In
addition, there exists an inherent heterogeneity due to varying
surface conditions that creates a population of oscillators with
slightly different dynamical characteristics, e.g., there is a
frequency distribution with a range of about 10–20 mHz [30].
The potential was incrementally increased by 10 mV from
1.3 to 1.4 V and about 1000 oscillations were collected at
each potential. The frequency of the oscillations changed from
1.9 Hz (1.3 V) to 1.8 Hz (1.4 V). The transition from simple
periodic oscillations through complex oscillations to chaotic
oscillations and back to complex oscillations was visually
observed with an increase of the potential. Inspection of the
data reveals that the waveform of oscillations is preeminently
period-1 (1.30–1.33 V) (P1), period-4 (1.34–1.35 V), chaos
(1.36–1.39 V), and period-3 (1.4 V) (P3). These data are
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FIG. 4. (Color online) Complexity measures for 30 electrochem-
ical oscillators as a function of circuit voltage. Color maps shows
the entropies associated with the time series of each electrode for
different values of voltage. The top shows the entropy SRP of black
dots [Eq. (3)], the middle the entropy of white dots Swhite

RP [Eq. (6)],
and the bottom the entropy of weighted RPs SWRP [Eq. (9)].
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FIG. 5. Experimental results showing the comparison between
the mean of the three normalized entropies over all electrodes for
each value of the voltage. The top shows the entropy SRP of black
dots [Eq. (3)], the middle the entropy of white dots Swhite

RP [Eq. (6)],
and the bottom the entropy of weighted RPs SWRP [Eq. (9)]. Again,
50 bins were considered to obtain the probability density function of
strengths p(s).

consistent with previous observation that a complex behavior
is generated with a period-doubling bifurcation to chaos with
the presence of intermittent periodic windows [27,29].

Figure 4 shows the results for the three recurrence entropy
definitions applied to the time series obtained through the
experiments described above. The system is expected to
present oscillatory behavior for voltage values in the range
[1.30 V,1.35 V] and therefore to present lower values of
entropy measures. Similarly to the logistic map and the Rössler
oscillator cases, again the entropy of white dots Swhite

RM shows
higher values for ranges in which the system is in a periodic
regime, contrary to the expected scenario. On the other hand,
the weighted entropy SWRP and the entropy of black dots SRP

present a similar evolution as a function of the voltage applied,
i.e., higher values in ranges in which the system is expected
to present a chaotic behavior. Moreover, as we can see from
Fig. 4, SWRP is observed to have fewer fluctuations than SRP

for voltages below 1.34 V.
In Fig. 5 we present the electrode recurrence-based nor-

malized entropy for each value of voltage averaged for the 30
oscillators. Because of the average, the trends in the changes
of the entropies are better seen as the circuit potential is varied.
It is easier to see the trend of the entropies due to the changing
voltage of the system. Moreover, Swhite

RP presents no correlated
result with the dynamical regimes. Although the entropies
of RPs and weighted RPs seem to be correlated with the
dynamical regimes, SWRP has more consistent values for the
simple periodic case (P1).

Overall, we conclude that the SWRP is suitable to reveal the
complexity of the chemical reaction process; it has normalized
values less than 0.2 for simple periodic oscillations, 0.2–0.7
for complex periodic (e.g., periods 4 and 3) oscillations, and
larger than 0.7 for chaotic oscillations.

IV. CONCLUSION

We have presented a recurrence-based matrix to quantify
the dynamical properties of a given system. The Shannon
entropy of the recurrence matrix has been defined as a
complexity measure and compared with the Shannon entropy
of other recurrence-based approaches. Although entropy is
a well known measure of disorder, in recurrence plot ter-
minology, entropy is determined as a heuristic measure, in
order to detect the transitions between different regimes.
The probability of occurrence of diagonal line segments of
different lengths is not equal since a recurrence plot is a square
matrix whose dimension is limited by the length of the time
series. The Shannon entropy is computed from the diagonal
line distribution in the RP approach. Hence, the commonly
adopted entropic measures based on line segments can often
yield counterintuitive results when quantifying the complexity
of a given system. This was exemplified with the logistic
map case in which the entropy of black and white dots was
observed to be anticorrelated with the Lyapunov exponent.
On the other hand, the entropy of weighted RPs presented
here recovered the expected dependence as a function of the
system’s complexity, i.e., showing higher values within regions
in which chaos is observed. Moreover, for the continuous
systems such as the Rössler attractor and experimental time
series of electrochemical oscillators, although black dots
and weighted entropies are both positively correlated with
the emergence of chaotic behavior, the latter definition was
observed to have more stable values for voltage ranges that
lead to periodic time series. The ideas presented here can
be extended and applied to other complex systems with the
potential to better identify dynamical transitions in time series
originating from them.
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