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2Service de Physique de l’Etat Condensé, DSM, CEA Saclay, CNRS URA 2464, Gif-sur-Yvette, France

Received: 5 October 2010 – Published in Earth Syst. Dynam. Discuss.: 19 October 2010

Revised: 24 January 2011 – Accepted: 2 February 2011 – Published: 23 February 2011

Abstract. Nonlinear feedbacks in the Earth System pro-

vide mechanisms that can prove very useful in understand-

ing complex dynamics with relatively simple concepts. For

example, the temperature and the ice cover of the planet are

linked in a positive feedback which gives birth to multiple

equilibria for some values of the solar constant: fully ice-

covered Earth, ice-free Earth and an intermediate unstable

solution. In this study, we show an analogy between a classi-

cal dynamical system approach to this problem and a Maxi-

mum Entropy Production (MEP) principle view, and we sug-

gest a glimpse on how to reconcile MEP with the time evo-

lution of a variable. It enables us in particular to resolve the

question of the stability of the entropy production maxima.

We also compare the surface heat flux obtained with MEP

and with the bulk-aerodynamic formula.

1 Introduction

A very broad class of problems in climate modelling con-

sists of studying the evolution of a particular field (e.g. sur-

face temperature, precipitation,etc) when an external param-

eter, or forcing, is varied. Most of the time, the response to

this variation is not linear. Feedbacks can amplify or damp

the effect of the initial perturbation. One of these feedbacks

aroused a proficient branch in scientific literature in the 70s’,

when Budyko and Sellers simultaneously suggested that the

interaction between sea ice and climate could have dramatic

consequences. Indeed, the higher the global temperature on

Earth, the less the ice cover is likely to extend, and thus the

lower the albedo. A lower albedo leads in turn to a higher

global temperature, and so on and so forth until all the ice

is melted. Stimulated by this pioneer work, the questions
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of the stability of the climate as well as the consequences

such feedbacks might have for understanding paleoclimates

were extensively studied, using the whole hierarchy of mod-

els, from the most simple Energy Balance Models (EBMs) to

the complex General Circulation Models (GCMs).

Using 1D EBMs, Budyko and Sellers had found two stable

equilibrium positions for the edge of the ice cover, one corre-

sponding to the present climate and one to a fully ice-covered

Earth (Budyko, 1969; Sellers, 1969). A large part of the

subsequent work was concerned with verifying that these re-

sults still held with various different versions of the Budyko-

Sellers models, with different heat transport parameteriza-

tions, temperature dependance expressions in the planetary

albedo, numerical schemes,... (Faegre, 1972; Schneider and

Gal-Chen, 1973; Held and Suarez, 1974; North, 1975a; Gal-

Chen and Schneider, 1976, e.g.). Some elegant analytical

solutions were found for these models (Chylek and Coak-

ley, 1975; North, 1975a,b), and various mathematical meth-

ods were applied to determine the stability of the equilibria

(Ghil, 1976; Su and Hsieh, 1976; Frederiksen, 1976; Cahalan

and North, 1979; North et al., 1979). Owing to the extreme

sensitivity of climate to variations in the solar constant found

by the first studies, the precise position of the tipping point

between present climate and a deep freezed Earth was of pri-

mary concern. Further investigation by Lian and Cess (1977)

and Oerlemans and van den Dool (1978) revealed that the

sensitivity was much less than initially thought. A fundamen-

tal question raised by these results was that of the transitivity

of the climate system in Lorenz’s terminology (Lorenz, 1968,

1970), and the difference between forced and free fluctua-

tions (Schneider and Gal-Chen, 1973; Ghil, 1976; Fraedrich,

1978). For a comprehensive review of the various models,

parameterizations and problems pertaining to Energy Bal-

ance Models and the ice-albedo feedback, the reader is re-

ferred to North et al. (1981).

In this contribution, we will first give a brief account of

the reformulation of these questions with the vocabulary of
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dynamical system theory: how do multiple equilibria arise

from the ice-albedo feedback, what does the bifurcation dia-

gram look like, etc. The model used here is a two box energy

balance model with a simplified radiative transfer using the

Net Exchange Formulation (see e.g. Dufresne et al., 2005),

and a bulk aerodynamic formula for the surface heat flux. In

a second step, we draw an analogy between this dynamical

system view and the results obtained when predicting the sur-

face heat flux from the Maximum Entropy Production (MEP)

principle. The MEP principle, as originally expressed by Pal-

tridge (1975, 1978, 1979) for the climate system, provides a

variational principle to compute energy fluxes that are not

otherwise constrained by the laws of physics. Originally,

Paltridge and others applied MEP to the meridional energy

transport (Paltridge, 1975, 1978; Grassl, 1981; Gerard et al.,

1990; Lorenz et al., 2001, e.g.), but other studies (Ozawa and

Ohmura, 1997; Pujol and Fort, 2002) indicate that it may be

valid on the vertical also.

As noticed by Oerlemans and van den Dool (1978), Crafo-

ord and Källén (1978) and Fraedrich (1978), the bifurca-

tion giving birth to multiple equilibria in the case of the ice-

albedo feedback has a fundamentally radiative nature, and

has nothing to do with transport properties of the atmosphere.

This encourages one in thinking that a zero-dimensionnal

model is sufficient to capture the structure of the mecha-

nism while avoiding the use of more cumbersome mathe-

matics (namely the Sturm-Liouville theory, required for one-

dimensional models such as Ghil, 1976). Therefore we will

restrict ourselves here to this idealized case. Note also that

most of our work could be transposed easily to other feed-

backs, like the water-vapour feedback.

2 The ice-albedo feedback, multiple equilibria and the

hysteresis cycle: the dynamical system approach

2.1 A simple two-layer EBM using the net exchange

formulation

We use a slightly different formulation of the model de-

scribed in Herbert et al. (2010), as represented in Fig. 1. A

grid cell is characterized by a surface temperature Tg and an

atmospheric temperature Ta, and we note 9SW
gs (respectively

9SW
as ) the flux of solar energy received by the ground (re-

spectively absorbed by the atmosphere). Radiative exchange

use the Net Exchange Formulation, in which the basic objects

are not energy fluxes at a given level but rather the energy ex-

change rate between two layers in the atmosphere or between

one layer and a boundary surface (see Dufresne et al., 2005).

9IR
ag is the net energy exchange rate between the ground and

the atmospheric column per unit surface (i.e. the greenhouse

effect), and 9IR
sa (respectively 9IR

sg ) is the cooling to space

term for the atmosphere (respectively the surface). The net

Ψ
SW

as

Ψ
IR
sgΨ

IR

sa

Ψ
IR
ag

Ta

Tg

q
Ψ

SW
gs

ζa

ζo

ζa

ζo

Fig. 1. A grid cell of the model, adapted from Herbert et al. (2010).

9ν
ij

are the energy exchange rates per unit surface due to radiative

transfer (see text), q is the surface heat flux and ζa is the atmospheric

energy convergence. Over the oceans, there is also an oceanic en-

ergy convergence ζo.

energy exchange rates per unit surface are expressed as func-

tions of Tg and Ta as:

9SW
gs = (s̄(α) − s)(1 − α) ξ S, (1)

9SW
as =

(

s + α s∗
)

ξ S, (2)

9IR
ag = t σ T 4

g − t σ T 4
a , (3)

9IR
sa = t σ T 4

a , (4)

9IR
sg =

(

1 −
t

µ

)

σ T 4
g , (5)

where σ is the Stefan-Boltzmann constant, α is the surface

albedo, t, s, s∗, s̄ are radiative coefficients, S is the solar

constant, ξ accounts for the annual mean zenith angle of the

sun and µ is the Elsasser factor (see Herbert et al., 2010 for

a derivation of the equations and a discussion of the coeffi-

cients).

In addition to radiation, energy is exchanged due to atmo-

spheric and oceanic transport as well as surface heat fluxes.

Let us merge all these energy transfer modes into two vari-

ables: γa (respectively γg) represents the net convergence

(the opposite of the divergence) of energy into the atmo-

spheric cell (respectively the surface layer). Writing ζa for

the atmospheric convergence (this variable was designated

by ζ in Herbert et al., 2010), ζo for the oceanic convergence

(this was not taken into account in Herbert et al., 2010), and

q for the surface heat flux, we have

γa = ζa + q, (6)

γg = ζo − q. (7)

Knowing the convergence of energy in each cell – atmo-

sphere or ground – it is in general not possible without fur-

ther assumptions to separate the contribution due to surface
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fluxes, atmospheric transport, and oceanic transport when ap-

plicable. Of course, over land, it is reasonable to assume

that γg is just the surface energy flux (i.e. ζo = 0) , and then

γa + γg is the convergence of energy due to the atmospheric

flow. In this study, as we will only use the zero-dimensional

version of this model, we will always have ζa = ζo = 0, and

thus γa = −γg = q.

At steady-state, the energy balance equations for the atmo-

sphere and the surface read

Ra

(

Ta, Tg

)

+ γa = 0, (8)

Rg

(

Ta, Tg

)

+ γg = 0, (9)

where

Ra

(

Ta, Tg

)

= 9SW
as + 9IR

ag − 9IR
sa (10)

=
(

s + α s∗
)

ξ S + t
(

σ T 4
g − 2 σ T 4

a

)

,

Rg

(

Ta, Tg

)

= 9SW
gs − 9IR

ag − 9IR
sg (11)

= (s̄ − s)(1 − α) ξ S − t
(

σ T 4
g − σ T 4

a

)

−

(

1 −
t

µ

)

σ T 4
g .

In this form, the steady-state Eqs. (8)–(9) cannot be solved

since γa and γg are unkown. In the next section we introduce

a parameterization of these quantities as functions of Ta and

Tg. In Sect. 3, we use the MEP principle to compute them.

2.2 The zero-dimensional model with bulk aerodynamic

formula

In the case of a zero-dimensional, two-layer model consid-

ered here, the net convergence of energy in the atmospheric

box (i.e. the divergence of the diabatic heating at the surface,

γa = q = −γg) can be simply interpreted as the surface heat

flux. In this section, we adopt a bulk aerodynamic formula

(Peixoto and Oort, 1992) to express this flux as a function of

the temperatures Ta and Tg:

γa = qbaf

(

Ta, Tg

)

= cpa CD us

(

Tg − Ta

)

. (12)

where CD is the drag coefficient, us is the surface wind speed

and cpa is the heat capacity of the atmosphere per unit surface

area (similarly cpg is the heat capacity of the ground). Now

the model can be seen as a two-dimensional dynamical sys-

tem:
(

Ṫa

Ṫg

)

= F
(

Ta, Tg

)

, (13)

with

F
(

Ta, Tg

)

=

(

F1

(

Ta, Tg

)

F2

(

Ta, Tg

)

)

, (14)

and

F1

(

Ta, Tg

)

=
1

cpa

(

Ra

(

Ta, Tg

)

+ qbaf

(

Ta, Tg

))

, (15)

F2

(

Ta, Tg

)

=
1

cpg

(

Rg

(

Ta, Tg

)

− qbaf

(

Ta, Tg

))

. (16)

Our main interest here is to find the equilibrium positions

of the system, i.e. the fixed points of the dynamical system,

given by the roots of F , and to study their stability. Of

course, the dynamics of a two-dimensional dynamical sys-

tem can be more complex than just a relaxation to an equi-

librium position (although it is still rather gentle, see Guck-

enheimer and Holmes, 1983 for example), contrary to one-

dimensional dynamical systems. Still, let us note here that

the first equation in F(Ta, Tg) = 0 can be solved algebraically

in Ta to obtain a relation T ∗
a = f (T ∗

g ) where (T ∗
a , T ∗

g ) is a

fixed point of the system. Thus the number of fixed points of

the two-dimensional system is exactly the number of roots of

the scalar equation F2(f (Tg), Tg) = 0.

For simplicity, we will consider here the projection of the

dynamical system (Eq. 13) onto the Tg axis:

Ṫg = F2

(

f
(

Tg

)

, Tg

)

. (17)

As just explained, this dynamical system, although not

mathematically equivalent to the full dynamical system

(Eq. 14), has the same equilibrium positions. Physically, this

simplification is motivated by the fact that the atmosphere

can be assumed to reach equilibrium very quickly, hence the

evolution of Ta is enslaved by the dynamics of Tg. In other

words, the system (Eq. 17) is just the system (Eq. 14) with

cpa = 0.

2.3 Multiple equilibria

The values of the coefficients used here are reproduced in

Table 1. Taking for the albedo the fixed value α0 = 0.15,

the system only has one fixed point, as plotting the function

F2(f (Tg), Tg) = 0 clearly shows (see Fig. 2). In this case,

the equilibrium is at a global mean surface temperature of

T 0
g ≈ 288 K.

But in reality, the higher the global mean temperature, the

lower the extent of the regions that can sustain an ice-cover.

This positive feedback can be encoded in the following tem-

perature dependance for the albedo:

α
(

Tg

)

= αF +
(αI − αF)

2

(

1 + tanh

(

T0 − Tg

1T

))

, (18)

where αF (respectively αI) represents the value of the plan-

etary albedo over an ice-free (respectively fully ice-covered)

area, and T0 and 1T are parameters determining the transi-

tion from ice-free to ice-covered conditions (see Fig. 3). One

could simply use a step function between ice-free and ice-

covered albedo values, or a piecewise linear function, but we
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Table 1. Values for the parameters of the 0D model (radiative coefficients, bulk aerodynamic formula parameters and ice-albedo feedback

parameterization). Note that the values for the heat capacities depend on the thickness of the layer and on the nature of the surface (ocean or

land), but this has no influence on the steady-state results.

Symbol µ ξ t s s∗ s̄ α0 S0

Value 0.6 0.25 0.44 0.19 0.015 0.89 0.15 1368 W m−2

Symbol CD us cpa cpg αI αF T0 1T

Value 0.008 6 m s−1 1 MJ K−1 m−2 210 MJ K−1 m−2 0.08 0.68 273.15 K 15 K

260 270 280 290 300 310
TgHKL

-0.0010

-0.0005

0.0005

0.0010

0.0015

0.0020

F2HfHTgL,TgL HK.s-1L

Fig. 2. Function F2(f (Tg), Tg) as a function of Tg (see text) with

a fixed albedo has only one root.

choose this expression because it depends smoothly on the

temperature.

Replacing α in Eq. (14) with Eq. (18) yields a new dynam-

ical system

(

Ṫa

Ṫg

)

= G
(

Ta, Tg

)

, (19)

where the fixed points are again determined by the condi-

tions, g being defined similarly to f (or obtained by substi-

tution of the albedo function into f ),

T ∗
a = g

(

T ∗
g

)

, (20)

0 = G2

(

g
(

T ∗
g

)

, T ∗
g

)

. (21)

Plotting the curve G2(g(Tg), Tg) as a function of Tg

(Fig. 4) shows that for certain values of the solar constant,

three solutions coexist. This range can be determined to

be approximately 0.98 S0 ≤ S ≤ 1.08 S0. Outside this range,

only one solution subsists. For the present value of the solar

constant, S = S0, for instance, these equilibria correspond to a

fully glaciated Earth (snowball state) T S
g ≈ 249 K, an ice-free

Earth T P
g ≈ 287 K which can be identified with the present

climate, and an intermediate glacial state T G
g ≈ 275 K. For

a low value of the solar constant (e.g. 0.95 S0), only the

snowball state T S
g subsists. Similarly, at high solar constant

240 260 280 300
Tg HKL

0.2

0.4

0.6

0.8

1.0

ΑHTgL

Fig. 3. Surface albedo α as a function of surface temperature Tg in

K.

250 260 270 280 290 300 310
Tg HKL

-0.0010

-0.0005

0.0005

G2HgHTgL,TgL HK.s-1L

Fig. 4. Function G2(g(Tg), Tg) as a function of Tg (see text) in-

cluding the ice-albedo feedback for different values of the solar

constant: 0.95 S0 (blue), S0 (red), 1.05 S0 (yellow), 1.1 S0 (green).

(e.g. 1.1 S0), the only equilibrium is found on the ice-free

branch T P
g .

A fixed point X∗ of the dynamical system Ẋ = F(X) is said

to be (linearly) stable if all the eigenvalues of the jacobian of

F are negative (see Arnold, 1984 for a complete classifica-

tion of the two-dimensional fixed points). In this model we

find that T P
g and T S

g are always stable nodes when they exist,

while T G
g is a saddle-point.
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Fig. 5. Bifurcation diagram of the bulk aerodynamic formula

model. TG, TP and TS are plotted against S/S0 when they exist.

Stable fixed points are plotted in blue while the unstable solution is

in dotted red. This figure clearly shows that two saddle-node bifur-

cations occur at respectively S ≈ 0.98 S0 and S ≈ 1.08 S0.

The stability can also be read directly on Fig. 4 for the 1D-

reduced system: stable equilibria correspond to roots of the

function with negative derivative, while at the unstable equi-

librium, the curve crosses the x-axis with an upward slope.

Summarizing the above results, Fig. 5 represents the curve

of the fixed points when sweeping a large range of values

for S: it is the bifurcation diagram of the dynamical system.

Creation of a pair of stable/unstable equilibria at the tipping

points 0.98 S0 and 1.08 S0 is called a saddle-node bifurca-

tion. Thus the hysteresis curve obtained for the temperature

stems from the bifurcation structure of the dynamical system

as two back-to-back saddle-node bifurcations. It is notewor-

thy that this figure does not depend upon the particular coef-

ficients choice in the bulk formula, nor on the greenhouse ef-

fect. Would we set qbaf = 0 (radiative equilibrium with green-

house effect) or/and t = 0 (greenhouse effect shut down), the

hysteresis curve would remain qualitatively the same.

2.4 Potential for the dynamical system

The full two-variables dynamical system (Eq. 13) cannot be

expressed as the gradient of a potential function, but its one-

dimensional projection can, like any other one-dimensional

dynamical system. Let us thus introduce the potential V (de-

fined up to an additive constant) such that

Ṫg = −
∂V

∂Tg
. (22)

Fixed points of the dynamical system correspond to criti-

cal points (i.e. extrema in this 1-D case) of the potential. The

stability criterion becomes that stable fixed points are min-

ima of the potential:

−
∂2 V

∂T 2
g

< 0, (23)

while its maxima are unstable fixed points.

240 260 280 300 320
Tg HKL

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V�V0

Fig. 6. Potential V (normalized) as a function of temperature Tg (in

K) for three different values of the solar constant: 0.95 S0 (red), S0

(blue) and 1.1 S0 (yellow). For the present value of the solar con-

stant, the potential has a double well shape, with two stable equi-

libria, while for the two other values, the potential has only one

minimum.

Figure 6 shows the shape of the potential for different val-

ues of the solar constant. At low solar constant (e.g. 0.95 S0),

the potential has only one critical point, a minimum at

T ≈ 245 K. Increasing the value of the solar constant levels

down the potential curve, until a second local minimum ap-

pears (along with a local maximum) with T above the freez-

ing point, around S ≈ 0.98 S0. At S = S0, it is clear that the

potential has two minima at T ≈ 250 K and T ≈ 290 K and

a maximum at T ≈ 275 K. Further increase of the solar con-

stant leads to a deeper minimum at T > 0 ◦C while the min-

imum at T < 0 ◦C becomes shallower. Around S ≈ 1.08 S0,

the minimum at T < 0 ◦C disappears (it annihilates with the

local maximum); for S = 1.1 S0, the only minimum is found

at T ≈ 300 K.

Note that, as expected, the critical points of the potential

obtained for the three values of the solar constant consid-

ered here match with the values of Fig. 4. Also, the number

of critical points of the potential changes at the bifurcation

points of the dynamical system.

3 The entropy production rate and the ice-albedo

feedback

In this section, we do not use anymore the bulk aerody-

namic formula for the surface flux γa = −γg, but the Maxi-

mum Entropy Production Principle, as described in Herbert

et al. (2010). The first application of the MEP principle to

climate is found in Paltridge (1975), where the meridional

energy transport in a zonally averaged box-model is chosen

so as to maximize the entropy production. The resulting cli-

mate is in striking accordance with observations. In spite

of successful applications in other areas as well, the domain

of validity of the MEP principle remains unclear due to the

lack of a fully convincing proof (see Dewar, 2003, 2005 and

www.earth-syst-dynam.net/2/13/2011/ Earth Syst. Dynam., 2, 13–23, 2011
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270 280 290 300 310 320
Tg HKL

-0.10

-0.08

-0.06

-0.04

-0.02

ΣHTgL HW.K-1.m-2L

Fig. 7. Entropy production rate as a function of the surface tem-

perature Tg for the 0D model at S = S0. The only local maximum

corresponds to Tg ≈ 295 K.

the comments in Grinstein and Linsker, 2007; Bruers, 2007).

More details on theoretical issues and practical use can be

found in Ozawa et al. (2003); Kleidon and Lorenz (2005);

Martyushev and Seleznev (2006).

3.1 The entropy production rate in zero-dimensions

Let us consider the model of Sect. 2.1 and introduce the en-

tropy production rate per unit surface

σ =
γa

Ta
+

γg

Tg
. (24)

Substituting Eqs. (8)–(9) into Eq. (24) for γa and γg, σ can

be considered as a functional of the temperature field. We are

looking for its maxima subject to the constraint

γa + γg = 0. (25)

The sum of Eqs. (8) and (9) can thus be solved for Ta as a

function of Tg, and the entropy production rate σ is simply a

function of one variable. Its graphical representation for the

set of parameters given in Table 1 (fixed albedo α0) is shown

in Fig. 7. It is clear that there is only one local maximum,

corresponding to a surface temperature Tg ≈ 295 K.

Now, replacing in the equations the constant albedo α0 by

the temperature-dependent albedo (Eq. 18), the resulting en-

tropy production rate curve is plotted in Fig. 8 for different

values of the solar constant.

Unlike the potential for the dynamical system in Sect. 2.4,

the entropy production rate always has at least two local max-

ima and a local minimum. In fact, over a rather narrow range,

estimated to be 0.95 S0 ≤ S ≤ 1.005 S0, the entropy produc-

tion rate even has three maxima and two minima. This is

even clearer on the contour plot of the entropy production

rate as a function of Tg and S/S0 (Fig. 9). Hence, there is

indeed an analogue of the fold of the potential in the clas-

sical dynamical system picture in the context of the entropy

production surface, but the values at which it takes place do

not exactly correspond.

240 260 280 300 320
Tg HKL

-0.04

-0.03

-0.02

-0.01

0.01

ΣHTgL HW.K-1.m-2L

Fig. 8. Entropy production rate as a function of the surface tem-

perature Tg for the 0D model with ice-albedo feedback. For a low

value of the solar constant (S = 0.8 S0, blue curve), there is only one

local maximum with positive entropy production rate. The same

holds for high solar constant (S = 1.2 S0, yellow curve), while there

are three local maxima and two minima, all with positive entropy

production rates, for S = S0 (red curve).

Besides, a large portion of the curve on Fig. 8 lies under

the abscissa axis: for the corresponding range of tempera-

ture values, the entropy production rate is negative, contrary

to what the second law of thermodynamics states (or more

precisely its extension to non-equilibrium systems). It seems

reasonable to impose the condition

σ
(

Tg

)

≥ 0, (26)

thereby restricting the range of values Tg can actually take. In

this case, this is equivalent to requiring that the surface heat

flux goes from hot to cold. With this additional constraint,

the range of possible values of the solar constant allowing

for coexistence of multiple equilibria (two or three) can be

determined approximately: 0.8 S0 ≤ S ≤ 1.12 S0.

3.2 Stability of the MEP states

In the classical understanding of the MEP principle, the rate

of entropy production σ is a function defined on the mani-

fold of steady-states which reaches a maximum at the most

probable state. In the presence of several local maxima, it

is generally believed that the final equilibrium state of the

system will be the global maximum. In our case, there are

three local maxima of the entropy production rate for the

present value of the solar constant, as discussed in the previ-

ous section. We know from the dynamical system approach

that there can indeed be several steady-states (that coincide

with the positions of the entropy production maxima, as dis-

cussed in the previous section) for a given set of parameters,

and the actual steady-state of the system is determined from

the initial conditions. In the absence of fluctuations, the sys-

tem remains in this state. Hence it is certainly not sufficient

to retain the global maximum of the entropy production rate

as representing the final state of the system. Instead one must
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Fig. 9. Contour plot of the entropy production rate as a function

of the solar constant (normalized by its present-day value) and the

surface temperature Tg (in K). Negative contour lines are dashed,

positive contour lines are solid and the null contour line is the thick

solid line. Shades of blue represent negative values of the entropy

production rate.

find a practical way to select a local maximum for given ini-

tial conditions. As a particular case, we would obtain a way

to distinguish between local entropy production maxima rep-

resenting dynamically stable steady-states and dynamically

unstable ones.

This involves the introduction of time in the MEP formu-

lation. So far, there was no mention of time in the MEP ap-

proach as we were only concerned with steady-states. Even

though we claim that the entropy production maxima cor-

respond to equilibrium points, −σ is by no means a poten-

tial for the dynamical system. Indeed, the dynamics of the

system is simply given by the first law of thermodynamics.

Here, it reads

cpa
dTa

dt
= Ra

(

Ta, Tg

)

+ γa, (27)

cpg

dTg

dt
= Rg

(

Ta, Tg

)

+ γg. (28)

Similarly to the steady-state entropy production rate, we

can define the instantaneous entropy production rate:

σi(t) =
γa(t)

Ta(t)
+

γg(t)

Tg(t)
(29)

=
1

Ta(t)

(

cpa
dTa

dt
− Ra

(

Ta, Tg

)

)

+
1

Tg(t)

(

cpg

dTg

dt
− Rg

(

Ta, Tg

)

)

using Eqs. (27)–(28). Note that the instantaneous entropy

production rate σi and the steady-state entropy production

rate σ coincide at steady-state.

As σi appears as the natural generalization of σ taking into

account the time derivative of the dynamical variables, we

suggest that the system may follow the trajectory maximizing

the instantaneous entropy production rate, seen as a function

of the time-dependent unknown fluxes γa,γg (always linked

by the relation γa + γg = 0). This approach is very similar to

what Jaynes (1980) advocates for.

In practice, it is easier to reformulate the above suggestion

with a time-discretized system (see Fig. 10). Let us consider

two snapshots of the system separated by a finite time in-

terval dt . We note T t
a , T t

g the values of the air and surface

temperature at time t . The instantaneous entropy production

rate becomes:

σ t
i =

1

T t
a

(

cpa
T t

a − T t−1
a

dt
− Ra

(

T t
a , T t

g

)

)

(30)

+
1

T t
g

(

cpg

T t
g − T t−1

g

dt
− Rg

(

T t
a , T t

g

)

)

Suppose we know the state of the system at time t − 1

(i.e. T t−1
a and T t−1

g are given). Then our postulate is that

T t
a and T t

g can be chosen so as to maximize σ t
i (with fixed

T t−1
a and T t−1

g ) subject to the constraint γ t
a + γ t

g = 0. Iterat-

ing this process leads to a trajectory maximizing the instanta-

neous entropy production rate at each timestep, starting from

a given initial condition.

Integrating the system with this method, initialized in the

vicinity of the different maxima of the entropy production

rate at steady-state, provides a criterion for stability: it is

found here that the warm branch as well as the snowball

branch of Fig. 9 are stable, while the intermediate branch is

unstable. The maxima of the entropy production and their

stability are plotted as functions of the solar constant on

Fig. 11, analogously to Fig. 5. This result draws the final

line in the parallel between the dynamical system approach

and the MEP approach. Note that the limits of this analogy

are reached at some points: Fig. 11 cannot be considered as a

usual bifurcation diagram. As a consequence, the lines of ex-

istence of the maxima need not depend continuously on the

parameter, and for certain values of the parameter (for exam-

ple S ≈ 0.9 S0), two stable maxima coexist with no unstable

manifold to separate them.

The trajectory maximizing the instantaneous entropy pro-

duction rate in the way explained above thus yields stability

properties for the different steady-states that are consistent

with the dynamical system approach. Hence, it seems legiti-

mate to use this hypothesis as a relaxation equation, in a sim-

ilar fashion as Robert and Sommeria (1992). However, there

is no certainty that the system actually follows this maximum

instantaneous entropy production trajectory. It would be very
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Fig. 10. To discuss the stability of the steady states predicted by MEP, we need to extend the principle to obtain a time-dependent formulation.

This is done by maximizing the instantaneous entropy production rate. To compute the time derivative of the temperature, we consider it

as a known flux in time seen as a geometric dimension of the space upon which MEP operates (see text). In green, the fluxes that can be

computed from the state variables (T t−1
a , T t

a , T t−1
g , T t

g ). In red, the unknown flux obeying MEP.
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Fig. 11. Entropy Production maxima as a function of the solar con-

stant, normalized by its present value. The solid lines (respectively

the dotted line) correspond to dynamically stable (respectively un-

stable) equilibria in the sense of Sect. 3.2. Note that this is not a

bifurcation diagram in the usual meaning.

valuable to investigate the range of validity of this new appli-

cation of the MEP principle in future studies, theoretically

or on other examples. We can already adduce some mate-

rial to support our relaxation equations approach. In fact, the

only novelty as compared to the common use of MEP in the

steady-state context is the inclusion of time derivatives of the

dynamical variables in the entropy production rate. But one

can simply consider these time derivatives as known fluxes,

playing exactly the same role as Ra(Ta, Tg) or Rg(Ta, Tg).

The only difference is that computing these fluxes requires

that we consider a bigger system (here simply the state of

the system at times t −1 and t), even though the number of

unknowns in the big system remains the same (T t
a and T t

g ,

whereas T t−1
a and T t−1

g are fixed). In this respect, there is

no fundamental difference between the time dimension and

any geometric dimension, which are customarily included in

MEP models.

Alternatively, one could consider the total entropy produc-

tion rate (i.e. the integral of the instantaneous entropy pro-

duction rate over time) as a functional of trajectories and

claim that the system follows the trajectory that maximizes

this functional subject to the relevant constraints (Filyukov

and Karpov, 1967a,b, Filyukov, 1968 and Monthus, 2010

have developed this idea in the case of Markov chains by

maximizing the information entropy as a function of both the

probability of the states and that of the transition rates). As

we should show in a forthcoming study, this is particularly

suitable for periodic phenomena, such as the seasonal cycle.

Regarding the stability of the steady-states, we expect this

method to yield the same results as the maximum instanta-

neous entropy production relaxation used here.

3.3 Surface heat flux and snowball earth deglaciation

In the case of the first section, the surface heat flux is pa-

rameterized as a function of Ta and Tg. As a consequence of

this strong constraint, one could draw a bifurcation diagram

for qbaf very similar to Fig. 5, with relatively weak surface

heat flux qS
baf for low solar constants (around 20 W m−2),

strong surface heat flux qP
baf at high solar constants (around

100 W m−2), with an unstable branch qG
baf linking the two.

On the contrary, the surface heat flux obtained through the

MEP procedure qmep is much less constrained by the tem-

perature gradient. Figure 12 shows the surface heat flux as a

function of the temperature gradient Tg −Ta for both cases:

qbaf and qmep. It is clear that the two differ completely, not

only because the temperature gradients in the different cli-

mates are very different, but also because the shape of qmep

as a function of the temperature gradient is far from linear.

Note that in the MEP snowball state, although the tempera-

ture gradient is relatively high, the surface flux remains very
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low. On the warm branch for the MEP state, high values

of qmep are obtained for high values of the solar constant.

Hence, decreasing the solar constant brings the surface flux

down, until the point where only the snowball state survives,

with a similar low value of the surface heat flux.

This discrepancy between the two graphs is likely to be

significant: it has been suggested that the suppression of the

vertical temperature gradient in the snowball state numbers

amongst the reasons that make deglaciation of the snowball

Earth so difficult (Pierrehumbert, 2004, 2005; le Hir et al.,

2010). Indeed, the temperature inversion isolates the surface

from all the forms of energy exchange: the greenhouse ef-

fect can only warm the surface when the air aloft is colder,

latent heat plays a very limited role in this very dry atmo-

sphere, and the sensible heat flux is also restricted by the

vertical structure of the atmosphere. Pierrehumbert (2004)

points out that a crucial role may be played by the surface

fluxes parameterization and the convection parameterization.

Here the simplicity of the model does not allow us to discuss

the static stability, nor to come up with a clear explanation

of the questioning Fig. 12, but it does certainly reinforce the

idea that surface heat fluxes parameterization can play criti-

cal parts on important paleoclimate problems. In the case of

the MEP surface heat flux, our results tend to indicate that

it would be possible for the snowball earth to withstand a

vertical temperature gradient higher than expected with very

little loss in the form of sensible heat, thereby damaging the

thermal shield of the surface layer mentioned above.

On a similar note, Lucarini et al. (2010) performed a thor-

ough investigation of the thermodynamic properties of the

snowball Earth as compared to warm climates in the model

of intermediate complexity PLASIM (Fraedrich et al., 2005),

using the formalism of non-equilibrium thermodynamics ap-

plied to the climate system as described in Lucarini (2009).

Computation of the thermodynamics efficiency, irreversibil-

ity and material entropy production clearly characterizes dis-

tinct thermodynamic regimes for the snowball Earth and ice-

free climate. Our remarks about the surface heat flux in

snowball conditions add up to their thermodynamic analysis.

4 Conclusions

The analogy developed in this study leads to some enlight-

ening conclusions. First, about the ice-albedo feedback in

itself, it provides a variational principle different from those

previously suggested, with a thermodynamic motivation. On

the contrary, all the candidates for variational formulations of

the problem examined previously were rather ad hoc poten-

tials for the dynamical system. The parallel between poten-

tials properly speaking, which fully describe the dynamics

of the system, and the entropy production rate, which only

characterize equilibrium states, was pushed one step further

with the introduction of a method to integrate a trajectory

using the MEP principle. In particular we have shown that
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Fig. 12. Comparison between the bulk aerodynamic formula sur-

face heat flux (top) and the MEP predicted surface heat flux (bot-

tom) as a function of the temperature gradient Tg−Ta. The red solid

line corresponds to the warm branch of the bifurcation diagram, the

blue solid line to the snowball state and the dotted yellow line is the

unstable branch. Note the very different scales for Tg −Ta.

this method predicts the correct stability for the MEP pre-

dicted equilibria. We also investigated the behaviour of the

surface heat flux in the snowball state. The results hint that

MEP might prove useful in such extreme situations where the

usual parameterizations face important difficulties. However,

the highly simplified model considered here does not allow

us to conclude against or in favour of the MEP parameteriza-

tion, as compared to the bulk-aerodynamic formula.

As far as the MEP conjecture is concerned, our work

adds up to the relatively short list of efforts up to now (es-

sentially Shimokawa and Ozawa, 2001, 2002 and Jupp and

Cox, 2010) to sort out how the principle should be under-

stood in the presence of multiple entropy production max-

ima. Shimokawa and Ozawa (2002) suggested that a dy-

namical system, in their case the thermohaline circulation,

when multiple steady-states are available, should move to the

most dissipative one. Nicolis (2003) and Nicolis and Nicolis

(2010) showed strong limitations to this interpretation in full

generality. Here, we find that steady-states of a system with

unknown turbulent fluxes correspond to local maxima of the

entropy production seen as a function of the unknown fluxes.

The stability of these maxima does not seem to depend on

the numeric value of the entropy production at that point.
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Instead, we suggest that the question of the dynamic stability

can be investigated by a relaxation process maximizing the

instantaneous entropy production rate.
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