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Entropy Production, Fractals, and Relaxation to Equilibrium
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The theory of entropy production in nonequilibrium, Hamiltonian systems, previously described
for steady states using partitions of phase space, is here extended to time dependent systems re-
laxing to equilibrium. We illustrate the main ideas using a simple multibaker model with some
nonequilibrium initial state, and we study its progress toward equilibrium. For this model, the
central results are: (1) the entropy production is governed by an underlying, exponentially decaying
fractal structure in phase space; (2) the rate of entropy production is largely independent of the
scale of resolution used in constructing the partitions; and (3) the rate of entropy production so
obtained is in agreement with the predictions of nonequilibrium thermodynamics.
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One of the central issues in the statistical mechan-
ics of nonequilibrium processes in fluids is to under-
stand the irreversible production of entropy. Very sig-
nificant progress has been made recently in the the-
ory for entropy production in nonequilibrium, Hamilto-
nian systems, using ideas from dynamical systems theory.
Gaspard[1], Tél, Vollmer, and Breymann [2–5], Gilbert
and Dorfman[6], as well as Tasaki and Gaspard [7, 8],
have described coarse graining procedures applied to the
Gibbs entropy, defined in the phase space of systems
maintained in nonequilibrium steady states. These pro-
cedures lead to results in accord with the predictions of
the thermodynamics of irreversible processes. Although
most of this work has been illustrated for a very sim-
ple system, a multibaker map, we believe that the main
ideas and results can be generalized to more complicated
many-body systems, even taking into account, of course,
the more complex dynamics of such systems. Central to
the results obtained so far is the fact that, in nonequilib-
rium steady states, and in the thermodynamic limit, the
entropy production is controlled by fractal structures in
the phase space distribution function. The presence of
these fractal structures in the stationary state measures
is crucial for the theory of entropy production, since if
the distribution functions were smooth, the usual Gibbs
entropy arguments would apply, and there would be no
change in the Gibbs entropy, and no positive irreversible
entropy production. This previous work left open the
question as to how one might treat the irreversible en-
tropy production for systems relaxing to a uniform equi-
librium state.
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The purpose of the present letter is to show that one
can also understand entropy production in the approach
to equilibrium, in a similar fashion to that in a nonequi-
librium steady state. That is, fractal structures appear
in the thermodynamic limit for systems approaching an
equilibrium state, and the treatment of the entropy pro-
duction following the lines initiated by Gaspard, leads to
the well-known results of irreversible thermodynamics[9].
Thus, irreversible entropy production in time dependent
processes as well as in nonequilibrium steady states can
be understood from a single point of view and treated by
closely related, essentially identical, analytical methods.

The procedure we follow makes use of the contribution
to the phase space distribution of the singular hydrody-
namic modes of diffusion of the Frobenius-Perron opera-
tor, as described by Gaspard [10, 11]. The contribution
of these hydrodynamic modes to the irreversible entropy
production is determined by using a procedure based
upon a partitioning of the phase space into small regions,
which allows the fractal structures in the phase space dis-
tribution functions to be described. This method natu-
rally raises the issue of what size and what kind of par-
titions should be used in this process [12]. Here we use a
natural Markov partition based upon the chaotic dynam-
ics of the system, and we show that the physical results
are essentially independent of the size of the partitions
used, provided the partitions are not larger than some
characteristic microscopic size of the system. We will il-
lustrate the ideas by means of a multibaker system relax-
ing to equilibrium, which is easy to describe. In further
work we will show how these methods can be extended to
treat diffusion in a periodic Lorentz gas [13], and other
systems [14].

We consider the relaxation to an equilibrium distri-
bution for a large ensemble of random walkers on sites
labeled by integers on a chain of length L, with peri-
odic boundary conditions. The ensemble is such that
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the initial distribution of walkers is non-uniform on the
L sites. Furthermore, to avoid some mild complications
due to the the lack of irreducibility of the corresponding
transition matrix of the simplest binary process where
particles hop to the right or left, we consider here a pro-
cess where the random walkers have equal probabilities
of hopping to the right or left or of remaining at their
position. We now replace this simple random process by
a deterministic one that mimics the Hamiltonian dynam-
ics underlying deterministic diffusion. Therefore we use
a triadic multibaker map to describe the system with a
deterministic, reversible, and area-preserving time evolu-
tion. The phase space dynamics take place on L× [0, 1]2,
where L = {1, . . . , L} ⊂ Z. The time evolution is given
by

Mn(x, y) =


(
n− 1, 3x, y3

)
, 0 ≤ x < 1

3 ,(
n, 3x− 1, y + 1

3

)
, 1

3 ≤ x < 2
3 ,(

n+ 1, 3x− 2, y + 2
3

)
, 2

3 ≤ x < 1.
(1)

Here the integer index n denotes the particular site on
the chain, and x, y are internal coordinates used to make
the motion deterministic. Since (x, y) ∈ [0, 1]2, each site
of the chain is a square. We use periodic boundary con-
ditions to identify site j with site L+ j, etc.

Let ρt(n, x, y) be the time dependent distribution
function for particles on the phase space. Using the
dynamics given in Eq. (1), we see that ρt(n, x, y)
satisfies the Frobenius-Perron equation ρt+1(n, x, y) =
ρt

[
M−1(n, x, y)

]
. The mean number of particles in

a cell B of the nth square An is given by µt(B) =∫
B
dx dy ρt(n, x, y) and this number evolves in time ac-

cording to µt+1(B) = µt(M−1B).

To display the fractal form that underlies the relax-
ation to equilibrium and the corresponding entropy pro-
duction, we define the cumulative function gt(n, y) =∫ 1

0
dx

∫ y

0
dy′ρt(n, x, y′), with time evolution determined

by the Frobenius-Perron operator [15, 16]:

gt+1(n, y) =



1
3 gt(n+ 1, 3y), 0 ≤ y < 1

3 ,
1
3 gt(n, 3y − 1) + 1

3 gt(n+ 1, 1),
1
3 ≤ y < 2

3 ,
1
3 gt(n− 1, 3y − 2) + 1

3 gt(n+ 1, 1)
+ 1

3 gt(n, 1), 2
3 ≤ y < 1,

(2)
where we have assumed that the distribution function
ρt(n, x, y) is uniform with respect to x. This follows from
the fact that the x direction corresponds to the expanding
direction for the dynamics, and the distribution within
each cell will become uniform with respect to x on an
exponentially short time scale compared with the time
necessary for the total distribution to become uniform
over the whole chain of length L. For the particular value

y = 1, we note that gt(n, 1) satisfies

gt+1(n, 1) =
1
3
gt(n+1, 1)+

1
3
gt(n, 1)+

1
3
gt(n−1, 1), (3)

which is a simple random walk equation for a particle at
integer points on a line, (more properly, a circle), cor-
responding to probabilities of 1/3 each, for moving to
the left, to the right, or staying in place, at each time
step. This is a diffusive process with diffusion coefficient,
D = 1/3.

When the system has entirely relaxed to equilib-
rium, the cumulative measure has the asymptotic form
g∞(n, y) = ρeq y, where ρeq is the uniform equilibrium
density. In order to study the details of the relaxation
process, it is natural to write the cumulative function gt

as a superposition of the eigenmodes ψk(n) = exp(ikn) of
Eq. (3), where the wavenumber k takes values restricted
to 2πm/L with m ∈ Z modulo L, by the periodic bound-
ary conditions. That is, we write

gt(n, y) =
∑

k

χt
k ak ψk(n) Fk(y) , (4)

where χk = (1/3)(1 + 2 cos k) is the eigenvalue corre-
sponding to the eigenvector ψk(n) and the coefficients
ak are determined by the initial distribution. Since
gt(n, y) is real, the coefficients ak satisfy the property
that a∗k = a−k. The equilibrium solution corresponds to
k = 0, i. e., a0 = ρeq. All the modes with k 6= 0 and π
have a double degeneracy. In particular, the slowest de-
caying modes correspond to k = ±2π/L. In what follows,
we will be concerned with the slowest decaying modes,
and restrict our attention to these particular values of k.

From Eq. (2), the functions Fk(y) are found to satisfy
the functional equation

Fk(y) =



exp(ik)
3χk

Fk(3y), 0 ≤ y < 1
3 ,

1
3χk

Fk(3y − 1) + exp(ik)
3χk

Fk(1),
1
3 ≤ y < 2

3 ,
exp(−ik)

3χk
Fk(3y − 2)

+ exp(ik) + 1
3χk

Fk(1), 2
3 ≤ y < 1.

(5)
This is a de Rham-type functional equation [17] the so-
lutions of which can be constructed iteratively. These
functions are the cumulative function of the hydrody-
namic eigendistribution of the Perron-Frobenius opera-
tor. These eigendistributions are fractal functions of the
y coordinate. The correspondence between these cumu-
lative functions and the hydrodynamic modes of the Per-
ron Frobenius operator can be made more explicit if, for
small k or equivalently, large L, we expand Fk in powers
of k, to obtain Fk(y) = y + i k T (y) +O(k2), which cor-
responds to a gradient expansion. The lowest order term
is just the cumulative function for the uniform system,
while the function T in the first order term is the triadic
equivalent of the dyadic Takagi function already familiar
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in the nonequilibrium eigenmodes of the multibaker map
[15]. Here T (y) satisfies the functional equation

T (y) =


1
3 T (3y) + y, 0 ≤ y < 1

3 ,
1
3 T (3y − 1) + 1

3 ,
1
3 ≤ y < 2

3 ,
1
3 T (3y − 2) + 1− y, 2

3 ≤ y < 1.

(6)

This functional equation has a unique solution which is
a continuous but nondifferentiable function depicted in
Fig. 1. This function has the following remarkable fractal
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FIG. 1: The triadic Takagi function constructed iteratively
from Eq. (6).

properties. If we consider a partition of the unit square
in 3d+1 horizontal cells denoted by the sequence ωd+1 ≡
ω0ω1ω2 · · ·ωd with ωi ∈ {0, 1, 2} for all i, the end points
of those cells are the set of points with the corresponding
triadic expansion,

y(ωd+1) =
d∑

i=0

ωi

3i+1
, (7)

for all possible sequences ωd+1. The difference ∆T (ωd+1)
between the Takagi function T (y) evaluated at the two
end points of the corresponding cell has the scaling prop-
erty

∆T (ωd+1) =
1
3

∆T (ω1ω2 · · ·ωd) +
1− ω0

3d+1
, (8)

which is a consequence of Eq. (6). This relation shows
that the Takagi function is self-affine because the function
in the larger cell ω1ω2 · · ·ωd is mapped onto the function
in the smaller cell ωd+1 by a scaling transformation. The
connection between T (y) and the more familiar hydrody-
namic modes of kinetic theory or of linearized hydrody-
namics is clarified by the observation that the derivative
of T (y) with respect to y is the total displacement of a
particle that starts at this particular value of y at the
initial time. This displacement is, in this discrete time
map, the analog of the time integral of the velocity of a

particle undergoing deterministic diffusion in a fluid sys-
tem, and is a wildly varying function of y. The function
T (y) itself, while fractal, is much more tractable than its
derivative [15, 16]. In this way it is possible to establish
the connection between the approach here using the ex-
act dynamics and the Green-Kubo formulae for transport
coefficients and thus indicate how results obtained here
may be applied to many particle systems[10, 11].

Using the symmetry between the modes k = ±2π/L,
we can express g as

gt(n, y) = ρeq y + χt
k

[
2 Re(ak eikn) y

− 2 k Im(ak eikn) T (y) +O(k2)
]
. (9)

We now show how the hydrodynamic mode analysis
relates to the irreversible production of entropy during
the final stages of the approach to a uniform equilibrium
state. First we consider the macroscopic description. Ac-
cording to the usual arguments [1, 9], the phenomeno-
logical entropy production in a one-dimensional diffusive
system with configuration-space density function is given
by

σt(r) =
D

ct(r)

[
∂ct(r)
∂r

]2

, (10)

where ct(r) = gt(n, 1) is the concentration of particles at
the position r if we take the continuous limit and replace
n by a continuous variable r. In our system, we can
calculate the concentration using Eq. (9) and the fact
that T (y = 1) = 0 which is a consequence of Eq. (6).
Accordingly, the entropy production (10) becomes

σt(r) =
χ2t

k

3ρeq

[
2 k Im(ak eikr) +O(k2)

]2
, (11)

an expression to which we will return shortly.
As described by Gaspard [1, 11] and Gilbert and Dorf-

man [6], the fractal structures are responsible for the pos-
itivity of the rate of entropy production for a hyperbolic
or Anosov-like dynamical system. The time dependent
entropy production can be introduced by first consider-
ing the coarse grained entropy of the particle distribution
in the square An partitioned into cells {B}

St(An, B) =
∑

B⊂An

µt(B) ln
ν(B)
µt(B)

, (12)

where µt(B) is the mean number of particles in the cell
B and ν(B) is its area. The time change of this entropy,
∆St = St+1−St = ∆eSt +∆iSt, has a contribution from
the entropy flux between the square An and its neigh-
bors, ∆eSt(An, B) = St(M−1An, B) − St(An, B), and
another one from the entropy production inside An itself,
∆iSt(An, B) = St+1(An, B)−St+1(An,MB), which is in-
ferred from the previous relations and St(M−1An, B) =
St+1(An,MB). If we partition the square An into cells
B such that their images MB are the aforementioned
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cells denoted by the sequence ωd+1, the time dependent
entropy production rate is given by

∆iSt(An, B) =∑
ωd+1

∆gt+1(n, ωd+1) ln
3 ∆gt+1(n, ωd+1)

∆gt+1(n, ωd)
. (13)

Using Eq. (9), we can write the measure of the horizontal
cell MB corresponding to ωd+1 as

∆gt+1(n, ωd+1) =
ρeq

3d+1
+ χt

k

[
2 Re(ak eikn)

1
3d+1

− 2 k Im(ak eikn) ∆T (ωd+1) +O(k2)
]
, (14)

with the difference ∆T (ωd+1) given by Eq. (8).
Taking χt

k to be a small parameter in the limit t→∞,
we can expand the entropy production, Eq. (13), about
its vanishing equilibrium value, and keep terms up to
quadratic in the deviation from equilibrium. We find,
after a few manipulations, that the entropy production
rate reduces to

∆iSt(An, B) ' χ2t
k

2ρeq

[
2 k Im(ak eikn) +O(k2)

]2
×

3d+1
∑
ωd+1

∆T (ωd+1)
2 − 3d

∑
ωd

∆T (ωd)
2

 .(15)

Using the fractal property (8) of the triadic Takagi func-
tion, the term in brackets in the above expression can be
reduced to

3d+1
∑
ωd+1

∆T (ωd+1)
2 − 3d

∑
ωd

∆T (ωd)
2 =

2
3
. (16)

As a consequence, the theoretical entropy production,
(15), becomes equal to the phenomenological entropy

production (11). We have therefore shown that, in the
limit of large L where we can neglect the O(k2) terms
in the gradient expansion, the entropy production for-
mula Eq. (13) yields a result in full agreement with the
phenomenological prescriptions of nonequilibrium ther-
modynamics.

To conclude, we note that for this simple model we
have shown that even during the time that the system is
relaxing to equilibrium, and especially in the final stages
of the relaxation, the nonequilibrium distribution func-
tion has fractal properties and that these properties are
responsible for the positivity of the irreversible entropy
production. Elsewhere [1, 6, 11] we have argued that if
nonequilibrium distributions were smooth and differen-
tiable, the Gibbs entropy would not show any irreversible
behavior. These arguments apply to this case also and
strongly suggest that, the positivity of irreversible en-
tropy production for Hamiltonian systems is due to the
singularity of the phase space distributions, for systems
relaxing to equilibrium as well as for systems in nonequi-
librium steady states maintained by reservoirs. Further
we note that the rate of entropy production in the Navier-
Stokes regime, O(1/L2), at least, is independent of the
coarse graining parameter, d. We would hope, though it
remains to be shown, that this independence is a general
feature of irreversible entropy production.
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