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We analyze the irreversibility and the entropy production in nonequilibrium interacting particle
systems described by a Fokker-Planck equation by the use of a suitable master equation represen-
tation. The irreversible character is provided either by nonconservative forces or by the contact
with heat baths at distinct temperatures. The expression for the entropy production is deduced
from a general definition, which is related to the probability of a trajectory in phase space and its
time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied
to calculate the heat conductance in a simple system consisting of two Brownian particles each
one in contact to a heat reservoir. We show also the connection between the definition of entropy
production rate and the Jarzynski equality.
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I. INTRODUCTION

A thermodynamic system in a stationary state is char-
acterized by having its properties such as energy and en-
tropy invariant in time. In this regime, there can be no
flow of a conserved quantity such as energy to or from
the outside because it cannot be created. However, there
might be a flow of a nonconserved quantity such as the
entropy. The flux of entropy to the outside will be equal
to the entropy spontaneously generated inside the sys-
tem. Only in thermodynamic equilibrium there will be
no production of entropy. A nonequilibrium thermody-
namic system in the stationary state is thus characterized
by a continuous production of entropy. In a transient
state, the change in the entropy is not only due to the
entropy flow but is also due to the spontaneous genera-
tion of entropy within the system so that, in general, the
time derivative of the entropy S of a system can be split
into two parts [1–3]

dS

dt
= Π − Φ, (1)

where Π is the entropy production rate, which is always
nonnegative, and Φ is the entropy flux rate from the sys-
tem to the environment. In the stationary regime, the
entropy rate dS/dt vanishes and Π = Φ. If in addition
the system is out of equilibrium then Π = Φ > 0; if it is
in equilibrium Π = Φ = 0. The quantity Φ, defined as
the flux rate from inside to outside of the system, will be
positive in the nonequilibrium stationary state.

The construction of a microscopic theory of nonequi-
librium thermodynamic systems is faced with two ma-
jor problems related to entropy. The first concerns the
definition of nonequilibrium entropy and the second the
definition of entropy production. For systems in equilib-
rium, the entropy S is related to the probability P (η) of
finding the system in a certain state η by the well known

Boltzmann-Gibbs expression

S = −
∑

η

P (η) lnP (η). (2)

For nonequilibrium systems, described by a time depen-
dent probability distribution P (η, t), it is natural to ex-
tend the Boltzmann-Gibbs expression to these systems.
The out-of-equilibrium time-dependent entropy S(t) is
then defined by

S(t) = −
∑

η

P (η, t) ln P (η, t), (3)

and therefore varies in time according to the specific dy-
namics that governs the evolution of the probability dis-
tribution P (η, t).

The second problem, the definition of entropy produc-
tion rate Π, is equivalent to the problem of defining the
entropy flux rate Φ since these two quantities are related
with each other by means of (1). These two quantities
should necessarily be related to the time evolution of
P (η, t) and therefore cannot be defined in terms of P (η, t)
alone. We need to known the dynamics that governs its
time evolution. We assume that the system evolves in
time according to a Markovian process on a discretized
phase space, defined by a transition rate W (η′|η) from
state η to state η′. Within this framework, Φ and Π will
be related to W . The time evolution of the probabil-
ity distribution is assumed to be governed by the master
equation [4, 5]

d

dt
P (η, t) =

∑

η′

J (η′|η, t), (4)

where

J (η′|η, t) = W (η|η′)P (η′, t) − W (η′|η)P (η, t) (5)

is the probability current. Here we will be concerned
mainly with the study of the Fokker-Planck equation [4–
6] which we regard as coming from an appropriate con-
tinuous limit of the master equation (4), as we shall see.
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From the probability current, one determines the flux
rate ΦE of any state function E(η), which is

ΦE(t) = −
∑

η,η′

J (η′|η, t)E(η), (6)

and clearly vanishes in the stationary state as it should.
A natural way to define the entropy flux rate is as follows

Φ(t) = −
∑

η,η′

J (η′|η, t) ln W (η′|η). (7)

From this definition we see immediately by means of (1),
(3) and (4) that the entropy production rate is given by

Π(t) = −
∑

η,η′

J (η′|η, t) ln[W (η′|η)P (η, t)], (8)

an expression that is always nonnegative and equivalent
to that introduced by Schnakenberg [7]. In thermody-
namic equilibrium, when microscopic reversibility takes
place, J vanishes and both Φ and Π vanish as well. It
worth mentioning that this definition of entropy produc-
tion makes no a priori reference to any thermodynamic
quantity such as dissipated energy as is usually done. It
is a universal definition in the same sense as the definition
of entropy (3) is universal.

The production of entropy in systems described by
a stochastic process or by a master equation has been
the subject of several studies [8–25]. This includes the
numerical calculation of entropy production in nonequi-
librium lattice gas models [16]. Here we are concerned
with the production of entropy in nonequilibrium in-
teracting particle systems described by Langevin equa-
tions or, in an equivalent way, by the associate Fokker-
Planck equation, which is the appropriate framework to
describe nonequilibrium system under temperature gra-
dients [10, 25]. Our main purpose here is to use expres-
sions (7) and (8) to determine the entropy flux rate Φ
and the entropy production rate Π in irreversible systems
described by Langevin equations. The production of en-
tropy in systems described by Langevin equations in the
overdamped limit has been previously studied [17, 18].
Here we consider the general case. Systems described
by a Fokker-Planck [4–6] equation follows a Markovian
process in continuous time and continuous configuration
space. The irreversible character comes from the type of
forces entering the Langevin equations or from the type
of contact of the system with the environment. As we
shall see, if the system is in contact with a heat reservoir
that keeps the temperature T constant but the forces are
nonconservative the resulting entropy production rate is
strictly positive. We will show that in this case the dissi-
pated power P is related to the entropy production rate
by Π = P/T , which is a fluctuation dissipation type re-
lation.

When the forces become conservative but the system
is in contact with more than one heat reservoirs at dis-
tinct temperatures the resulting entropy production rate

is also nonzero. We apply the results obtained here to
a simple system of this type consisting of two Brown-
ian particles connected with each other by a harmonic
force and each one to heat baths at distinct temperatures
[26, 27]. Whenever the temperatures are distinct there
will be a heat flow through the system from one reservoir
to the other. By calculating the production of entropy we
determine the thermal conductance. Although the forces
are conservative, the difference in temperatures keeps the
system in a nonequilibrium state. The production of en-
tropy vanishes only when the forces are conservative and
the system is in contact with only one heat bath.

We use the expressions (7) and (8) for the entropy flux
and entropy production to determine an equality of the
Jarzynski type [28–32]. This is carried out by considering
the ratio of the probability of a given trajectory in phase
space and the probability of the time reversal trajectory.

II. FOKKER-PLANCK EQUATION

A. Langevin equations

We consider a system of n interacting particles that
evolves in time according to the following set of coupled
Langevin equations

m
dvi

dt
= Fi − αvi + Fi(t), (9)

dxi

dt
= vi, (10)

where xi and vi are the position and velocity of the i-
th particle. We are assuming that the mass m and the
coefficient α are the same for all particles and that the
force Fi acting on the i-th particle depends only on the
positions. The forces Fi might not be conservative. The
quantity Fi(t) is the random force, a stochastic variable
having the properties

〈Fi(t)〉 = 0, (11)

and

〈Fi(t)Fj(t
′)〉 = 2αTi δijδ(t − t′), (12)

where, Ti > 0 is a constant that might be distinct for
each particle.

The associate Fokker-Planck equation, that gives the
time evolution of the probability distribution P (x, v, t),
where x and v denote the vectors whose components are
the variables {xi} and {vi}, respectively, is given by

∂

∂t
P = −

1

m

∑

i

∂

∂vi

(FiP − αviP ) −
∑

i

∂

∂xi

(viP )+

+
α

m2

∑

i

Ti

∂2

∂v2
i

P, (13)
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which we write in the form

∂

∂t
P = −

∑

i

(

Ki +
∂

∂vi

Ji

)

, (14)

where Ki and Ji are given by

Ki =
Fi

m

∂

∂vi

P + vi

∂

∂xi

P, (15)

and

Ji = −
αvi

m
P −

αTi

m2

∂

∂vi

P. (16)

The Fokker-Planck equation should be solved inside a
certain region of the space spanned by the joint sets of
variables x = {xi} and v = {vi}. We assume that at
the boundary of this region the probability distribution
P (x, v, t) vanishes.

The set of Langevin equations (9) and (10) and the
associate Fokker-Planck equation (13) are assumed to
describe a system that is in contact with several heat
baths, each one having a temperature Ti. The contact
is accomplished by the random forces Fi. If Ti = T is
independent of i then we may say taht the system is in
contact with just one heat reservoir at temperature T .
If in addition the forces Fi are conservative then in the
stationary state the system is in equilibrium.

B. Equilibrium conditions

At the stationary state the probability distribution
P (x, v) is independent of time and is the solution of

∑

i

(Ki +
∂

∂vi

Ji) = 0. (17)

When microscopic reversibility holds we shall see in sec-
tion IV that Ji = 0, that is,

αvi

m
P +

αTi

m2

∂

∂vi

P = 0, (18)

which implies that P must be of the form

P (x, v) = χ(x)φ(v), (19)

that is x and v are independent random vector variables.
Setting (19) into the definition (15) of Ki, it follows that

Ki = viφ

(

−
Fi

Ti

χ +
∂

∂xi

χ

)

. (20)

But, since Ji = 0, it follows from (17) that the summation
of Ki must vanish, that is,

∑

i

Ki = 0. (21)

Taking into account that the expression inside the paren-
theses in equation (20) depends only on x and that (21)
must be held for any velocity, it follows that each term
of the summation in (21) must vanish, that is, Ki = 0,
so that

∂

∂xi

lnχ =
Fi

Ti

. (22)

From this equation it follows immediately that

1

Ti

∂Fi

∂xj

=
1

Tj

∂Fj

∂xi

, (23)

for any pair i, j, which is the desired equilibrium condi-
tion. That is, microscopic reversibility implies that the
forces Fi and the parameters Ti must be such that they
satisfy (23).

If the temperatures are all the same,

Ti = Tj , (24)

then

∂Fi

∂xj

=
∂Fj

∂xi

, (25)

that is, the forces Fi must be conservative. In this case
the system is in thermodynamic equilibrium and is de-
scribed by the canonical Gibbs probability distribution

P (x, v) =
1

Z
exp{−βH(x, v)}, (26)

which follows directly from (17) and (22), where

H(x, v) =
1

2
m
∑

i

v2
i + V(x) (27)

and Ti = 1/β. In addition, the forces are related to the
potential V by

Fi = −
∂V

∂xi

. (28)

When the conditions (25) and (24) are valid, the
Langevin equations and the associate Fokker-Planck
equation describe a system with conservative forces in
contact with a heat reservoir at temperature T = 1/β.
However, our aim here is to study systems that do
not satisfy these conditions so that, in the stationary
state, they are irreversible. We distinguish two types
of nonequilibrium situations. In the first, the forces Fi

are conservative but the temperatures Ti are not all the
same. In the second, the temperatures are all the same
but the forces Fi are nonconservative.

C. Entropy production

To determined an expression for the entropy flux rate
and entropy production rate we follow a method similar
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to that used by Seifert [17] for the case of overdamped
motion. We start from the entropy S, defined by

S = −

∫

P lnPdxdv. (29)

Its time derivative is

dS

dt
= −

∫

lnP
∂P

∂t
dxdv, (30)

or, using the Fokker-Planck equation as given by (14),

dS

dt
=
∑

i

∫

Ki lnPdxdv +
∑

i

lnP
∂Ji

∂vi

dxdv. (31)

The integral in the first summation vanishes identically
as can be seen by replacing Ki by its definition, given
by equation (15), and by performing an integration by
parts. The result is
∫

Ki lnPdxdv = −

∫
(

Fi

m

∂P

∂vi

+ vi

∂P

∂xi

)

dxdv = 0,

(32)
where the second equality is obtained by another integra-
tion by parts and by taking into account that Fi depends
on x but not on v. Using this last result and integrating
the second integral in (31) by parts gives

dS

dt
= −

∑

i

∫

Ji

∂

∂vi

lnPdxdv. (33)

But from the definition of Ji,

∂

∂vi

lnP = −
mvi

Ti

−
m2

αTi

Ji

P
, (34)

so that

dS

dt
=
∑

i

∫
(

m

Ti

viJi +
m2

αTi

J2
i

P

)

dxdv. (35)

The second term, which is always nonnegative, is identi-
fied as the entropy production rate

Π =
∑

i

m2

αTi

∫

J2
i

P
dxdv. (36)

A similar expression for Π has been obtained for the case
of overdamped motion [17, 18]. In accordance with rela-
tion (1), the entropy flux rate should be then

Φ = −
∑

i

m

Ti

∫

viJidxdv. (37)

In the stationary state, dS/dt = 0 and Π = Φ. In equilib-
rium Ji = 0 and both the entropy flux rate and entropy
production rate vanish, Π = Φ = 0. In nonequilibrium
stationary state, Ji 6= 0 and Π = Φ 6= 0.

Equations (36) and (37) give the desired expression for
the entropy production rate and entropy flux rate for a
system described by the Fokker-Planck equation (13). In
section IV, we will show that these two expressions can
actually be deduced from the general expressions (7) and
(8) by an appropriate master equation representation of
the Fokker-Planck equation (13).

D. Entropy flux and energy dissipation

Using the definition of Ji, given by equation (16), the
entropy flux rate may be written as

Φ =
∑

i

∫
(

α

Ti

v2
i P +

α

m
vi

∂

∂vi

P

)

dxdv. (38)

Integrating the second integral by parts,

Φ =
∑

i

∫
(

α

Ti

v2
i P −

α

m
P

)

dxdv, (39)

or

Φ =
∑

i

1

Ti

(

α〈v2
i 〉 −

α

m
Ti

)

. (40)

Let us determine the average rate of energy dissipation
Pi of each particle. It has two contributions: one is the
work dissipated per unit time, viFi, and the other is the
decrease in kinetic energy per unit time, (m/2)(d/dt)v2

i .
That is,

Pi = 〈viFi〉 −
m

2

d

dt
〈v2

i 〉. (41)

Now, from the Fokker-Planck equation, it is straight-
foward to obtain the result

m

2

d

dt
〈v2

j 〉 = 〈vjFj〉 − α〈v2
j 〉 +

α

m
Tj , (42)

which follows after some appropriate integration by
parts. Replacing this result in equation (41), we get an
equivalent expression for the dissipation power of each
particle, namely

Pj = α〈v2
j 〉 −

α

m
Tj . (43)

From this result we may write the entropy flux rate as

Φ =
∑

i

Pi

Ti

. (44)

If the temperatures are the same Ti = T then

Φ =
P

T
. (45)

Where P =
∑

i Pi is the total energy dissipated per unit
time.

In the stationary state, 〈v2
i 〉 is a constant so that

d〈v2
i 〉/dt = 0 and Pi = 〈viFi〉. We are then left with

the following expression

Π = Φ =
∑

i

Pi

Ti

=
∑

i

1

Ti

〈viFi〉, (46)

valid in the stationary regime. Using the interpretation
that each particle i is in contact with a heat reservoir



5

at temperature Ti, this result says that the entropy pro-
duction rate is a sum of terms each one being the ratio
between the dissipation of energy per unit time, that is,
the dissipated power, and the temperature of the heat
bath.

Let us consider now the case in which the forces are
conservative in which case Fi = −∂V/∂xi. From the
Fokker-Planck equation and after an appropriate inte-
gration by parts it is straightforward to show that

d

dt
〈V〉 =

∑

i

〈vi

dV

dxi

〉 = −
∑

i

〈viFi〉. (47)

Therefore, the total dissipated power is

P =
∑

i

Pi = −
d

dt

(

〈V〉 +
∑

i

m

2
〈v2

i 〉

)

, (48)

If, in addition, Ti = T is the same for all sites, then the
entropy flux rate is given by

Φ = −
1

T

d

dt

(

〈V〉 +
∑

i

m

2
〈v2

i 〉

)

. (49)

From this equation we see that the entropy flux rate is
equal to the ratio between the decrease in the internal
energy per unit time and the temperature T of the heat
bath.

III. THERMAL CONDUCTION IN A SIMPLE

SYSTEM

A. Equations of motion

We apply the previous results to a nonequilibrium sim-
ple system consisting of two coupled particles of the same
mass m, moving along a straight line. They interact with
each other and each one is in contact with thermal reser-
voirs at different temperatures. Their movements are
governed by the Langevin equations

m
dv1

dt
= −k(x1 − x2) − k′x1 − αv1 + F1(t), (50)

and

m
dv2

dt
= −k(x2 − x1) − k′x2 − αv2 + F2(t), (51)

where xi and vi = dxi/dt are the position and velocity of
the i-th particle. The quantities k and k′ are spring con-
stants and α is the friction constant. The random forces
F1 and F2 are Gaussian white noises with the properties

〈Fi(t)〉 = 0, (52)

〈Fi(t)Fj(t
′)〉 = 2αTiδijδ(t − t′), (53)

where T1 and T2 are the temperature of the thermal reser-
voirs connected to particles 1 and 2, respectively.

If we define the forces F1(x1, x2) and F2(x1, x2) by

F1 = −k(x1 − x2) − k′x1, (54)

and

F2 = −k(x2 − x1) − k′x2, (55)

then equations (50) and (51) have the same structure of
(9). The associate Fokker-Planck equation for the prob-
ability density P (x1, x2, v1, v2, t) is given by

∂

∂t
P = −

∂

∂x1

(v1P ) −
∂

∂x2

(v2P ) −
1

m

∂

∂v1

(F1P )

−
1

m

∂

∂v2

(F2P ) + λ
∂

∂v1

(v1P ) + λ
∂

∂v2

(v2P )

+
Γ1

2

∂2

∂v2
1

P +
Γ2

2

∂2

∂v2
2

P, (56)

where λ = α/m and Γi = 2αTi/m2.
To determine the entropy production rate it is nec-

essary to compute averages of the type 〈xixj〉, 〈xivj〉
and 〈vivj〉. Since the Langevin equations (50) and (51)
are linear equations they can be solved exactly and
so can the Fokker-Planck equation. From the solution
P (x1, x2, v1, v2, t) of the Fokker-Planck equation we de-
termine the desired averages. Here, however, we follow a
distinct procedure. Instead of finding the probability P
itself we set up equations for the those averages and solve
them. From the Fokker-Planck equations it is straight-
forward to reach the following equations for the averages

d

dt
〈x2

1〉 = 2〈x1v1〉, (57)

d

dt
〈x2

2〉 = 2〈x2v2〉, (58)

d

dt
〈x1x2〉 = 〈x1v2〉 + 〈x2v1〉, (59)

d

dt
〈x1v1〉 = 〈v2

1〉 − K〈x2
1〉 + L〈x1x2〉 − λ〈x1v1〉, (60)

d

dt
〈x2v2〉 = 〈v2

2〉 − K〈x2
2〉 + L〈x1x2〉 − λ〈x2v2〉, (61)

d

dt
〈x1v2〉 = 〈v1v2〉 − K〈x1x2〉 + L〈x2

1〉 − λ〈x1v2〉, (62)

d

dt
〈x2v1〉 = 〈v2v1〉 − K〈x1x2〉 + L〈x2

2〉 − λ〈x2v1〉, (63)
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d

dt
〈v2

1〉 = −2K〈x1v1〉 + 2L〈x2v1〉 − 2λ〈v2
1〉 + Γ1, (64)

d

dt
〈v2

2〉 = −2K〈x2v2〉 + 2L〈x1v2〉 − 2λ〈v2
2〉 + Γ2, (65)

d

dt
〈v1v2〉 = −K〈x1v2〉 + L〈x2v2〉

−K〈x2v1〉 + L〈x1v1〉 − 2λ〈v1v2〉, (66)

where K = (k + k′)/m and L = k/m.

B. Entropy production in the steady state

In the stationary regime, the set of equations above
are reduced to following set of equations

〈x1v1〉 = 〈x2v2〉 = 〈v1v2〉 = 0, (67)

〈x2v1〉 + 〈x1v2〉 = 0, (68)

〈v2
1〉 − K〈x2

1〉 + L〈x1x2〉 = 0, (69)

−K〈x1x2〉 + L〈x2
1〉 − λ〈x1v2〉 = 0, (70)

−K〈x1x2〉 + L〈x2
2〉 − λ〈x2v1〉 = 0, (71)

〈v2
2〉 − K〈x2

2〉 + L〈x1x2〉 = 0, (72)

2L〈x2v1〉 − 2λ〈v2
1〉 + Γ1 = 0, (73)

2L〈x1v2〉 − 2λ〈v2
2〉 + Γ2 = 0. (74)

These equations are linear in the averages and can readily
be solved with the results

〈v2
1〉 =

Γ1 + Γ2

4λ
+

Kλ(Γ1 − Γ2)

4(L2 + Kλ2)
, (75)

〈v2
2〉 =

Γ1 + Γ2

4λ
−

Kλ(Γ1 − Γ2)

4(L2 + Kλ2)
, (76)

〈x1v2〉 = −〈x2v1〉 =
L(Γ1 − Γ2)

4(L2 + Kλ2)
, (77)

〈x2
1〉 =

K(Γ1 + Γ2)

4λ(K2 − L2)
+

λ(Γ1 − Γ2)

4(L2 + Kλ2)
, (78)

〈x2
2〉 =

K(Γ1 + Γ2)

4λ(K2 − L2)
−

λ(Γ1 − Γ2)

4(L2 + Kλ2)
, (79)

〈x1x2〉 =
L(Γ1 + Γ2)

4λ(K2 − L2)
. (80)

In the stationary state Π = Φ and we may use ex-
pression (40) for the entropy flux rate to get the entropy
production rate, given by

Π =
α

T1

〈v2
1〉 +

α

T2

〈v2
2〉 − 2

α

m
, (81)

or

Π =
2λ2

Γ1

〈v2
1〉 +

2λ2

Γ2

〈v2
1〉 − 2λ. (82)

Taking into account the results above for 〈v2
1〉 and 〈v2

2〉
and after straightforward calculations we arrive at the
following expression for the entropy production rate

Π =
(Γ1 − Γ2)

2

2Γ1Γ2

λL2

L2 + Kλ2
. (83)

Making the substitutions K = (k + k′)/m, L = k/m,
λ = α/m, and Γi = 2αTi/m2, we get

Π =
(T1 − T2)

2

T1T2

αk2

2[mk2 + (k + k′)α2]
, (84)

From the relation Φ = κ(T1−T2)
2/T1T2 between entropy

production Π and the thermal conduction κ [33], we get

κ =
αk2

2[mk2 + (k + k′)α2]
. (85)

which agrees with the result obtained by a distinct
method [27].

IV. PRODUCTION OF ENTROPY IN A

MARKOVIAN PROCESS

A. Master equation representation

In this section we demonstrate two important results
that we have used previously. The first one is related to
the current Ji as defined by equation (16). In the steady
state and if microscopic reversibility holds then Ji = 0
for each i. The second result refers to the expressions
(36) and (37) for the entropy production and entropy flux
rates. We show here that these two expressions can be
obtained from formulas (7) and (8), valid for systems de-
scribed by a master equation. The demonstration begins
by discretizing the Fokker-Planck equation (13) trans-
forming it on a master equation of the form

∂

∂t
P (η) =

∑

η′

{W (η|η′)P (η′) − W (η′|η)P (η)}, (86)
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where η = (x, v) and η′ = (x′, v′) denote discretized
states in phase space and W (η′|η) is the rate of tran-
sition from the state η to the state η′. To simplify the
notation we are omitting the time dependence of P (η).

We use two types of discretizations. In the first we
assume that the velocity vi will increase or decrease by
an amount a. This procedure is used to write down the
following approximations for the derivatives of P with
respect to vi

∂2

∂v2
i

P =
1

a2
{P (x, vi+) − 2P (x, v) + P (x, vi−)} (87)

and

∂

∂vi

(viP ) =
1

2a
{(vi + a)P (x, vi+) − (vi − a)P (x, vi−)}.

(88)
The notation vi± stands for the vector whose compo-
nents are the same as those of the vector v except the
i-component which equals vi ± a.

In the second type of discretization the position xi will
increase by an amount bvi whereas the velocity vi will
increase by Fib/m. This procedure is used to write down
the approximation

−
1

m

∂

∂vi

(FiP )−
∂

∂xi

(viP ) =
1

b
{P (xi−∗, vi−∗)−P (x, v)}.

(89)
The notation xi±∗ stands for the vector whose compo-
nents are the same as those of the vector x except the
i-component which equals xi ± bvi and vi±∗ stands for
the vector whose components are the same as those of the
vector v except the i-component which equals vi±bFi/m.

Using the approximations given by equations (87), (88)
and (89), the Fokker-Planck equation (13) can be repre-
sented in the form of a generalized birth and death master
equation,

∂

∂t
P (x, v) =

∑

i

{A+

i (x, vi−)P (x, vi−)−A−

i (x, v)P (x, v)}

+
∑

i

{A−

i (x, vi+)P (x, vi+) − A+

i (x, v)P (x, v)}

+
∑

i

{Bi(x
i−∗, vi−∗)P (xi−∗, vi−∗) − Bi(x, v)P (x, v)},

(90)
where A±

i (x, v) are the transition rates from (x, v) to
(x, vi±) and are given by

A+

i (x, v) =
αTi

m2a2
−

αvi

2ma
, (91)

and

A−

i (x, v) =
αTi

m2a2
+

αvi

2ma
, (92)

where a is chosen to be sufficiently small so that A±

i (x, v)
will be nonnegative. The quantity Bi(x, v), the transition
rate from (x, v) to (xi+∗, vi+∗), is

Bi(x, v) =
1

b
. (93)

In the limit a → 0 and b → 0, the master equation (90)
turns into the Fokker-Planck equation (13).

B. Microscopic reversibility

The state of thermodynamic equilibrium of a system
described by a stochastic process is identified as the state
obeying microscopic reversibility, which occurs whenever
the probability of any trajectory equals the probability of
its time reverse. In a stochastic Markovian process this
condition is fullfield if [34]

T (η|η′)P (η′) = T (η′|η)P (η), (94)

for any to state η and η′, where T (η′|η) is the conditional
probability of the transition η → η′ and P (η) is the sta-
tionary probability distribution. In the continuous time
limit, we use the relation T (η′|η) = ∆tW (η′|η), valid for
small time interval ∆t, to get the microscopic reversibil-
ity condition for system described by the master equation
(86),

W (η|η′)P (η′) = W (η′|η)P (η), (95)

From equation (95), we get two independent condi-
tions,

A+

i (x, vi−)P (x, vi+) = A−

i (x, v)P (x, v), (96)

and

Bi(x
i−∗, vi−∗)P (xi−∗, vi−∗) = Bi(x, v)P (x, v). (97)

From this last condition and using (89) and (93) we get

1

m

∂

∂vi

(FiP ) +
∂

∂xi

(viP ) = 0. (98)

Therefore, the quantity Ki defined by (15) vanishes,
which is one of the equilibrium conditions found earlier.
The condition given by equation (96) provides

[αTi −
ma

2
α(vi − a)]P (x, vi−) = [αTi +

ma

2
αvi]P (x, v).

(99)
Expanding this expression in powers of a, the linear term
in a gives

αTi

∂

∂vi

P (x, v) + mαviP (x, v) = 0 (100)

from which follows that Ji, defined by (16), vanishes,
which is the other equilibrium condition.
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C. Conserved quantity

Let us consider an elementary trajectory η → η′ in
phase space occurring during a small interval of time ∆t.
Suppose that a quantity L(η′|η), such as the work done
by nonconservative forces, is defined along this elemen-
tary trajectory. The flux of this quantity during this time
interval is

∑

η′,η

T (η′|η)P (η)L(η′|η), (101)

where T (η′|η) = ∆tW (η′|η) is the transition probability
from η to η′. The flux per unit time ΦL is the ratio of
this quantity and ∆t, that is,

ΦL =
∑

η′,η

W (η′|η)P (η)L(η′|η). (102)

If the forces are conservative, that is, if L(η′|η) =
E(η) − E(η′), which happens for instance in the case
where L(η′|η) is the work of conservative force, we may
write

ΦE = −
∑

η′,η

{W (η|η′)P (η′) − W (η′|η)P (η)}E(η). (103)

In this form, which is identical to (6), it is easy to see that
ΦE vanishes in the stationary state. Indeed, the summa-
tion in η′ is identically zero in the stationary state. From
the master equation it follows that the time derivative of
U = 〈E(η)〉 is

dU

dt
= −ΦE , (104)

which again shows that ΦE vanishes in the stationary
state. The flux is defined from the system to the envi-
ronment.

D. Entropy production

We assume that the entropy flux rate Φ in a system
described by a Markovian process governed by the master
equation (86) is given by the expression (102) in which
L(η′|η) is replaced by ln[W (η′|η)/W (η|η′)], that is,

Φ =
∑

η′,η

W (η′|η)P (η) ln
W (η′|η)

W (η|η′)
. (105)

We remark that this expression can be understood as the
average of

∑

η′ W (η′|η) ln W (η′|η)/W (η|η′) and in this
sense it can actually be used in numerical simulations to
calculate the entropy flux rate [16]. Equation (105) can
also be written in the form

Φ =
∑

η′,η

{W (η′|η)P (η) − W (η|η′)P (η′)} ln W (η′|η),

(106)

which is identical to expression (7). Notice that,
ln[W (η′|η)/W (η|η′)] cannot, in general, that is, for a ir-
reversible system, be written as a difference of the type
E(η) − E(η′), and therefore it does not necessarily van-
ish, except under thermodynamic equilibrium, in which
case this quantity equals lnP (η′)− lnP (η), as is evident
from equation (95).

Now, from the entropy of a nonequilibrium thermody-
namic system, assumed to be given by equation (3), it
follows that the rate in which the entropy of the system
varies is

dS

dt
= −

∑

η

(

∂

∂t
P (η)

)

lnP (η). (107)

Using the master equation (86), equation (107) can be
written as

dS

dt
= −

∑

η,η′

{W (η|η′)P (η′) − W (η′|η)P (η)} ln P (η),

(108)
or, equivalently,

dS

dt
=
∑

η,η′

W (η′|η)P (η) ln
P (η)

P (η′)
. (109)

The entropy production rate is obtained by inserting
expressions (105) and (109) into relation (1). We get the
following expression for the entropy production rate

Π =
∑

η,η′

W (η′|η)P (η) ln
W (η′|η)P (η)

W (η|η′)P (η′)
, (110)

which can be written in the suggestive form

Π =
1

2

∑

η,η′

{W (η′|η)P (η)−W (η|η′)P (η′)} ln
W (η′|η)P (η)

W (η|η′)P (η′)
.

(111)
In this form Π is manifestly nonnegative and can be re-
garded as an extension of the entropy production rate
introduced by Schnakenberg [7].

Using the transition rates appropriate for the master
equation representation (90) of the Fokker-Planck equa-
tion, the entropy flux rate is explicitly given by

Φ =
∑

i

∑

x,v

A+

i (x, v)P (x, v) ln
A+

i (x, v)

A−

i (x, vi+)

+
∑

i

∑

x,v

A−

i (x, v)P (x, v) ln
A−

i (x, v)

A+

i (x, vi−)

+
∑

i

∑

x,v

Bi(x, v)P (x, v) ln
Bi(x, v)

Bi(xi−∗, vi−∗)
. (112)

Using the transitions rates (91), (92) and (93), we get
the result

Φ =
∑

i

∑

x,v

(
α

Ti

v2
i −

α

m
)P (x, v), (113)



9

that is,

Φ =
∑

i

(

α

Ti

〈v2
i 〉 −

α

m

)

, (114)

which is identical to the expression (40) and therefore
equivalent to entropy flux rate given by equation (37).

The rate of production of entropy Π can be determined
analogously,

Π =
∑

i

∑

x,v

A+

i (x, v)P (x, v) ln
A+

i (x, v)P (x, v)

A−

i (x, vi+)P (x, vi+)
+

+
∑

i

∑

x,v

A−

i (x, v)P (x, v) ln
A−

i (x, v)P (x, v)

A+

i (x, vi−)P (x, vi−)
+

+
∑

i

∑

x,v

Bi(x, v)P (x, v) ln
Bi(x, v)P (x, v)

Bi(xi−∗, vi−∗)P (xi−∗, vi−∗)
.

(115)
It is straightforward but cumbersome to show that this
expression leads us to the result

Π =
∑

i

m2

αTi

∫

J2
i

P
dxdv, (116)

which is identical to the expression (36) found earlier. It
suffices to replace A±

i and Bi by their definitions, given
by (91), (92) and (93), expand P (x, vi± up to second
order in a and use relation (89). After taking the limit
a → 0 and using the definition of Ji, given by (16), we
arrive at the above result.

E. Jarzynski equality

Here we follow a method similar to that used by Crooks
[30, 31] and by Gaveau et al. [32]. We discretize the time
in intervals ∆t so that ∆tW (η′|η) = T (η′|η) will be the
transition probability from η to η′. Let us consider a
trajectory in phase space

C = (η0 → η1 → η2 → . . . → ηℓ), (117)

occurring during an interval of time equal to ℓ∆t. The
probability of occurrence of such a trajectory will be

P (C) = T (ηℓ|ηℓ−1) . . . T (η2|η1)T (η1|η0)P (η0), (118)

which can also be written as

P (C) = (∆t)ℓW (ηℓ|ηℓ−1) . . . W (η2|η1)W (η1|η0)P (η0).
(119)

Let us consider now the time reversal path CR, related to
C and defined by

CR = (ηℓ → ηℓ−1 → . . . → η1 → η0), (120)

and its probability of occurrence

P (CR) = T (η0|η1)T (η1|η2) . . . T (ηℓ−1|ηℓ)P (ηℓ), (121)

which can also be written as

P (CR) = (∆t)ℓW (η0|η1)W (η1|η2) . . . W (ηℓ−1|ηℓ)P (ηℓ),
(122)

with the following understanding: whenever W (η′|η) in
equation (119) is equal to A+

i then W (η|η′) in equation
(122) will be equal to A−

i and vice-versa.
The microscopic reversibility happens when a given

trajectory and its reverse have the same probability of
occurrence, that is, P (C) = P (CR), so that

T (η1|η0)P (η0) = T (η0|η1)P (η1), (123)

or

W (η1|η0)P (η0) = W (η0|η1)P (η1), (124)

which we use before in equation (95).
Let us consider the ratio

R =
P (CR)

P (C)
=

ℓ
∏

j=1

W (ηj−1|ηj)

W (ηj |ηj−1)

P (ηℓ)

P (η0)
. (125)

One finds that

〈R〉 =
∑

C

RP (C) =
∑

C

P (CR) = 1, (126)

so that

〈elnR〉 = 1. (127)

Now the ratio R can be written in the form

R =

ℓ
∏

j=1

W (ηj−1|ηj)P (ηj)

W (ηj |ηj−1)P (ηj−1)
, (128)

where P (ηj) is understood as the probability distribution
at time t = j∆t, solution of the master equation with
the initial condition P (η0) at time t = 0. From (128), it
follows

lnR = −

ℓ
∑

j=1

σ(ηj , ηj−1)∆t, (129)

where

σ(η′, η) =
1

∆t
ln

W (η′|η)P (η)

W (η|η′)P (η′)
(130)

is the intrinsic entropy production rate, with the conven-
tion that η is the state occurring at a given time t and η′

at a later time t + ∆t. A identity of the Jarzynski type
[28–31] follows then

〈exp{−

ℓ
∑

j=1

σ(ηj , ηj−1)∆t}〉 = 1, (131)
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where the average is to be taken over the probability
distribution (119) of the path C. The intrinsic entropy
flux rate is given by

φ(η′, η) =
1

∆t
ln

W (η′|η)

W (η|η′)
, (132)

so that

σ(η′, η) = φ(η′, η) +
1

∆t
[S (η′) − S (η)], (133)

where S (η) = − lnP (η) is the intrinsic entropy. Taking
into account that the entropy production rate Π, as given
by (110), is the average of σ, that is, Π = 〈σ(η′, η)〉, and
that the entropy flux rate Φ, as given by (105), is the
average of φ, that is, Φ = 〈φ(η′, η)〉, we get, in the limit
∆t → 0

Π = Φ +
dS

dt
, (134)

where S is the average of S , that is, S = 〈S 〉.
In the continuous time limit we may write the Jarzyn-

ski identity as

〈 exp{−

∫ t

0

σdt} 〉 = 1, (135)

where the integral extends over a given trajectory in
phase space or, taking into account (133),

〈exp{−

∫ t

0

φ dt − [S (t) − S (0)]}〉 = 1. (136)

From expression (44) for Φ and bearing in mind that
Φ = 〈φ〉 we get

〈 exp{
∑

i

1

Ti

(

m

2
[v2

i (t) − v2
i (0)] −

∫ t

0

viFidt

)

−[S (t) − S (0)]} 〉 = 1, (137)

which is the Jarzynski equality for a nonequilibrium sys-
tems of particles following a Fokker-Planck equation de-
scribing the contact with several heat baths at distinct
temperatures.

V. CONCLUSION

We have determined an expression for the entropy pro-
duction rate and entropy flux rate in irreversible systems
described by a Fokker-Planck equation. The irreversible
character is represented either by nonconservative forces
or by the contact of the system with heat baths at dif-
ferent temperatures. The expression for the entropy pro-
duction was obtained by using a master equation repre-
sentation of the Fokker-Planck and through a definition
of entropy production rate and entropy flux rate that
involve the transition rates and in this sense is related
to the ratio between the probabilities of a trajectory in
phase space and its time reversal. We have shown that,
in the stationary state, the entropy production, or the
entropy flux, is related to the dissipated power. More
precisely, we have shown that the entropy production in
a system in contact with several heat baths is a sum of
terms, each one being the ratio between the dissipated
power and the temperature of the corresponding heat
bath. Usually this relation is actually used to define en-
tropy flux. The definitions of entropy production and
entropy flux as we used here make no a priori reference
to the dissipated power. In this sense they are universal
definitions being valid for general open systems not nec-
essarily in contact with heat reservoirs. As an example
of our formalism, we have used the expression for the en-
tropy production rate to determine the heat conductance
of a simple system consisting of two Brownian particles,
each one in contact to heat reservoirs at distinct temper-
atures. Our results agree with those obtained by other
methods. Finally, we have made a connection between
the definition of entropy production rate and the Jarzyn-
ski equality.
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[10] A. Pérez-Madrid, J. M. Rub́ı and P. Mazur, Physica A
212, 231 (1994).

[11] J. Kurchan, J. Phys. A 31, 3719 (1998).
[12] C. Maes, J. Stat. Phys. 95, 367 (1999).
[13] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333

(1999).
[14] C. Maes, F. Redig, and A. Van Moffaert, J. Math. Phys.

41, 1528 (2000).
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