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We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the

entropy production rate advanced by Schnakenberg for systems described by a master equation. From the

microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production

rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs

with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The

approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On

a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequi-

librium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The

entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.
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The distinguishing feature of a system out of thermody-

namic equilibrium is the continuous production of entropy.

The variation of entropy per unit time is not only due to the

exchange of entropy with the environment but also due to

the internal entropy production [1–3], that is,

dS

dt
¼ ���; (1)

where S is the entropy of the system, � is the rate of

entropy production and � is the flow of entropy per unit

time from the system to the outside. Within this context, the

second law of thermodynamics is equivalent to saying that

the rate of entropy production is nonnegative, � � 0.
In the steady state, S is constant and all entropy generated

is continuously been given away to the environment,

� ¼ �. If the stationary state is a nonequilibrium, that

is, irreversible then � ¼ �> 0. In the equilibrium state,

� ¼ � ¼ 0.
In this Letter we wish to present a microscopic stochas-

tic approach to the thermodynamics of far from equilib-

rium systems, that embodies the properties of the entropy

production rate just stated and from which we should be

able to deduce the macroscopic bilinear form for the

entropy production rate for nonequilibrium systems in

the steady states in terms of fluxes and forces [1–4]. To

this end we assume that the system we are studying is

amenable to be described by a continuous time Markovian

process which amounts to assume a description in terms of

a master equation [5]

d

dt
PiðtÞ ¼

X

j

fWijPjðtÞ �WjiPiðtÞg; (2)

where Wij is the transition rate from state j to state i and

PiðtÞ is the probability of state i at time t. The deduction of
the macroscopic bilinear form is performed by placing the

system in contact with two reservoirs with distinct sets of

thermodynamic fields and by assuming an appropriate

form for the transition rate, to be explained below. We

remark that the contact with two reservoirs keeps the

system far from equilibrium.

To establish a microscopic approach to nonequilibrium

thermodynamics one encounters two major problems con-

cerning entropy. The first is the definition of entropy S of

irreversible systems. This problem is solved if one uses the

Boltzmann-Gibbs expression [6,7],

SðtÞ ¼ �k
X

i

PiðtÞ lnPiðtÞ; (3)

to represent the nonequilibrium entropy, where k the

Boltzmann constant.

The second problem is the definition of entropy produc-

tion rate �. It should meet the two important properties,

stated above, that represent the second law of thermody-

namics. (a) It should be nonnegative and (b) it should

vanish for systems in equilibrium. A system is considered

to be in thermodynamic equilibrium if it exhibits micro-

scopic reversibility [8]. For systems described by a master

equation this is equivalent to the detailed balance condition

WijPj ¼ WjiPi, for any pair of states i and j. An expres-

sion that meet the conditions (a) and (b), for systems

described by a master equation, is the one advanced by

Schnakenberg [9]

�ðtÞ ¼ k

2

X

ij

fWijPjðtÞ �WjiPiðtÞg ln
WijPjðtÞ
WjiPiðtÞ

; (4)

an expression that has been considered by several authors

[10–22] and has a close relationship with the fluctuation

theorems of Gallavotti and Cohen [23] and with the

Jarzynski equality [24,25]. It is nonnegative because each

term in the summation is of the form ðx� yÞ lnðx=yÞ and
vanishes in equilibrium, that is, when microscopic revers-

ibility or detailed balance condition is obeyed.
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In the stationary state the expression (4) reduces to the

simpler expression

� ¼ k
X

ij

WijPj ln
Wij

Wji

; (5)

where Pi is the stationary probability distribution.

Expression (5) is particularly useful since it can be under-

stood as an average over the probability distribution Pi. To

deduce (5) from (4) it suffices to notice that the difference

between these two expression equals dS=dt, which van-

ishes in the stationary state.

To proceed further we need to know the specific forms of

the transition rates corresponding to a given situation. We

begin by considering firstly systems that in the stationary

state are found to be in thermodynamic equilibrium. In this

case the system exhibits the microscopic reversibility

which is equivalent to the detailed balance condition

Wij=Wji ¼ Pe
i =P

e
j , where P

e
i is the equilibrium probability

distribution. The desired transition rate should then be of

the general form Wij ¼ Kij½Pe
i =P

e
j�1=2 where Kij is sym-

metric, that is, Kij ¼ Kji. The equilibrium probability

distribution Pe
i is assumed to be the Gibbs distribution

describing the contact of the system with a specific reser-

voir. Here we consider a reservoir that exchanges heat and

particles with the system so that the associated distribution

is Pe
i / expf��ðEi ��NiÞg [26], � ¼ 1=kT, where Ei

and Ni are the energy and the number of particles of the

system, and T and � are the temperature and the chemical

potential of the reservoir. The desired transition rate is then

Wij ¼ Kije
��½ðEi�EjÞ��ðNi�NjÞ�=2: (6)

Let us imagine now the system to be in contact with two

distinct reservoirs, 1 and 2. Reservoirs 1 and 2 are asso-

ciated with the temperatures T1 and T2 and the chemical

potentials �1 and �2, respectively. The transition rate

associated to the rth reservoir is given by

WðrÞ
ij ¼ KðrÞ

ij e
��r½ðEi�EjÞ��rðNi�NjÞ�=2; (7)

where �r ¼ 1=kTr.

Each possible transition occurring in the system between

two states i and j is either due to the contact with the

reservoirs or is an internal transition with no relation to

the reservoirs. The transitions describing the contact with

the reservoirs are assumed to be caused by the contact with

either one or the other reservoir so that the transition rate is

either Wð1Þ
ij or Wð2Þ

ij . The internal transitions, denoted by

Wð3Þ
ij , are assumed to have the property Wð3Þ

ij ¼ Wð3Þ
ji when-

ever Ei ¼ Ej and Ni ¼ Nj, otherwise W
ð3Þ
ij ¼ 0. Each pos-

sible transition is therefore assumed to belong to one of

three mutually exclusive classes of transitions labeled 1, 2,

and 3. Introducing a projection variable �ðrÞ
ij ¼ �ðrÞ

ji that

takes the value 1 if the transition between states i and j

belongs to class r and 0 otherwise then the transition rate

can be written as

Wij ¼ �ð1Þ
ij W

ð1Þ
ij þ �ð2Þ

ij W
ð2Þ
ij þ �ð3Þ

ij W
ð3Þ
ij : (8)

The entropy production rate becomes then

� ¼ k
X

r¼1;2

X

ij

�ðrÞ
ij W

ðrÞ
ij Pj ln

WðrÞ
ij

WðrÞ
ji

: (9)

Notice that the summation is only over the transitions

associated to the two reservoirs since the transitions of

class 3 give no contribution to �. By the use of (7) it can

be written as

� ¼
X

r¼1;2

X

ij

�ðrÞ
ij W

ðrÞ
ij Pj

�

1

Tr

ðEj � EiÞ �
�r

Tr

ðNj � NiÞ
�

:

(10)

Since the flux of energy (actually heat) from reservoir 1

into the system is

J E ¼
X

ij

�ð1Þ
ij W

ð1Þ
ij PjðEi � EjÞ; (11)

and the flux of particles from reservoir 1 into the system is

J N ¼
X

ij

�ð1Þ
ij W

ð1Þ
ij PjðNi � NjÞ; (12)

and making use of the global balance equation, then ex-

pression (10) can be written in the bilinear form

� ¼ XEJ E þ XNJ N ; (13)

where XE ¼ 1=T2 � 1=T1 and XN ¼ �1=T1 ��2=T2 are

the thermodynamic forces conjugated to the flux of energy

and particles, respectively.

We have applied the results above to a nonequilibrium

interacting lattice gas model defined on a regular lattice

with energy E ¼ �J
P

ð‘;‘0Þ�‘�‘0 , where the summation is

over the nearest neighbor sites, and number of particles

N ¼ P

‘ð�‘ þ 1Þ=2. We are using spin variables �‘ that

take the valuesþ1 or�1 according to whether the sites are
occupied or empty. The whole configuration of the lattice is

denoted by �. The system is in contact with two reservoirs

that keep the system far from equilibrium. The contact with

each reservoir is described by a spin flip transition rate of

the Glauber type

w‘ð�Þ ¼
�

2

�

1� �‘ tanh

�

�r

�

J
X

�

�‘þ� þHr

���

; (14)

which is a particular form of (7), where Hr is related to the

chemical potential by Hr ¼ �r=2 and � sets the time

scale. To update a chosen site, we use reservoir 1 if the

majority of neighboring spins is up and reservoir 2 if the

majority is down. When there is a tie, one uses reservoir 1

if the site at the right of the chosen site is up and reservoir 2

if it is down. For the one-dimensional model the local
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configurations areþ � þ and� � þ for reservoir 1 and� �
� and þ � � for reservoir 2, where the dot represents the

site to be updated. For the model defined on a square lattice

the local configurations associated to each reservoir are

shown in Fig. 1. This model is related to models that

describe the flux of molecules across a cell membrane

[27]. The two reservoirs represent the inside and outside

regions of a cell. Depending on the configuration of its

neighborhood, a site can exchange particles with either the

outside or the inside region.

Here we report results for a linear chain and for a square

lattice for the case in which T1 ¼ T2 ¼ T and H1 ¼
�H2 ¼ H. In this case the model has up-down symmetry

and XN ¼ ð4H=TÞ and XE ¼ 0 so that � ¼ ð4H=TÞJ N .

For the linear chain it follows from (14) that the spin flip

transition rate can be written in the equivalent form

w‘ð�Þ ¼ ðb0 þ b1�‘�1�‘þ1Þe��‘�½J�‘�1þðJþHÞ�‘þ1�;

(15)

where b0 and b1 are known functions of �J and �H. The

stationary probability distribution Pð�Þ is obtained by

assuming that it has the form

Pð�Þ ¼ 1

Z
e
K
P

‘

�‘�‘þ1

; (16)

where K is a parameter to be found. If we substitute (15)

and (16) into the global balance equation

X

‘

fw‘ð�‘ÞPð�‘Þ � w‘ð�ÞPð�Þg ¼ 0; (17)

where �‘ denotes the configuration obtained from � by

changing the sign of �‘, we get

X

‘

fa0 þ �‘ða1�‘�1 þ a2�‘þ1Þ þ a3�‘�1�‘þ1g ¼ 0;

(18)

where ai are known functions ofK,�J and�H. A solution

of this equation is obtained by imposing a0 ¼ a3 ¼ 0 and

a1 ¼ �a2. These three conditions are not all independent
and can be met by just one constraint, which is found to be

K ¼ �ðJ þHÞ=2.
The production of entropy per site �� is also obtained

exactly. Substituting (15) and (16) into the expression for

the entropy production rate

�� ¼ k

�

w‘ð�Þ ln
w‘ð�‘Þ
w‘ð�Þ

�

; (19)

we obtain an expression that involves the nearest neighbor

and next-nearest neighbor correlations h�‘�‘þ1i and

h�‘�1�‘þ1i. But these two correlations can be obtained

exactly from the solution of the one-dimensional model

defined by (16). They are tanhK and ðtanhKÞ2, respectively,
which lead us to the following expression for the rate of

entropy production:

�� ¼ �H tanh�H

2TðcoshKÞ2 : (20)

The flux of heat J E vanishes identically. It is worth to

point out that if a temperature TS is associated to the

system through K ¼ J=kTS then TS ¼ T=ð1þH=2JÞ
and the temperature of the system TS is distinct from the

temperature T of the reservoirs.

On a square lattice the entropy production rate was

obtained from numerical simulations. At each time step a

site of the lattice is randomly chosen and is updated

according to the Glauber dynamics defined by (14).

According to the local configuration, shown in Fig. 1, we

use either H1 ¼ H or H2 ¼ �H in Eq. (14). The tempera-

ture T is the same. The simulations were performed on a

square lattice of linear size L ¼ 160 and periodic boundary
conditions. The results obtained at the stationary state are

shown in Fig. 2 in units where k ¼ 1 and J ¼ 1. The model

exhibits a symmetry breaking phase transition at T ¼
3:125ð5Þ from a disordered to an ordered state. The entropy

production rate per site �� is finite but has a singularity at

the critical point which is better appreciated if we look at

its derivative d��=dT. This last quantity diverges at the

critical point as can be seen in Fig. 2. Our results indicate a

logarithmic divergence for d��=dT, similar therefore to

the specific heat divergence of the equilibrium Ising model

on a square lattice. Similar behavior has also been found in

the majority vote model [14].

The phase transition taking place in this irreversible

model could be characterized, at a first thought, by the

magnetization and susceptibility. However, these quanti-

ties do not grasp the irreversible character of the system.

Alone they could not tell whether the system is or is not in

equilibrium. The full characterization is accomplished by

the currents and fluxes of various types taking place a the

nonequilibrium steady state. These fluxes together with

the forces make up the entropy production rate, as given
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FIG. 1. Local configurations on a square lattice associated to

reservoir 1 (above the line) and reservoir 2 (below the line). The

dot represents the site to be updated.
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by the bilinear form, assigning to this quantity a funda-

mental role in describing the phase transition at nonequi-

librium steady states.

The nature of the phase transition can be found from the

behavior of the entropy production rate and the fluxes as

functions of the external parameters. A discontinuous, or

first order, phase transition takes place if these quantities

display a jump at the transition point. If they are continu-

ous, the transition is continuous, or second order. In this

respect, these quantities play roles analogous to the first

derivatives of the Gibbs free energy in equilibrium system.

According to this framework, the phase transition of the

present two-dimensional model is second order and is

similar to the continuous phase transition in the equilib-

rium Ising model in the sense that the derivative of the

continuous function diverges instead of having a jump.

Another and perhaps more meaningful characterization

of the phase transition is provided by the order parameter.

Since we are faced with a phase transition in which the up-

down symmetry is broken at low temperatures, the order

parameter has to change sign under the up-down trans-

formation, that is, should be antisymmetric. Antisymmetric

quantities vanish in the disordered phase and become non-

zero in the ordered phase. This is exactly the case of the

heat flux J E, which is an antisymmetric quantity and may

therefore be identified as the order parameter, in contrast to

the particle flux J N , which is symmetric. Above the criti-

cal temperature there is no heat flux. Below the critical

temperature a nonzero heat flux sets in, as can be seen in

the inset of Fig. 2, in spite of the fact that the temperatures

of the reservoirs are the same. Because of the symmetry

breaking there may be two coexisting phase at low

temperature: one characterized by a heat flow from reser-

voir 1 to reservoir 2 and the other, from 2 to 1.

The one-dimensional model introduced above is an ex-

ample of models lacking detailed balance but having a

Boltzmann-Gibbs (BG) distribution as the stationary state

[28]. In spite of being described by a BG distribution such

models are out of equilibrium, with a nonzero production

of entropy. In two dimension, the simplest model of this

type is the North-East model defined on a square lattice by

the spin flip transition rate [28,29]

w‘ð�Þ ¼ �e�2K�‘ð�‘þx̂þ�‘þŷÞ: (21)

Employing the same reasoning used in the one-

dimensional case, it is straightforward to show that the

stationary probability distribution for this stochastic pro-

cess is the BG distribution

Pð�Þ ¼ 1

Z
e
K
P

ð‘;‘Þ
�‘�‘0

; (22)

where the summation is over the nearest neighbor pair of

sites of a square lattice and describes an Ising model with

nearest neighbor interactions, which exhibits also a sym-

metry breaking phase transition at a temperature T ¼ 1=K

given by Tc ¼ 2= lnð1þ
ffiffiffi

2
p

Þ. The calculation of the en-

tropy production rate for this model can be carried out

exactly. Indeed, from the definition (5) of the entropy

production and using the transition rate (21) we obtain the

following expression for the entropy production rate per site

�� ¼ a� bh�‘�‘þx̂i þ ah�‘þx̂�‘þŷi; (23)

where a ¼ 4k�K sinh4 K, b ¼ 8k�K cosh4 K, and

h�‘�‘þx̂i and h�‘þx̂�‘þŷi are the nearest and next-nearest

neighbor correlations on a square lattice. Since these two

correlations can be determined exactly for the Ising model

on a square lattice [30] it follows that the entropy production

can also be exactly calculated. Substituting the closed forms

for the correlations (from [30], pages 200–201) we get the

desired expression for �, which is too cumbersome to be

written down but can be appreciated in the plot of Fig. 3. It is

important to notice that these correlations are finite but have

1 2 3 4 5 6 7

T

0

0,01

0,02

0,03

,
d

/d
T 2,5 3 3,5

T

0

0,001

J
E

*

d

dT

FIG. 2. Entropy production rate per site ��, the derivative

d��=dT and the heat flux per site J �
E (inset) versus temperature

T obtained from numerical simulations. They exhibit singular-

ities at the critical temperature Tc ¼ 3:125ð5Þ.

0 1 2 3 4 5

T

0

1

2

d
d

T

d

dT

FIG. 3. Entropy production rate per site �� and the derivative

d��=dT versus temperature according to the exact expression

(23). They exhibit singularities at the critical temperature Tc ¼
2= lnð1þ

ffiffiffi

2
p

Þ ¼ 2:269 185.
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singularities of the type jT � Tcj lnjT � Tcj [30]. These
features are reflected on the production of entropy, that is,

this quantity is also finite and has the same type of singu-

larity, as can be seen in the plot of �� versus T shown in

Fig. 3 together with the plot of d��=dT versus T.
As a final remark, the existing examples of nonequilib-

rium models with stationary BG probability distribution

teach us that the BG distribution is a necessary but not a

sufficient condition for the thermodynamic equilibrium.

Actually, the necessary and sufficient condition is detailed

balance, or microscopic reversibility or, in macroscopic

terms, the vanishing of entropy production rate.

[1] I. Prigogine, Introduction to Thermodynamics of

Irreversible Processes (Thomas, Springfield, 1955).

[2] S. R. de Groot and P. Mazur, Non-Equilibrium

Thermodynamics (North-Holland, Amsterdam, 1962).

[3] P. Glansdorff and I. Prigogine, Thermodynamics of

Structure, Stability and Fluctuations (Wiley, New York,

1971).

[4] L. Onsager, Phys. Rev. 37, 405 (1931).

[5] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry (North-Holland, Amsterdam, 1981).

[6] L. Boltzmann, Wien. Ber. 76, 373 (1877).

[7] J.W. Gibbs, Elementary Principles in Statistical

Mechanics (Scribner, New York, 1902).

[8] M. J. Klein, Phys. Rev. 97, 1446 (1955).

[9] J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).

[10] J.-L. Luo, C. Van den Broeck, and G. Nicolis, Z. Phys. B

56, 165 (1984).

[11] C. Y. Mou, J.-L. Luo, and G. Nicolis, J. Chem. Phys. 84,

7011 (1986).

[12] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
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