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Entropy production mechanism during the vacuum energy dominated stage of the inflationary universe 
is considered. We propose a therrnalization mechanism of vacuum energy due to Higgs particles produced 
by the temporal change. of the background classical Higgs field which subsequently decay into other 
particles. Then the dissipation coefficient associated with the classical Higgs field is evaluated for an 
specific decay process and implications of the result are discussed. 

§ 1. Introduction 

As a model of the early universe, the new inflationary scenario has recently attracted 

the interests of many physicists because it is thought to solve some of the fundamental 

problems in cosmology such as the horizon problem and the flatness problem. I) The 

scenario is based on a grand unified theory (GUT) and it introduces the exponentially 

expanding era due to the vacuum energy of the Higgs field which drives the GUT phase 

transition. By this extreme expansion, the first of the above-mentioned problems can be 

solved. 

It is intuitively expected that immediately after the inflation, the vacuum energy is 

converted into the radiation energy efficiently, and that the de Sitter expansion is sup

planted by the Friedmann expansion. And at this transient era, the huge amount of 

entropy more than 1086
, which is observed in our present universe, is expected to be 

produced. This extreme entropy solves the flatness problem and the generated heat 

makes the ordinary baryon generation mechanism2
) work, provided that the energy 

transformation takes place sufficiently fast compared with the expansion rate of the 

universe. Therefore a crucial point of the scenario is whether the efficient thermalization 

is possible or not, with which we shall deal in this paper. 

Several mechanisms of the thermalization have been proposed so far. Albrecht, 

Steinhardt, Turner and Wilczek3
) performed a numerical analysis of the thermalization 

process with a dissipation coefficient introduced asa parameter by hand. Abbott, Farhi 

and Wise4
) considered a particle production process by applying the effective action 

method to a damped harmonic oscillator. However, unfortunately, their methods cannot 

predict the instantaneous entropy production rate at an intermediate time, but gives only 

the total number of particles, which they interpret as entropy, produced through the whole 

process. Especially, it is not clear from their result that whether a non-zero value of a 

vacuum expectation value of the Higgs field <¢> promotes the particle production or that 

of a time derivative of the expectation value d<¢>/dt does. Only in the latter case, the 

entropy production can be associated since a dissipative process must involve d < ¢ > / dt. 

Hosoya, Sakagami and Takao5
) evaluated a dissipation coefficient for the motion of a 

thermal expectation value of the Higgs field in Ji.¢4 model. They considered a small linear 

deviation from the thermal equilibrium and used the method of Zubarev's nonequilibrium 

statistical operator.6
) They obtained a dissipation coefficient proportional to the Boltz-
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Entropy Production in the Inflationary Universe 783 

mann factor, exp( - PH). Owing to this factor, their method cannot be applied to an early· 

stage of the thermalization process because at that time, a temperature of the universe is 

considered to be vanishingly small due to the de Sitter expansion. Even if we take into 

account the effect of the Hawking temperature intrinsic to de Sitter space/) we cannot get 

sufficient thermalizationB
) for the standard model of GUTS in which the Hawking temper

ature is of order 109 GeV. To summarize, the entropy production must arise from a cold, 

almost zero-temperature situation, and must originate from the non-zero value of d<¢»/dt 

rather than < ¢> > itself. 

In §2, we propose a thermalization process due to particle production which is caused 

by the temporal variation of < ¢> >. Then the entropy production is estimated in the form 

of a dissipation coefficient by coarse-graining off-diagonal elements of the density matrix. 

In §3, a perturbation method is developed which enables us to evaluate the dissipation 

coefficient systematically. Applications of the mechanism to the inflationary universe 

scenario and physical interpretations of our results are presented in §4. Further problems 

and implications are discussed in §5. 

§ 2_ Dissipation mechanism due to particle production 

Keeping in mind the conditions of effective thermalization mentioned in §1, here we 

shall p,roceed to propose and investigate a thermalization machanism due to particle 

production. In general, a phase transition is driven by a temporal change of an order 

parameter from zero to some finite value. For a A¢>4 model, the vacuum expectation value 

<¢» corresponds to the order parameter. At the same time,<¢» determines the mass and 

the symmetry of the elementarY excitations (or quasi-particles) which inhabit the back

ground <¢». Therefore, according to the temporal development of <¢», the definition of 

quasi-particles varies from time to time. Consequently, the vacuum state at some time 

develops into a many particle state at a later time. This mechanism of particle produc

tion from vacuum is essentially the same as that of black hole evaporation9
) or that of 

cosmological particle production.7
),lO) 

For simplicity, we model the Higgs field which drives the GUT phase transition by the 

A¢>4 model: 

(2-1) 

An appropriate expectation value of ¢> field is denoted by ¢>c=-<¢», and the fluctuation 

from ¢>c by ¢>q =- ¢> - < ¢> >. At this stage, we do not specify the state with respect to which 

the expectation value is taken. B:owever, let us adopt the Heisenbergrepresentation and 

assume the spatial uniformity of the state. Thanks to them, the averaging operation < ... > 
and Of.! commute each other. Rewriting Eq. (2-1) by ¢>c and ¢>q, we obtain 

(2-2) 

where 

(2-3) 
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784 M. Morikawa and M. Sasaki 

(2'4) 

(2'5) 

From 

(~fJ =0, 

the equation of motion forcPc is given by 

From 

the equation of motion for cPq is given by 

(2'7) 

We note that the field cPq effectively possesses a time dependent mass through cPc2(t). 

Accordingly, the definition of the positive-frequency modes of the Klein-Gordon operator 

changes from time to time. That is, even if we set up the vacuum state at some time, it 

develops into a many particle state in due course of time. 10
) The term proportinal to cPccPq 2 

in Eq. (2'7) also includes the effect of particle production; the triple particle production by 

the decay of an external field cPc. The terms proportional to <cP/) and <cPq3) in Eq. (2'6) 

represent the recoil of the particle production, in which all the dissipative processes such 

as entropy production are to show their effects. 

In a realistic situation, the produced particles are expected to decay subsequently into 

lighter particles and finally into radiation. The time~irreversible entropy production, 

with which we are concerned, is associated with these processes essentially. As an 

example, we shall consider the decay of Higgs particles into fermion pairs and evaluate 

the dissipative effect associated with it in the next section. However, in this section, we 

only assume the existence of such processes and keep our arguments as general as 

possible. 

In what follows, we first consider the particle production process due to the time 

varying effective mass of cPq. Then we discuss how the produced particles induce the 

dissipative effect on cPc. For this purpose, we neglect the terms cubic and quartic in cPq in 

the Lagrangian (2·2) for the moment. Writing cPq as cP, the Lagrangian for cP under the 

present approximation is 

(2'8) 

where M2(t)E m2 +(;.j 2)cPc2(t) is the effective mass of the cP field. Defining the canonical 

momentum by 7(E(JJ:j(J¢ = ¢, the corresponding Hamiltonian density becomes 
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Entropy Production in the Inflationary Universe 785 

(2·9) 

Although the definition of a "particle" in the case of a time-dependent Klein-Gordon 

operator is ambiguous generally, we adopt the following definition which seems to be most 

natural. Namely, the creation and annihilation operators of a particle at time tare 

defined in the manner that they diagonalize the Hamiltonian at time t. ll) 

Fourier decomposing ¢(x) and J[(x) as 

,/..( ) f d
3

k ;;: (t) ik·x 
'f' x = (2J[ )3/2 'f' k e , 

( ) f d3k - (t) ik·x 
J[ x = (2J[ )3/2 J[ k e , 

and imposing the canonical commutation relation· 

as usual, the Heisenberg equations are given by 

¢k(t)=ff-k(t), 

if k( t)= -Wk(t )2¢_k( t), 

where Wk(t)2=.k2+M2(t). 

Then defining the creation and annihilation operators at time t by 

ak( t)= (2Wk(t) )-1/2(Wk(t) ¢ k(t)+ iff -k(t», 

ak t (t)= (2Wk(t) )-1/2(Wk(t) ¢--k(t)- iff k( t», 

the Hamiltonian is instantaneously diagonalized: 

(2·10) 

(2·11) 

(2·12) 

(2·13) 

(2·14) 

(2·15) 

(2·16) 

(2·17) 

The operators ak(t) and ak t(t) are related to ak(O) and ak t (0) by a Bogoliubov transfor

mation 

[
ak(t) ]=[ak(t) 13k(t) ][ak(O) J. 
a!.k(t) 13k*(t) ak*(t) a!.k(O). 

(2·18) 

The coefficients a k(t) and 13 k( t) are expressed respectively as9
) 

1 . 
a k(t )=T(Wk( t )Wk(O) )-1/2( Uk(t )Wk(t)+ iU k(t», (2·19) 

13 k( t)= ~ (Wk(t )Wk(O) )-1/2( Uk *(t )Wk( t)+ iU k *( t), (2·20) 

where the function U k(t) satisfies the equation: 

ij k(t)= -Wk2(t)U k(t) (2·21) 
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786 M. Morikawa and M. Sasaki 

with the initial conditions 

(2·22) 

It is easy to check that Eqs. (2·19) and (2·20) guarantee the canonical transformation 

property of Eq. (2·18), that is the condition 

N ow let us introduce the variables x k(t) and Y k(t) defined by 

Xk(t )=<ak t(t )ak(t ), 

Yk(t )=<ak(t )a-k(t ), 

(2·23) 

(2·24) 

(2·25) 

which are respectively diagonal and off-diagonal elements of the density matrix. If we 

choose the state to be the vacuum one at t=O(Le., the state annihilated by ak(O)), they are 

related to a k( t) and fJ k(t) as 

(2·26) 

and in particular, x k( t) represents the number of particles created in k-mode by the time 

t. In general, the variables x k( t) and Y k( t) satisfy the following equations: 

i k(t)= (Wk(t)/ Wk(t) )Rey k( t), (2·27) 

Y k( t)= (Wk(t)/ Wk(t))( x k( t)+ ~ ) - 2iwk(t)y k( t), (2·28) 

which will be of a great importance in the following discussions. 

Let us now derive the form of the dissipation term, which should appear in the 

effective equation of motion for rPc, and the entropy production rate. Under the present 

approximation that we keep terms up to quadratic in rPq in the original Lagrangian, the 

term proportional to <rPq3) in the equation of motion for rPc, Eq. (2·6) is neglected. 

Therefore, the effect of dissipation must appear through the term proportional to <rPq2) at 

least if it is ever present. Hence the task we have to do is to evaluate <rPq2). 

By using Eqs. (2 ·10), (2 ·15), (2 ·16), (2·24) and (2·25), we can express < rP/(t) in 

terms of x k(t) and Y k(t) as follows: 

<rP/(t) = fd(3;:;r (2Wk(t ))-1/2(2wk,(t))-1/2«ak(t )e ik.x 

+ak t (t )e-ik,x)(ak,(t )eik',X + ak,(t )e-ik',X) 

f 
d3k 

= (2Jr)32wk(t) [2ReYk(t)+ 2x k(t)+I]. (2·29) 

The system of Eqs. (2·6), (2·27), (2·28) and (2·29) forms a closed set of equations for the 

variables rPc(t), x k(t), and Y k(t). Therefore, one might think that the sole problem is to 

solve this set of equations, numerically for example. But the solution to it would never 
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Entropy Production in the Inflationary Universe 787 

accompany the effect of genuine dissipation because the system possesses the time reversal 

symmetry. In order to associate the entropy production with the' system, further 

manipulation which introduces some kind of the time irreversibility is needed. 

Among the variables I k(t), Y k( t) and rPc(t), rPc( t) is the order parameter which 

describes the symmetry of the universe and I k( t) is a diagonal element of the density 

matrix which describes the particle number density. Therefore, they can be regarded as 

the variables which determine the gross properties of the system. While the variable 

Yk(t), being an off-diagonal element and representing the correlation among produced 

particles, varies more rapidly than Ik(t) as seen from Eqs. (2·27), (2·28) provided Wk(t) 

~Wk2(t), namely, rPc(t) varies slowly. Therefore, it is expected that the information 

carried by the variable Y k( t ) is easily destroyed by a small perturbation to the system and 

that the entropy production is associated with this loss of information. 

From Eq. (2·28), Yk(t) is solved formally as 

If this is inserted into Eqs. (2·27) and (2·29), :i k(t) and <rP/(t) become complicated non

local functions of time which depend on the precise behavior of the system's history.*> 

However, if a dissipative process should ever be present, the correlation among produced 

particles would be destroyed sufficiently rapidly and :i k(t) and <rPq2(t» should become 

local functions of time which involves rPc(t) and ¢c(t) only. At a glance of Eq. (2· 30), we 

find the above requirement implies the existence of a negative imaginary part in W k( t ) 
such that 

Imwk(t)=- ~ rk(t); 

where 

Provided that this is the case, Re Yk(t) is given by 

where 

for Wk~r k' 

for Wk-:?> r k . 

(2·31) 

(2·32) 

(2·33) 

(2·34a) 

(2·34b) 

The quantity rk(t) represents a reduction time within every time-interval of which the 

realization of created particles and the back-reaction associated with it occur.l2),**> Then 

*> Even if we p~rfonned the momentum integral in Eq. (2'29), this non·locality would not disappear. 

**> Kodama12
) introduced the concept of the reduction time in the case of particle production in Friedmann 

universe. 
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788 M. Morikawa and M. Sasaki 

Eq. (2·29) becomes 

(2·35) 

Note that the first and the second terms in the square brackets are related to the mass 

renormalization of the field ,pc. In fact, the first term, which is divergent, is present even 

when Wk(t )=x k(t )=0 and is'simply canceled by the usual mass counter term. While the 

second term contributes to the particle-distribution-dependent mass renormalization, mR2. 

That is, 

mR2(t)= m
2
+ ~ f (27[ )~;!k(t) (1 +2x k(t» 

=m 2(t)+_A_ roodkk2xk(t) 
r 47[2 )0 Wk(t) , 

(2·36) 

where mr2 is the renormalized mass with no particle distrihution. For a thermal equilib

rium, xk(t)=(exP(wk(t)/T)-l)-l and at the high temperature limit (m~T), we have 

mR2(t)= mr2(t)+ 2~ T2 , (2·37) 

which is a well-known result. In the following arguments, we shall not touch on these 

kinds of renormalization problems. This is because what we are interested in is dis

sipative effects which arise from imaginary parts of Feynman diagrams. Therefore, for 

A,p4 model, being renormalizable, we do not have to worry about their real parts. 

The dissipation term stems from the third term of Eq. (2·35) and the equation of 

motion for ,pc becomes 

(2·38) 

where the dissipation coefficient F(,pc) is given by 

(2·39) 

We emphasize that this dissipation coefficient was derived without assuming any particu

lar properties of the state under consideration. Therefore, the formula holds regardless 

of whether it is a thermal equilibrium one or not. In this respect, we call the present 

mechanism quantUm dissipation. Now from Eqs. (2·27) and (2·33), the incoherent (i.e., 

irreversible) particle production rate is given by 

(2·40) 

Positivity of the quantities F(,pc) and :i k is observed, which is the consequence of coarse

graining the quantum correlation Y k(t). The part which is proportional to x k( t) are 

interpreted as the "induced" dissipation effect. It should be noted that the vacuum energy 

loss rate infered from Eq. (2·38), F(,pc)¢/, is consistently equal to the energy generation 
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Entropy Production in the Inflationary Universe 789 

rate associated with the incoherent particle production, J(d3k/ (27f )3)i k(t)Wk(t), where 

i k(t) is given by Eq. (2·40). 

§3. Evaluation of the dissipation coefficient 

Up to now, our arguments have been quite formal. In order to apply the formula 

(2·39) to a specific situation, it is necessary to develop a method for evaluating rk(t). In 

addition, it is more preferable if the method allows us to evaluate higher order effects 

which have been neglected so far. In this section, we present such a method and evaluate 

r k (t) for a couple of specific cases. 

The method we develop is essentially the same as the usual perturbation theory for 

interacting fields. The perturbation is composed of two parts. One is that due to an 

explicit time dependence through ¢c( t), which gives rise to the production of ¢q quanta. 

The other is that due to interactions of ¢q with other fields, which gives rise to the 

relaxation of the produced ¢q quanta. Here we assume that the interaction time charac

teristic of the former is greater than that of the latter. This is equivalent to the assump

tion of 'a slowly varying ¢c( t), adopted in the previous section. The corresponding 

asymptotic field is defined to satisfy the linearized equation of motion instantaneously at 

a certain reference time to which, we arbitrarily choose. 

Writing ¢q by ¢ as before, the total Lagrangian for the field ¢ is from Eq. (2·2), 

.L= ~ (a,,¢)2- ~ m2¢2_ ;!¢4+a,,¢c·a,,¢-m2¢c¢ 

(3·1) 

where .Lint represents possible interactions of ¢ with other fields such as fermions and 

gauge bosons. Using the equation of motion for ¢c, Eq. (2·6), the terms linear in ¢ can 

be expressed in terms of <¢2) and <¢3) which are essentially non-local in time. Thus.L 

is rewritten as 

Let us split it into two parts: 

where 

and 

.L l(t)= - ~ (¢c2(t)- ¢c2(tO))¢2_~ [( ¢c(t)- ¢c(to) )(¢3-3¢<¢2(t)) 

-3¢c(tO)¢<¢2(t)]+ ~ ¢<¢3(t ). 

(3·3) 

(3·4) 

(3·5) 
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790 M. Morikawa and M. Sasaki 

The former part .Lois the Lagrangian we would obtain if the time development of ¢c were 

frozen at t = to, and the latter part .L 1 is the rest of .L which is explicitly time-dependent. 

The evaluation of the dissipation coefficient is done as follows. The quantities to be 

evaluated are <¢2) and <¢3). In order to do so, we first perform the perturbation 

expansion with respect to .Ll. The full field ¢, whose dynamics is determined by the full 

Lagrangian .L, is related to the fi~ld j;, whose dynamics is determined by .Lo, as 

where 

and 

u(t, to)=exp[iHo(t- to)]exp[ - iH(t- to)] 

= Texp[i latdt' !d3x' .Ll[j;(X')]] 

(3·6) 

(3·7) 

(3·8) 

with Ho being the Hamiltonian corresponding to .L o. As the state with respect to which 

the expectation value is taken, we choose the vacuum at t= to, namely, the statelO) such 

that H(to)IO)=0 where H is the total Hamiltonian corresponding to.L. Since what we 

are interested in is the quantum dissipation, this choice seems to be reasonable. Pertur

bativelyexpanding U(t, to) in Eq. (3·6), we can obtain the expressions for <¢2) and <¢3) 

in terms of the field j;. Then, by taking into account the interaction terms in .L 0, the 

dissipation coefficient can be explicitly evaluated. The above procedure is graphically 

rephrased as follows: First, perform skeleton expansion with respect to .L 1 and then 

radiatively correct the lines in each skeleton with respect to .L o. 

Let us evaluate <¢2) first. Up to the first order in II, it is given by 

<¢2(t» = < j;2(t» 

- ~ latdt' jd3x'<j;2(x )j;2(X'»(¢c2(t')_¢c2(to» 

+ ~ latdt' jd3x'< j;2(X')j;2(X »( ¢c2(t')- ¢c2(to» 

=<j;2(t» 

+ ~ (¢/(t)- ¢c2(to}} latdt' jd3x'Im< Tj;2(X )j;2(X'» 

+ ~ latdt' jd3x'(¢c2(t')-¢c2(t »Im< Tj;2(X )j;2(X'». (3·9) 

Note that the odd power terms of ¢ in .L 1 do not contribute at this order. Here the term 

immediately after the second equality is related to the usual divergent mass renormaliza

tion. However, the second term is a new one which.was absent in the usual perturbation 

theory and it is also divergent. Although we do not know what to do with this term in 

the strict sense, we presume it is also related to the mass renormalization. This is 

supported by the fact that the space-time integral of it turns out to have nothing to do with 
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Entropy Production in the Inflationary Universe 791 

the imaginary part of the inverse of the full propagator (at least in the lowest order), and 

by the fact that this term does not contain any factor which shall give rise to a time 

derivative of ¢c(t). Furthermore, if one accepts the idea of time-dependent mass renor

malization and assumes the mass of ¢ quanta at time t is M2(t)=m2+(Ji./2)¢c2(t), this 

term cancels completely. This is similar to the idea of temperature-dependent mass 

renormalization for a system which evolves adiabatically; one assumes the system to be 

static when performing the renormalization but the resulting temperature dependent mass 

becomes eventually function of time. This procedure is usually justified by the fact that 

the real part of a propagator represents the abiabatic part of the evolution. Therefore let 

us assume the same is true for our case and the mass of ¢ quanta is time-dependently 

renormalized.. Then the only possible sourse of dissipation is the last term and this turns 

out to be the case. 

Thanks to the assumption of the slow temporal development of ¢c( t) and the rapid 

decay of the quantum correlation, Im< T¢2(X )¢2(X'», we can approximate 

(3·10) 

On the other hand, the quantum correlation <T¢2(X )¢2(X'» can be decomposed as 

(3·11) 

where Gn(Xl, ..• , Xn) denotes the n-point connected Green function. Notethat contribu

tion of the terms that contain tadpole graphs· is apparently higher order and therefore 

discarded in Eq. (3·11) from the beginning. On the right-hand side of Eq. (3·11), G4 

involves the 4-point vertex and is at least of order Ji., hence can be neglected at the lowest 

order. The last term G2 G2 is always real and local thus does not contribute to the 

expression of <¢2(t». Therefore the relevant term of Eq. (3·9) takes the form 

(3·12) 

where the subscript d to < ¢2( 0> denotes the part of < ¢2(t» which causes the dissipation 

of ¢c. Since the quantum correlation dies out sufficiently fast, we may replace the lower 

limit of t~e time integral to by - 00 without affecting the value of Eq. (3·9). In addition, 

the integrand should be independent of the spatial coordinate x because of the assumption 

of spatial uniformity. Then, defining 

(3·13) 

, 
and denoting the part of the dissipation coefficient which is due to < ¢2( t » d by F2 ( ¢c), we 

obtain 

(3·14) 

Due to the interaction terms in "£0, the mass in the denominator of the propagator 

acquires an imaginary part: M2~ M2- iL;'(P2)(L;'(p2):reaI) as well as the renormalization. 

Thus we have 
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792 M. Morikawa and M. Sasaki 

(3·15) 

where 

(wp-irp/2)2=p2+M2-i:£(M2), or rp= £~M2) 
p 

(3·16 ) 

and W p}> r p has been assumed. Then, D is expressed as 

D(t)=fd
3
P (-1/4) (OOdt.te- U (WP-irp /2)t 

(271Y (wp - ir p/ 2)2 Jo 

-f d 3

p 1 
- (27r)3 16(wp - ir p/ 2)4 . 

(3·17) 

Therefore, in the case wp}>r p' Eq. (3·14) is expressed as 

_ A2¢c2 (00 2 5_ A2¢c2 J; (00 2 2 -3 

F2(¢c)- 167r2 Jo dp·p ·rp/wp - 167r2 M3Jo dx·x (l+x) . (3·18) 

We find this has the same form as Eq. (2·39) with Xk(t) set equal to zero and rk(t) 

given by Eq. (2·34b),except that the numerical factor is twice the case of Eq. (2·39). 

This difference may be interpreted as follows. In Eq. (2·39), only the off-diagonal 

element Yk( t) is smeared out to yield the effective equation of motion fqr ¢c( t) and x k( t). 

While in Eq. (3·18), both the diagonal element Xk(t) and the off-diagonal one Yk(t) are 

smeared out to yield the effective equation of motion for ¢c(t). Then the latter case 

should be associated with a greater loss of information and is expected to yield a larger 

dissipation coefficient. The answer to the question which is more realistic procedure may 

depend on a situation one deals with. 

Next, we consider <¢3(t». Following the same procedure as before, we obtain 

. <¢3(t»=<i3(t» 

+ ~ (¢c(t )-¢c(to» 1: dt' jd3x'Im(Ti3(x)( i 3(x')-3<¢2(X'» i(x'»> 

-~ 1: dt' jd3x'<¢3(t'»Im< Ti3(x )i(x'» 

- A¢c(to) 1: dt' jd3x'Im< Ti3(x )i(X'»<¢2(X'» 

+ ~ 1: dt' jd3x'(¢c2(t')-¢c2(to»)Im< Ti3(x )i2(x·'» 

+ ~ 1:dt' jd3x'(¢c(t')-¢c(t »)Im< Ti3(x)( i 3(x')-3<¢2(X'»i(x'»>. 

(3·19) 

Note that the first four terms of the right-hand side do not contain any factor which shall 
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Entropy Production in the Inflationary Universe 793 

give rise to the time derivative of ¢c(t). Thus they have nothing to do with dissipation. 

For the divergences appearing in these terms, we adopt the idea of time-dependent 

renormalization by appealing to the same kind of arguments we have given before and 

assume it to be properly canceled. The fifth term is a higher order contribution because 

it is proportional to the vacuum expectation value of odd power of ¢;. Thus the last term 

is relevant, 

The quantum correlation factor is decomposed as 

< T¢;3(X)( ¢;3(x')-3<¢3(X'»¢;(x'»>=6G2(X, x7+(higher order terms). (3-21) 

Thanks to the assumption of slow variation of ¢c(t) as before, we get 

(3-22) 

Defining 

E(t)=-l"" dt'-t'jd3x'G2(X, x')3 (3-23) 

and denoting the part of the dissipation coefficient which is due to < ¢3( t » d by F3( ¢c), we 

obtain 

Inserting the expression (3-15) for G2 into Eq. (3-23), E is expressed as 

where 

E(t) - 1 fd
3

k 1 fd
3

k2 (- - - )-1( - + - + - )-2 -8 (27r)3 (27r )3 CthCth(03 (01 Cth (03 , 

ah=+(kI2+M2-iL7(M2»1/2, 

dh= +(k22+ M2- iL7(M2»1/2, 

w3= +(1z12+ k22+ M2- iL7(M2»1/2 . 

Thus F 3(¢c) is given by 

where 

A 1=.Ql+.Q2+.Q3, A2=.QIQ2+Q2Q3+.Q3Ql, A3=Ql.Q2Q3; 

Q1 = (1 + XI2)1/2, Q2= (1 + X22)1I2, Q3= (1 + X12+ X22)1/2. 

(3-24) 

(3-25) 

(3-26) 

(3-27) 

(3-28) 

Next, we shall evaluate r p and F(¢c) explicitly, by specifying the form of .Lint in 

Eq. (3-4). In the realistic cosmological situation at the GUT phase transition, the Higgs 

field interacts with light fermions or with gauge bosons. We choose the Yukawa coupling 
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794 M. Morikawa and M. Sasaki 

with a light fermions as a demonstration; 

(3·29) 

The imaginary part of the self energy of if; field, J: which is defined in Eq. (3 ·15) due to 

this interaction is given by 

(3·30) 

where p denotes the' fermion mass. From Eq. (3·16), the corresponding decay width is 

given by 

(3·31) 

where we have assumed p4(M. Provided f 24(127[, we have (j)p'»r p and Eq. (3·18) can 

be used, yielding the dissipation coefficient which originates from <¢2(t» as 

(3·32) 

In the case m 24(J¢c2, this is reduced to 

./2)..a/2f2 . 
F2( ¢c) 30727[2· ¢c . (3·33) 

If we use Eq. (3·30) to Eq. (3·27), we get the dissipation coefficient which originates from 

<¢a(t »: 

)..2j2M [1"" 1"" 2 2 1 (A22 A2 )] 
Fa(¢c) 11527[5 0 dXl 0 dX2Xl X2 AlAa2 2AlAa + A/ -1 . (3·34) 

In the case m24()..¢c2, this is reduced to 

)..5/2f2¢C [1"" 1"" 2 2 1 (A22 A2 )] 
Fa(¢c) 1152./27[5 0 dXl 0 dX2Xl X2 AlAa2 2AlAa + A12 -1 . (3·35) 

We can show that the ¢ self-interactions do not contribute to the relaxation of the 

produced ¢ quanta. . Let us use the spectral representation for G2(X), la) 

(3·36) 

where 

(3·37) 

and p, the spectral function, includes the effect of two-body and three-body decays by the 

self-interactions in "£0, Eq. (3·4). The dissipation coefficient F2(¢c) then takes the form 

F2(¢c)= _)..2¢/Im 1"" dX121"" dX22p(xnp(x22)[1"" dt· t !daxLlF(X; XnLlF(X; xnJ. 

. (3·38) 

The term inside the square brackets of this expression becomes 
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Entropy Production in the Inflationary Universe 795 

(3·39) 

where the prime to the a -function denotes the derivative with respect to (J) and P denotes 

the principal value, and 

(J) = (J)1 + (J)2 , 

(3·40) 

It is apparent that the imaginary part of Eq_ (3·39) is zero since (J) is always positive. 

Thus Eq. (3·38) vanishes. Similarly the dissipation coefficient due to «(P>, Fa(rPc), also 

vanishes for the self-coupling interactions. This is essentially because the self-coupling 

cannot induce any decay process. 

§ 4. .Physical interpretation 

In the present section, let us clarify the origin of the entropy production and discuss 

the meaning of the dissipation coefficient obtained in the previous section. The Higgs 

particles are produc~d from the mixing of positive and negative frequency modes due to 

the temporal development of rPc(t) field. If these particles are left intact, their quantum 

. correlation never fades out. 

In general particle production problems, if we literally interpret Xk(t) in Eqs. (2·27) 

and (2·28) as the total number of produced particles in k-mode during a time interval from 

o to t, peculiar things may happen. For example, consider the scalar particle production 

due to the cosmic expansion in a radiation dominated closed Friedmann universe. The 

quantity x k(t) can be evaluated with the initial condition (Fulling condition )14) which is 

considered to be reasonable even in the neighborhood ofthe initial singularity.· Using the 

Fulling condition, Ishihara and N ariai have shown that although x k( t) increases 

monotonically immediately after the big bang, it decreases monotonically immediately 

before the big crunch.1S
) This does not reconcile with our ordinary thermodynamical 

sense. 

In order that the produced particles should give rise to entropy production, there must 

exist interactions among the produced particles and the other fields. The interactions 

promote diffusion of energy in the huge phase-space of all particle modes and species. A 

particle, produced in a heavy mass mode, subsequently decays into lighter modes, and this 

successive cascade continues to the end where the whole phase-space is occupied with 

some weight and the diffusion flow ceases. This diffusion in the phase-space is the very 

origin of the irreversible entropy production. 

From this point of view, the formula of dissipation coefficients, Eqs. (2·39), (3·18) and 

(3·27) can be interpreted as follows. At the beginning of the cosmic thermalization, the 

phase-space is almost empty. The particle production due to the temporal development 

of rPc is then a process of injecting the background energy into heavy mass modes in the 

phase-space. The strength of the injection is therefore proportional to ¢c. Subsequently 

the energy injected is expected to diffuse into lighter mass modes in the phase-space. The 

diffusion velocity is expected to be determined by the decay rate of the particles, r p. 

Hence, the entropy generation rate should be proportional to the product of the energy 

injection strength ¢c and the diffusion velocity r p •. The dissipation coefficients, 
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796 M. Morikawa and M. Sasaki 

Eqs. (2·39), (3·18) and (3·27), really possess this very form, provided wp'2>rp. On the 

contrary, the dissipation coefficient derived by Hosoya, Sakagami and Taka05
) is inversely 

proportional to the interaction strength rp in the same situation wp'2> r p' This is 

interpreted as follows: Their perturbation expansion is performed around a thermal 

equilibrium. Therefore the greater is the interaction r p, the shorter is the relaxation 

time to the thermal equilibrium. Accordingly the system is closer to the thermal equili

brium and the entropy production is smaller. In the present case, however, the perturba

tion expansion is performed around the vacuum. Therefore the greater is the interaction 

r p' the faster is the diffusion in the phase space, accordingly the greater is the entropy 

production. But for modes wp~r p' the dissipation coefficient is inversely proportional to 

rp. A possible interpretation would be that a thermal equilibrium is rapidly attained for 

these modes due to the large interaction strength. Therefore the situation is expected to 

be similar to that discussed by Hosoya, Sakagami and Takao. 

Now let us turn our attention to the original question whether the sufficient thermal

ization is possible or not. In the previous section, we have obtained dissipation terms, 

Eqs. (3·33) and (3·35), which are proportional to ¢c¢c. This form isthe same as that 

assumed by Albrecht, Steinhardt, Turner and Wilczek in their numerical analysis.3
) Thus 

we can borrow their results. According to them, the numerical factor in front of ¢c in the 

dissipation coefficient must be greater than 10-5 in order to thermalize the vacuum energy 

more than 60 %. (Albrecht et al. used the Coleman-Weinberg type potential with initial 

conditions:<¢>= T=3X10 8GeV, <¢>·=O.) Unfortunately our numerical factor seems to 

be somewhat smaller than 10-5
• However there are several factors which may increase 

the dissipation coefficient and they must be taken into account; Possible factors are as 

follows. The greater is the number of the species of fields which couple to the Higgs field, 

the greater is the dissipation. Al1 induced dissipation due to the factor (2x k + 1) in 

Eq. (2· 39) and the decay strength r p due to the gauge boson coupling to Higgs field would 

increase the dissipation. Also there may be the effect of the de Sitter expansion. 

Further, if the temperature increases to some extent by the present quantum dissipation 

mechanism, a thermal dissipation mechanism due to Hosoya, Sakagami and Taka05
) may 

set in. In order to answer the question whether the thermalization is sufficiently promot

ed so that the inflation is followed by the standard hot universe or not, we have to 

investigate the whole scenario elaborately taking into account all the factors mentioned 

above. 

§ 5. Concluding remarks 

To conclude this paper, let us briefly comment on some unsolved problems and 

possible generalizations of the present analysis. 

First, we comment on the problem concerning the meaning and the legitimacy of 

coarse-graining off-diagonal elements of the density matrix. We did not give the precise 

method of this coarse-graining procedure in the present analysis, but as indicated by the 

fact thatEq. (2·39) differs from Eq. (3·18) by the factor of two, the resultant dissipation 

coefficient seems to depend on how we perform the coarse-graining. Whether one could 

remove this ambiguity is an open problem. 

Second, a possible connection of the present work with generation of density fluctua

tions in the early universe should be mentioned. Basically dissipation and fluctuation are 
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Entropy Production in the Inflationary Universe 797 

closely related. In fact, within the scope of linear response theories, they are firmly 

connected with each other through the dissipation·fluctuation theorem. However it is not 

clear whether a similar theorem holds or not in our manifestly non-equilibriUm situation. 

If this is the case, we expect that physical fluctuations are related to the imaginary part 

of the convolution of several propagators rather than the bare propagator itself, which has 

been proposed to be the origin of density fluctuations by Hawking. 16
) In order to clarify 

the origin of density fluctuations, we have to generalize the present analysis to the case of 

space-dependent, as well as time-dependent, background ¢c. There, two competing 

effects should be kept in mind. First, the particle production process itself may enhance 

the spatial non-uniformity. As is expected from the induced dissipation factor (2Xk(t) 

+ 1) in Eq. (2' 39), a denser distribution of particles results in more effective particle 

production. This effect, if followed by the gravitational instability, may cause apprecia

ble spatial non-uniformity in the distribution of particles. Contrary to that, there exists 

the effect which makes the system uniform. The dissipation term proportional to ¢c, in 

Eq. (2'38), is a consequence of temporal non-locality in the equation of motion for ¢c. If 

we allowed spatial dependence in ¢c, the spatial non-locality would give rise to an extra 

term proportional to 17 ¢c. For example, the extra term to the right-hand side of 

Eq. (3'12) would be 

4).¢c(x)17 ¢c(X )·1: tit' !d3x(x-x')Im Gz(X, x')2 . (5'1) 

The latter term is expected to reduce spatial inhomogeneities of ¢c(x ). 

Finally, some other possibilities of generalizing the present analysis are as follows. 

We have tentatively adopted the particle definition which instantaneously diagonalize the 

Hamiltonian. But instead, we could have chosen another definition such as Parker and 

Fulling's adiabatic particle picture l7
) because there is no unique particle picture in the case 

of time-dependent background. As for applications to a realistic inflationary universe 

model, generalization to the case of a multi-dimensional and/ or composite Higgs field is 

also interesting and necessary. In addition, an analysis which includes gravitational 

effects is probably important. 
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