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1 Introduction

1.1 Motivation

The proposal of a fundamental bound on the ratio of shear viscosity to entropy density has

stimulated much work over the past decade. The bound was initially formulated as [1]

η

s
≥ 1

4π

~
kB

. (1.1)

– 1 –



J
H
E
P
0
3
(
2
0
1
6
)
1
7
0

Three arguments were given for such a bound. Firstly, an energy-time uncertainty prin-

ciple argument, applied to the scattering rate in a Boltzmann equation (weak coupling)

description, suggested such a bound [1]. Secondly, strong coupling results from the simplest

holographic theories [2, 3] ‘universally’ saturated the bound (1.1). Thirdly, the bound was

in agreement with known experimental data [1]. This last fact has become more intrigu-

ing with subsequent experimental results for the viscosity from the quark-gluon plasma as

well as in cold Fermi gases at unitarity being consistent with the existence of a bound.

See for instance [4].

A potential bound along the lines of (1.1) is exciting for at least two reasons. Firstly,

it suggests the possibility that basic quantum mechanical (and thermodynamic) principles

may control the behavior of physically important quantities, beyond any weak coupling

‘quasiparticle’ description. For instance, some of the arguments leading to the viscosity

bound (1.1) can be adapted to suggest an understanding of ‘bad metals’ in terms of bounds

on the electrical conductivity [5–7]. Secondly, because the bound might be saturated by the

holographic dynamics of black hole horizons, it points towards an understanding of black

holes as the ‘most extreme’ quantum systems in nature. Such a formulation heuristically

connects with other extreme aspects of black holes, such as fast scrambling [8, 9].

Controlled theoretical counterexamples to the originally proposed bound (1.1) have

been found in theories with higher derivative gravity duals [10, 11]. In certain special

cases, however, it can be shown that the viscosity to entropy ratio remains bounded from

below [12, 13]. See [14] for an overview of these and related results. Within this set of ideas,

it remains plausible that a bound along the lines of (1.1) might hold — with a different

numerical factor — at least for some large class of consistent quantum theories.

A more dramatic violation of (1.1) has been found in anisotropic systems [15–19]. In

an anisotropic system there are multiple components of the shear viscosity, that can behave

differently. In the models of [15–19] it was found that, as T → 0 with an anisotropy scale

held fixed, one component of the shear viscosity behaved as

η⊥
s
∼ Tα , (1.2)

with the exponent 0 < α ≤ 2. This gives a parametric violation of the bound (1.1) at low

temperatures. That said, it is not obvious a priori that η⊥/s is the ‘right’ quantity to bound

in anisotropic systems.1 The computations in [15–19] show that η⊥ is ‘universally’ given

by the geometry of the horizon, in the same sense that leads to the ‘universal’ saturation

of (1.1) by isotropic horizons [22]. Thus the holographic anisotropic geometries could be

argued to saturate a different bound, in which the entropy density is rescaled by the degree

of anisotropy in the low energy physics. Such considerations beg the question: what exactly

are these bounds trying to say? What are the rules of the game? Perhaps the bounds have

not yet been formulated in the most transparent way. In this paper we hope to shed some

light on these questions.

1On the experimental front, a very low spin diffusivity has been measured in an anisotropic cold Fermi

gas [20]. This may be related to the discussion here because, in a translation invariant system, the shear

viscosity over entropy density is essentially the momentum diffusivity [21] .
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1.2 Summary

The main content of this paper involves new holographic results for η/s. We will further-

more discuss a possible interpretation of these and previous results in terms of bounds.

In section 3 we show that η/s is equal to the increase of the logarithm of the entropy

density per ‘Planckian time’ [23], when the system is perturbed by a linear in time source

for the background metric δg
(0)
xy = t T (i.e. a strain). One advantage of this description of

η/s — that will be important for our purposes — is that it is independent of any role that

η may play in hydrodynamics. It remains true in the presence of translation symmetry

breaking, where momentum is not conserved and η is not a hydrodynamic quantity. A

potentially more significant advantage of the reformulation is the following. In certain

systems a (typically momentum) scale ∆ survives in the zero temperature IR fixed point

description. One might then consider bounding the entropy production per Planckian time

in the presence of a different, temperature-independent, source δg
(0)
xy = t∆. This will lead

to a different, weaker and temperature dependent, bound on η/s that is compatible with

the anisotropic results (1.2), as well as for the new results for η/s that we find in this paper.

In the remaining sections we will compute η/s in isotropic but non-translation invari-

ant holographic spacetimes. We consider certain simple backgrounds that can be studied

without the use of PDEs. We will see that η/s can become arbitrarily small in these the-

ories as the temperature is lowered. In some cases, the behavior is rather similar to the

anisotropic result (1.2). However, unlike in that case, η/s will not be a ‘universal’ horizon

quantity. Instead it must be extracted from properties of a non-normalizable perturbation

of the entire spacetime. Specifically, we will find

• For neutral and charged ‘linear axion’ models, η/s ∼ T 2ν as T → 0, with 0 ≤ ν ≤ 1.

Translation invariance is broken at the T = 0 IR fixed point in these models. The

zero temperature IR geometry is AdS2 × R2.

• Neutral ‘Q-lattice’ models are found to have η/s → const. as T → 0. For lattices

with large amplitude, the const.� 1. Translation invariance is restored at the T = 0

IR fixed point of these models. The zero temperature IR geometry is AdS4.

• Charged Q-lattices can show emergent translation invariance in the T = 0 IR

fixed point or else exhibit strongly non-translation invariant (‘insulating’) low en-

ergy physics. The former case has η/s→ const. as T → 0, and the zero temperature

IR geometry is AdS2×R2. The insulating cases are not understood analytically, but

appear to show a slow (possibly power law) decay of η/s to zero as T → 0.

The physical picture behind these results is as follows. Without translation symmetry

in the IR, there is no privileged dynamical mode, and η/s simply depends on the number

of low energy quantum critical excitations that overlap with the T xy operator. This leads

to the power law η/s ∼ T 2ν . With translation invariance emerging in the IR, a collective

diffusive mode leads to a constant η/s as T → 0. However, with translation symmetry

strongly broken at intermediate energy scales, this mode can have very small overlap with

the microscopic (UV) T xy operator, leading to η/s� 1.

– 3 –
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2 Shear viscosity and entropy production

Define the shear viscosity in a relativistic QFT as

η ≡ lim
ω→0

1

ω
ImGRTxyTxy(ω, k = 0) . (2.1)

Here T xy are spatial parts of the energy-momentum tensor. In the absence of sources

that break translation invariance, then T xy is the current corresponding to conservation of

momentum T ty. In particular, in that case, equation (2.1) is a Kubo formula for the ‘trans-

verse momentum conductivity’. In hydrodynamics, η then gives the momentum diffusivity

via the Einstein relation D = η/(sT ) [21].

In a relativistic QFT, however, the operator T xy is well-defined in any background,

including those that break translation invariance. For instance, the theory can be placed

on an inhomogeneous background metric. It follows that, even in the absence of hydrody-

namics, η retains its essential interpretation: it quantifies the rate of entropy production

when the equilibrium state is subjected to a slowly varying homogeneous source (strain)

δg
(0)
xy . Specifically, take the source to be linear in time

δg(0)xy = t c(0) . (2.2)

Here c(0) is a constant. The rate of entropy density production is then

ṡ =
η

T

(
c(0)
)2

. (2.3)

Here η is defined as in (2.1). The above formula follows from simple manipulations with

linear in time sources, see e.g. [24],2 combined with the standard formula for the rate ẇ at

which external fields do work on a system (see e.g. [25]), with ẇ = T ṡ.

The expression (2.3) is suggestively re-written as3

1

T

d log s

dt
=
η

s

(
c(0)

T

)2

. (2.4)

The ratio c(0)/T is dimensionless and, in a first pass, is naturally taken to be unity (i.e.

choose c(0) = T ). In that case, we see that the ratio of shear viscosity to entropy density [1]

gives the increase of the logarithm of the entropy density over a ‘Planckian time’ [23]

tPl ≡
~

kBT
. (2.5)

2There is an additional contact term contribution to the entropy production, proportional to the sus-

ceptibility GRTxyTxy (0, 0), which is nonzero in the cases we consider below. This is an artifact of the time

dependent source growing to the far past and future. If, instead, a sufficiently smooth regularized source

is used, then the contact term vanishes upon time averaging. The rates of entropy production we discuss

should strictly be considered as time-averaged rates.
3The natural appearance of the logarithm of the entropy was noted first by Brian Swingle. Swingle

further noted that the logarithm of the entropy possibly suggests a connection to the physics of scrambling.
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Here we have momentarily restored factors of the Planck and Boltzmann constants. The

important point for our purposes is that the relation (2.4) remains true in the absence of

translation invariance, so long as the operator T xy is defined.

The above paragraph shows that the viscosity bound (1.1) is equivalent to a bound on

the entropy production per Planckian time due to a specific source δg
(0)
xy = t T . Namely

tPl
d log s

dt
& 1 . (2.6)

We will not be attempting to fix numerical prefactors in this work, although we will charac-

terize circumstances in which numerical prefactors in the viscosity can become very small.

In addition to excising the bound from its original hydrodynamical context, this formula-

tion of a viscosity to entropy density bound suggests a generalization that we now describe.

In a theory with a full emergent IR scaling symmetry at zero temperature (in holog-

raphy this could be, for example, an AdSd+1 Poincaré horizon or it might be an extremal

AdS2×Rd−1 horizon) the most relevant scale is indeed the temperature, and therefore the

choice of source δg
(0)
xy = t T is natural. However, in other circumstances, an additional scale

∆ can survive into the far IR, even if the theory is gapless. This is best thought of as a

momentum rather than energy scale (the latter, by definition, have decoupled in the low

energy IR fixed point theory). Interesting examples where this can happen are cases where

translation invariance is broken in the far IR. In holographic models this has recently been

realized in three different ways: (i) disordered fixed points in which scaling only emerges in

spatially averaged quantities [26–28], (ii) solutions with z =∞ scaling in which space does

not scale and hence spatial inhomogeneity is compatible with scaling [29] and (iii) cases in

which the bulk matter background breaks scaling but the energy momentum tensor, and

hence the metric, are scale invariant, e.g. [30–32]. While the third case has some artificial

features, it is much simpler to work with and therefore we will use variants of those models

in this first study.

When a scale ∆ is present in the zero temperature IR theory, at the lowest temperatures

one could consider bounding the entropy production in the presence of a different source:

δg
(0)
xy = t∆. With this source, the entropy production per Planckian time is given by

1

T

d log s

dt
=
η

s

(
∆

T

)2

. (2.7)

It is interesting to impose the bound on entropy production (2.6), now viewed as a principle

in its own right, with this new source. From (2.7) one obtains the new viscosity bound

η

s
&

(
T

∆

)2

as
T

∆
→ 0 . (2.8)

This bound is weaker than bounds of the type (1.1), and therefore does not contradict

them. It has the virtue of being satisfied by all of the anisotropic results quoted in (1.2)

above, and it will also be satisfied by the cases we describe below.4 In fact, in several cases

4The anisotropic geometries considered in [15–19] have matter fields that break translation invariance;

they are less symmetric instances of the kind of spacetimes we will be considering shortly.
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the temperature scaling will saturate (2.8). The weaker bound (2.8) should be relevant

when a scale ∆ survives in the IR fixed point theory.

The idea that has been outlined above can be summarized as follows: the large amount

of previous work on the shear viscosity in holographic theories that found η/s ∼ 1 and the

work in [15–19] and in the present paper that finds η/s ∼ T 2ν , with 0 ≤ ν ≤ 1, at low

temperatures (as well as other behaviors) in certain models, can be reconciled from the

standpoint of a bound (2.6) on the rate of entropy production. The entropy is produced

due to a strain acting on the thermal equilibrium state. The suggestion is that when

a (typically momentum) scale is present in the low energy theory, the correct bound on

entropy production at low temperatures is in the presence of the source δg
(0)
xy = t∆. A more

satisfactory description should ultimately combine the different bounds into one, perhaps

by bounding entropy production with a source along the lines of δg
(0)
xy = t

√
∆2 + T 2,

cf. [33], or indeed δg
(0)
xy = t∆(T ). This will not be attempted here.

We do not have an argument for why the particular quantity appearing on the left

hand side of (2.6) should be bounded. We also do not have a precise definition of the

scale ∆ that should be used in a given model. The comments above are therefore rather

tentative. Nonetheless, we have found these observations suggestive and a useful framework

for interpreting the concrete results that follow in the remainder of the paper. In particular,

we have not found any obvious counterexamples to (2.8).

3 A (weaker) horizon formula for η/s

In a translation invariant background, the ratio of the shear viscosity to entropy density can

be evaluated directly from horizon data alone [3, 22]. This is unlikely to remain true once

translation invariance is broken, as the shear viscosity in this case is no longer associated

with a conservation law. Methods such as those in [34] will most likely not apply. However,

a weaker ‘horizon formula’ for η/s exists in certain cases as we now discuss.

The objective is to evaluate the correlator in (2.1). Correlators of T xy are obtained

from perturbations δgxy of the metric in the bulk, according to the usual holographic

dictionary [25]. In particular, we will consider backgrounds where the metric and energy-

momentum tensor take the form

ds2 = −gtt(r)dt2 + grr(r)dr
2 + gxx(r)dxidxi ,

Tµν = diag
(
Ttt(r), Trr(r), Txx(r), . . . , Txx(r)

)
. (3.1)

In particular, the metric and energy-momentum tensor are homogeneous and isotropic in

the field theory directions. Crucially, however, we will not assume that the matter fields

sourcing the energy-momentum tensor are homogeneous.

Taking the perturbation

(δg)x y = h(r)e−iωt , (3.2)

about the background (3.1) leads to a wave equation with radially varying mass

0 =
1√
−g

∂r
(√
−ggrr∂r h

)
+
[
gttω2 −m(r)2

]
h . (3.3)

– 6 –
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This mode decouples from other perturbations for the background above. The mass squared

is (we will be taking 16πGN to multiply the entire action, and therefore it does not appear

in the equations of motion)

m(r)2 = gxxTxx −
δTxy
δgxy

. (3.4)

It is easy to check that this mass vanishes for Schwarzschild and Reissner-Nordström back-

grounds. The case of Reissner-Nordström involves a cancellation between the two terms

in (3.4), for which we are not aware of a symmetry argument. When the mass vanishes,

then the arguments of [3, 22] apply. That is, the ratio of shear viscosity to entropy density

is given by horizon data and takes the ‘universal’ value η/s = 1/(4π) [1, 21]. We will,

however, be interested in cases in which the mass does not vanish. The precise form of

m(r) is not important for the general results of this section.

An elegant general formula for correlators of the form (2.1) has been given in [35].

Holographic formulae of the sort we are about to quote have appeared for some time, see

e.g. [19, 36], but the derivation in [35] — very recently reviewed in [37] — is especially

crisp and general. We shall simply quote the result. Let ho(r) be the solution to the

wave equation (3.3) at zero frequency (i.e. with ω = 0) that (i) is regular on the horizon

r = r+ and (ii) goes like ho = 1 near the boundary as r → ∞. The latter condition

simply means that we fix the coefficient of the non-normalizable mode near the boundary

to one (in coordinates where the metric components gtt and gxx in (3.1) go like r2 near the

boundary). In terms of the solution ho(r) one finds

lim
ω→0

1

ω
ImGRTxyTxy(ω, k = 0) =

√
γ(r+)

16πGN
ho(r+)2 =

s

4π
ho(r+)2 . (3.5)

Here γ(r+) is the determinant of the spatial metric on the horizon. For the last equality

we have noticed the factor of the entropy density s =
√
γ(r+)/4GN . From the definition

of the shear viscosity (2.1) we therefore have

η

s
=

1

4π
ho(r+)2 . (3.6)

If the mass vanishes, then the solution to (3.3) at zero frequency is simply ho = 1 every-

where [22]. The ‘universal’ result η/s = 1/(4π) is then obtained from (3.6). More generally,

with nonvanishing mass, the ‘horizon formula’ (3.6) is less powerful. In particular one must

solve a differential equation everywhere in the bulk. However, it still offers a considerable

simplification: the equation can be solved directly with ω = 0.

From expression (3.6) for the viscosity to entropy density ratio and the differential

equation (3.3) we can conclude that if m2 > 0 everywhere, then η/s is necessarily lower

than 1/(4π). The argument is as follows. Assume throughout that m2 > 0. Then, assume

that ho(r+) > 0, so that ho is positive on the horizon. In the differential equation (3.3),√
−g is regular on the horizon whereas grr vanishes and increases away from the horizon.

We are taking the radial coordinate to be in the range r+ < r < ∞. It follows that

h′o(r+) > 0 and thus ho increases away from the horizon. Suppose that ho were to stop

– 7 –
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increasing at some point (and assume ho is continuous). This would would require ∂rho to

vanish at that point, at which ho will still be positive. However, the full equation implies

that if ∂rho = 0 with ho > 0, then ∂2rho > 0. That would require the stationary point to be

a minimum, which is not consistent with the fact that h0 is supposed to stop increasing at

that point. Therefore ho must increase monotonically from the horizon to the boundary.

Therefore, if ho is unity at the boundary, ho(r+) < 1 and hence η/s < 1/(4π).

We do not have a general argument for when m(r)2 in (3.4) should be positive. It

will turn out to be positive in all the cases we consider below, which amounts to all cases

that have been considered so far. In ‘massive gravity’, which we return to briefly in the

discussion section, negative m2 leads to instability [38, 39]. It is worthy of note that

whenever m2 is positive, the argument of the previous paragraph shows that 1/(4π) is an

upper rather than a lower bound on η/s!

Another general argument can be made for extremal horizons. It can be explicitly

verified that the formula (3.6) holds without change for finite size extremal horizons, see

appendix A. At such an extremal horizon, in a convenient gauge, grr has a double zero.

Suppose that m(r+) 6= 0, i.e. the mass does not vanish on the horizon. Then, by solving

the differential equation (3.3) to leading order near the horizon, one finds that the regular

solution vanishes at the horizon. It follows that in these cases η/s = 0 at T = 0. See

appendix A. Extremal Reissner-Nordström evades this conclusion because, as we have

noted, m = 0 everywhere in that case (the two terms in (3.4) cancel). Thus extremal

Reissner-Nordström has η/s = 1/(4π), see e.g. [40]. However, we will see that more

general extremal horizons — in particular with broken translational invariance — can

lead to vanishing η/s at zero temperature.

We will furthermore see below that if the mass vanishes precisely at an extremal

horizon, but does not vanish everywhere in the spacetime, then η/s will again be a constant

at zero temperature, but typically not equal to 1/(4π).

4 Isotropic linear axion models

4.1 The black brane solution

A simple holographic framework for the study of transport with momentum relaxation

was considered in [32]. These can be called linear axion models. We will focus on four-

dimensional bulk spacetimes. Higher dimensional generalizations are easily constructed.

The model contains two massless scalar fields, minimally coupled to gravity according

to the action

S =
1

16πGN

∫
d4x
√
−g
[
R+

6

L2
− 1

2

(
∇a~φ

)
·
(
∇a~φ

)]
. (4.1)

Here ~φ is a two dimensional real vector and L is the AdS length scale, which henceforth

we will set to one. The equations of motion derived from (4.1) read

Rab + 3 gab =
1

2

(
∇a~φ

)
·
(
∇b~φ

)
, (4.2a)

�~φ = 0 . (4.2b)

– 8 –
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We will focus on a simple class of solutions with an isotropic metric. Translational

symmetry is broken in the matter sector of the theory. The solutions are

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dx21 + dx22

)
, (4.3a)

φi = αxi , for i ∈ {1, 2} , (4.3b)

with

f(r) = r2 − α2

2
− r+

r

(
r2+ −

α2

2

)
. (4.4)

The conformal boundary is located at r → +∞, with the conformal boundary metric, ds2∂ ,

being conformal to three-dimensional Minkowski spacetime

ds2∂ = −dt2 + dx21 + dx22 . (4.5)

There is a non-degenerate horizon located at r = r+ > 0, so long as |α| <
√

6 r+. Its

associated Hawking temperature [41] is

T =
|f ′(r+)|

4π
=

1

8πr+

(
6 r2+ − α2

)
. (4.6)

The horizon degenerates at |α| =
√

6 r+, remaining regular. The energy density ε of the

solution is computed using standard holographic renormalisation techniques [32, 42] to be

ε =
r+

16πGN

(
2r2+ − α2

)
. (4.7)

The entropy density s can be readily obtained from (4.3a), s = r2+/(4GN ). We note that

at extremality the energy density is negative, ε = −|α|3/(24
√

6πGN ), reminiscent of the

behavior of the AdS soliton [43].

4.2 Results for η/s

Following the general discussion in section 3, the background is perturbed by the time

independent mode

δgx1x2 = gx1x1ho(r) = r2ho(r) . (4.8)

This mode decouples from the remaining spacetime perturbations, and yields a simple

equation for ho(r)
1

r2
d

dr

[
r2f(r)

d

dr
ho

]
− α2

r2
ho = 0 . (4.9)

In the language of section 3, this simple model has mass m(r)2 = α2/r2 in equation (3.3).

The general argument of section 3 already tells us that the positivity of m(r)2 implies

that we are going to find η/s < 1/(4π) at all temperatures. Furthermore, the second

general argument argument from section 3 tells us that because m(r+) is nonzero even at

extremality (|α| =
√

6 r+), we know that we will have η/s → 0 as T → 0. Thus, we know

a fair amount before solving any equations!

– 9 –
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This model describes a CFT perturbed by two scales, the temperature T and slope of

the axion source α. The viscosity to entropy density ratio can therefore only be a function

of T/α. In appendix B we solve equation (4.9) analytically in high and low temperature

expansions, and at a special ‘self-dual’ temperature. We solve the equation numerically at

all temperatures. Here we summarize the results.

• In a high temperature expansion:

4π
η

s
= 1 +

√
3

16π

(
1− 3

√
3 log 3

π

)(α
T

)2
+

9
√

3

512π3

[
1− 3

√
3π

2
− 5 log 3−

√
3 log 3

π

+
9
√

3 log2 3

2π
+

2
√

3

π
ψ(1)

(
1

3

)](α
T

)4
+O

[(α
T

)6]
. (4.10)

Here ψ(1) is the derivative of the digamma function.

• In a low temperature expansion:

4π
η

s
=

512π2

2187
(
4
3 − log 3

)2 (Tα
)2

+O

[(
T

α

)4
]
. (4.11)

Note that the term proportional to (T/α)3 is zero.

• Result at T = α/(
√

8π):

4π
η

s
=

4

π

∣∣∣∣∣Γ
(

5

4
− i
√

7

4

)∣∣∣∣∣
4

≈ 0.325 . (4.12)

This result was found previously in [44].

• Results for general temperature are shown in figure 1 in a log-log plot. The vertical

axis is 4πη/s, and the horizontal axis is α/T . The exact and perturbative results

just discussed are also shown: the red dashed line is the perturbative expansion for

small α/T , the red diamond is the result for α/T =
√

8π, the dotted blue line is the

perturbative result at large α/T . The numerical data is represented by the green

disks. The agreement between the analytic and numerical results is reassuring.

The results we have just obtained fit precisely into the picture outlined in section 2.

At high temperatures, the effect of translational symmetry breaking is negligible, and thus

η/s = 1/(4π) pertains. At the lowest temperatures, the translation symmetry breaking

scale ∆ = α dominates and hence we find η/s ∼ T 2 as T → 0.

4.3 Nonzero charge density

A simple generalization of the above setup is to allow a nonzero charge density. This

is done by adding a Maxwell field to the action (4.1). Nonzero charge density solutions

are characterized by an additional scale, the chemical potential µ. In particular, at zero

temperature, one may tune α/µ. Doing so will lead us to an instructive physical picture

of the low temperature scaling of the viscosity to entropy density ratio.
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Figure 1. Log-log plot of 4πη/s as a function of α/T , for neutral linear axion backgrounds. The

red dashed line is the perturbative expansion (4.10) for small α/T , the red diamond is the exact

result (4.12) for α/T =
√

8π, the dotted blue is the perturbative result (4.10) at large α/T . The

green disks are data obtained from numerically solving (B.1).

Because the form of the charged background and perturbation equation very much

parallels those described in previous sections, we give a few details in appendix B and

jump straight to the results here. Since the mass squared m(r)2 of (δg)xy is again equal

to α2/r2 > 0, the general argument of section 3 says that we must have η/s < 1/(4π) for

all α > 0. Furthermore, since on the horizon m(r+)2 = α2/r2+ is nonzero, the arguments

of section 3 furthermore imply that for all α > 0, ho must vanish at the horizon at T = 0,

and hence η/s = 0 at zero temperature. We can do better however, and obtain analytically

the power of T with which η/s vanishes.

At T = 0 the near horizon geometry of the spacetime is AdS2 × R2. The behavior of

the regular perturbation ho in the near horizon region is

ho = (r − r+)ν , (4.13)

with

2ν = −1 +

√
1 +

8α2

α2 + 4(µ/γ)2
> 0 . (4.14)

Here γ is a constant that determines the normalization of charge as described in the ap-

pendix. The exponent ν is just the dimension of the operator T xy in this emergent IR

scaling geometry (more precisely, viewed as a scalar operator in the IR with standard

quantization, it has dimension δ = 1+ν). It is a well established fact that, at low tempera-

tures and frequencies (here we have ω = 0), the scaling of the imaginary part of the Green’s

function is directly given by the dimension of the operator in the IR theory. This follows

from a simple matching argument, versions of which can be found, for instance, in [45–47].
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Applying these arguments to equation (3.3) for ho, and using the horizon formula (3.6) to

obtain η/s, gives
η

s
∼ T 2ν , as T → 0 . (4.15)

In particular, it is directly the ratio η/s that is controlled by the exponent ν. We have

verified this expectation by numerically solving the perturbation equation for ho and using

the formula (3.6). Plots showing this agreement are given in appendix B. Note that 2 ≥
2ν ≥ 0, so that for all values of the ratio α/µ the low temperature behavior is consistent

with the entropy production bound (2.8). When α = 0, from (4.14) we have ν = 0,

recovering η/s ∼ const. for the extremal Reissner-Nordström black hole [40]. When µ = 0

we have ν = 1 from (4.14), recovering η/s ∼ T 2, as found for the neutral linear axion

backgrounds studied in the previous section.

The above scaling argument generalizes to any emergent IR geometry, with general

dynamical critical exponent z [48, 49]. For instance z = 1 corresponds to an emergent

AdS4 at zero temperature, of the sort we will see in the following section. A result of

the form (4.15) will still hold. In that case, we will find ν = 0, corresponding to (δg)xy
being a massless scalar field in the near horizon region and hence describing a marginal

operator. In general, η/s ∼ const. at low temperatures, independently of the value of this

constant, corresponds to T xy marginal (viewed as a scalar operator) in the low energy fixed

point theory.

The expression (4.15) in principle allows for a scaling dimension ν > 1. This would

lead to very slow entropy production, in contradiction with the putative bound (2.8). We

are not aware of a general argument that rules this possibility out. The cases studied in

this paper all turn out to have ν ≤ 1.

5 Isotropic Q-lattices

5.1 Neutral Q-lattices

To test the ideas of section 2 further, we consider a different class of simple momentum-

relaxing spacetimes known as Q-lattices [31]. The action again involves gravity coupled to

scalar fields:

S =
1

16πGN

∫
d4x
√
−g

{
R+

6

L2
− 2

2∑
I=1

[
(∇aΦI)(∇aΦI)

† + VI(|ΦI |2)
]}

. (5.1)

Here ΦI are two complex scalar fields and L is the AdS radius, which henceforth we will

set to one. The equations of motion are

Rab + 3gab =

2∑
I=1

[
(∇aΦI)(∇bΦI)

† + (∇bΦI)(∇aΦI)
† + gabVI(|ΦI |2)

]
, (5.2a)

and

�ΦI − V ′I (|ΦI |2)ΦI = 0 . (5.2b)
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Because we are interested in isotropic systems, we choose V1 = V2 = V . Furthermore, for

simplicity we will take the potential

V (η) = −2η . (5.3)

As for the linear axion models above, we are interested in solutions that break trans-

lational invariance explicitly in the matter sector, but with a metric that is translationally

invariant and isotropic along the boundary directions. Unlike the linear axion case, how-

ever, the background itself must be found numerically. We will use the Einstein-DeTurck

trick to generate the background solutions. This method was first introduced in the semi-

nal work of [50], further developed in [51], and recently reviewed in [52]. Some details are

given in appendix C. The metric takes the form

ds2 = −a(r)dt2 + b(r)dr2 + c(r)
(
dx21 + dx22

)
, (5.4)

while translation invariance is broken (isotropically) by the scalars:

ΦI = φ(r)ei k xI for I ∈ {1, 2} , (5.5)

where φ is real. Note that different coordinates are used in the appendix; in the main text

we use notation similar to that in the linear axion discussion above.

The important physical difference with the linear axion solutions is that translation

invariance is now broken by a finite k source (5.5). Finite k perturbations of AdS4 decay

exponentially towards the IR. Therefore a simple expectation is that, at least so long as

the lattice source is not too large, the zero temperature IR geometry will again be AdS4
rather than the AdS2 × R2 of the linear axion case above. This expectation is verified in

appendix C for the numerically constructed Q-lattice geometries. In particular, this means

that these neutral solutions do not have a zero temperature ground state entropy density.

It also means that translation invariance is restored in the far IR.

The isotropic, neutral Q-lattice solutions we construct in this way depend on three

parameters: wavevector k, temperature T and strength V of the lattice. V is the boundary

value of φ(r) in (5.5), defined more carefully in the appendix. Scale invariance of the

microscopic boundary theory means that physical quantities can only depend on the ratios

{k/V, T/V }. We are interested in low temperatures T/V � 1, with k/V kept fixed.

With the numerically constructed backgrounds at hand, the viscosity over entropy

density ratio is obtained by perturbing the background as described in section 3, and using

equation (3.6). Some details are given in appendix C. The mass squared of the metric

perturbation (δg)x y is seen to be positive everywhere: m2 = 4k2φ2/c in the notation

of (5.4). In particular, it is proportional to the strength of the lattice squared, φ(r)2. We

have explained above that the Q-lattice scalar field decays to zero on the horizon as T → 0.

The general arguments in section 3 and the end of section 4.3 therefore imply that we will

have η/s < 1/(4π) and that η/s will asymptote to a finite nonzero value as T → 0. These

expectations are borne out by explicit numerical solutions to the perturbation equation,

as shown in figure 2. The crossover from high temperature decrease to low temperature

saturation is seen to be slightly non-monotonic.
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Figure 2. Plot of 4π η/s as a function of V/T for several values of k/V , for neutral Q-lattice

backgrounds. As anticipated, η/s < 1/(4π) at all finite temperatures, and η/s→ const. as T → 0.

We have noted that, in these cases, translation invariance is restored in the far IR

(i.e. on the low temperature horizon, as the (δg)x y mass goes to zero). Therefore the low

temperature horizon will be a standard planar Schwarzschild-AdS horizon and will have

a ‘membrane paradigm’ η/s|m.p. = 1/(4π) [22]. However, because these components of

the graviton are massive at intermediate radii in the bulk, this membrane paradigm η/s

is no longer equal to the boundary field theory η/s. Figure 2 shows that the constant

low temperature value of η/s is becoming parametrically small as V/k becomes large. To

understand this properly, we now turn to the zero temperature dependence of η/s on V/k.

The results described above suggest that the isotropic Q-lattice solutions tend to AdS4
in the far IR. Motivated by this fact, we construct novel zero temperature solutions, which

interpolate between two AdS4 geometries (in the UV and IR). These should be the zero

temperature limit of the backgrounds we have been considering so far. The construction of

these solutions is in many respects similar to what we have done before. For completeness

we present the metric and scalar field ansätze in appendix C, as well as the respective

reference metric.

At zero temperature, one can use perturbation theory in V to predict the behavior of

η/s. The method is very similar in spirit to that used in [29] so we will just quote the final

result up to tenth order in V/k:

4π
η

s
= 1−

(
V

k

)2

+
463

512

(
V

k

)4

− 1594307

1990656

(
V

k

)6

+

92063924633

130459631616

(
V

k

)8

− 11402485082909330183

18345885696000000000

(
V

k

)10

+O

[(
V

k

)12
]
. (5.6)
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Figure 3. Plot of 4πη/s as a function of V/k at zero temperature, for the isotropic, neutral Q-

lattices. The blue dots are numerical data points, whereas the red line is the analytic perturbative

result (5.6)

Here and in the zero temperature plot below, η/s is computed using the horizon for-

mula (3.6). For an emergent AdS4 horizon, which has vanishing horizon area, this requires

taking ω → 0 first with T/V fixed, and then taking T/V → 0. This is the T → 0 limit

appropriate for comparison with the nonzero temperature plots of figure 2.

Numerically, one can compute η/s directly at zero temperature, and for all values

of V/k, inclusive at large V/k. This is depicted in figure 3, where the disks represent the

numerical data, and the solid red line the perturbative result (5.6). The agreement between

perturbation theory and the numerical results is reassuring. The strong suppression of η/s

at large V/k is straightforward to understand mathematically. V sets the magnitude of the

scalar field φ and hence also of the mass squared m2 ∼ φ2. At large V/k, the mass squared

becomes very large in the interior of the spacetime, while vanishing towards the boundary

and the Poincaré horizon. The imaginary, dissipative, part of the two point function — that

determines the shear viscosity — is given by the probability that a perturbation (δg)x y
can tunnel from the boundary through to the horizon (an early use of this general fact

is in [53]). When the mass squared is large in the interior, the tunneling rate is small

(probably exponentially so at large V/k, although we do not have a wide enough data

range for a clean fit) and hence so is η/s.

The suppression seen in figure 3 can also be understood physically, as can the presence

of a finite nonzero η/s < 1/(4π) as T → 0 in these models. The neutral Q-lattices

exhibit a restoration of translation invariance in the far IR of the extremal or near-extremal

geometries. This means that, in fact, at low temperatures there will exist a long lived

hydrodynamic mode, corresponding to the emergent conserved momentum in the IR fixed

point theory. The mode has a decay rate Γ at any T > 0, but the decay rate goes to zero

as T → 0. This decay rate can be obtained by a combination of memory matrix methods

and holography [54]. Because the Q-lattice decays exponentially (due to being a finite k
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Figure 4. Log-log plot of 4πη/s as a function of V/T , for the isotropic, neutral Q-lattice with

V/k = 10. The intermediate scaling regime has η/s ∼ T 2.

mode) in AdS4, the decay rate will be exponentially small Γ ∼ e−1/T [54]. Thus at low

temperatures, the emergent momentum will be conserved to a very good approximation.

Over a range of wavevectors, the emergent momentum density will therefore diffuse (the

crossover between diffusion and exponential decay in this kind of situation is discussed in

detail in [44]). This diffusivity will define an IR shear viscosity. The IR shear viscosity is

a property of the near horizon Schwarzschild-AdS geometry and therefore will in fact be

η/s|IR = η/s|m.p. = 1/(4π). This is a physical diffusive mode in this system. However,

at large V/k, momentum is strongly non-conserved at intermediate energy scales, and so

this mode has a very small overlap with the UV energy momentum tensor operator that

we are using in the definition of η in (2.1). The constant η/s at zero temperature plotted

in figure 3 is a measure of the overlap of the energy momentum tensor operator in the UV

theory with the emergent conserved momentum operator in the IR theory. This overlap

can be defined precisely as a thermodynamic susceptibility, as discussed in [54].

Finally, because the zero temperature limit of the ratio η/s is very small in figure 3, one

should ask how quickly these small values are approached as the temperature is lowered.

Figure 4 shows that, for a large value of V/k, an intermediate temperature regime scaling

like η/s ∼ T 2 is clearly discernible. This is the region of fastest decrease, and therefore

the approach to the small constant is consistent with the potential bound (2.8). It is likely

that the intermediate T 2 behavior here is related to the T 2 seen for the neutral linear axion

model in equation (4.11) and figure 1: when the wavevector k is small compared to other

scales one may be able to effectively linearize the exponential in (5.5).

5.2 Charge Q-lattices

We have also considered isotropic charged Q-lattices, first constructed in [31]. The phe-

nomenology becomes richer, since there are multiple possible zero temperature IR geome-
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tries. The action remains (5.1), except with a kinetic term for a Maxwell field:

S =
1

16πGN

∫
d4x
√
−g

{
R+

6

L2
− 2

2∑
I=1

[
(∇aΦI)(∇aΦI)

† + VI(|ΦI |2)
]
− 1

γ2
F 2

}
, (5.7)

where F = dA is the Maxwell field strength. We will set L = 1. On the charged Q-lattice so-

lutions, the metric and scalar field have the same form as in the neutral case, (5.4) and (5.5)

respectively. The Maxwell gauge field is then A = At(r)dt with µ = limr→+∞At(r) defining

the chemical potential.

The background solutions depend on three dimensionless ratios {k/V, µ/(γV ), T/V },
which makes an exhaustive study more difficult. We again use the Einstein-DeTurck trick

to solve for the backgrounds, and compute the resulting η/s. However, as always, we

can make educated guesses about the zero temperature IR geometry, and hence the low

temperature behavior of η/s, prior to solving the full equations of motion.

The analysis of [31] shows that one should expect at least three distinct IR geometries

depending on the values of γk/µ. This is done by starting with a zero temperature near-

horizon AdS2 × R2 geometry — this could be the IR of an extremal Reissner-Nordström

black hole, but also of any other solution in which the lattice has become small close to

the horizon. The AdS2 × R2 background is given by

ds2IR =
1

6

(
−ρ2 a20 dt2 +

dρ2

ρ2

)
+ b20

(
dx21 + dx22

)
and A =

a0

2
√

3
ρ dt . (5.8)

Here the AdS2 extremal horizon is at ρ = 0 and {a0, b0} are two real constants that account

for how time and distances are measured in the IR. These can only be fixed with a full

solution that interpolates from the UV to the IR.

In the near-horizon background (5.8), the magnitude of the Q-lattice in (5.5) behaves as

φ = ρθ , (5.9)

with exponent

θ = −1

2
+

√
k2

6b20
− 1

12
. (5.10)

For small enough V , we can obtain b0 from the metric of a planar extremal Reissner-

Nordström black hole. It turns out to be b0 = µ/(γ
√

3), and so one finds

θ = −1

2
+

√
γ2k2

2µ2
− 1

12
. (5.11)

It is now easy to identify three regimes for γk/µ.

• If γk/µ >
√

2/3, then θ > 0 and the lattice is irrelevant in the IR. Translation invari-

ance is restored and hence we expect η/s to tend to a constant at low temperatures.

• If 1/
√

6 < γk/µ <
√

2/3, then θ < 0 and the lattice is relevant. The new IR

geometry is likely an insulator, in the sense of [30]. If, as sometimes occurs, there is
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Figure 5. Plot of 4πη/s as a function of V/T for several values of γk/µ and with µ/(γV ) = 1,

for the isotropic, charged Q-lattices.

an emergent scaling symmetry in the insulating phase (in particular, it is not gapped),

then, because the lattice is supporting the IR, we expect η/s to go to zero like a power

of T at low temperatures, analogously to the linear axion models considered above.

More generally, there will be a complicated T dependence.

• If γk/µ < 1/
√

6, then θ is complex, giving an instability of AdS2 × R2. The new IR

geometry will be a close cousin of the ones presented in [55]. The ratio η/s will be

temperature dependent at the lowest temperatures; there is no guarantee it will be

a simple power law.

The above analysis, of course, neglects possible phase transitions associated with large

values of V/µ as well as possible first order phase transitions.

The numerical construction of the charged Q-lattices is very similar to the neutral

case. The equation that determines η/s has the same mass term, except that the scalar

field profile is now determined via the equations of motion derived from (5.7). We have

probed the three different regimes of γk/µ, and the results are plotted in figure 5. We have

tried other values of µ/V , but the curves look qualitatively the same. For the larger three

values of γk/V , we indeed see that η/s is tending to a constant, as anticipated for cases

with an irrelevant lattice and restored translation invariance. At larger lattice strength, the

constant is smaller, as in the neutral case. For small values of the lattice strength (γV )/µ

and for γk/µ >
√

2/3 the constant reached at zero temperature can be predicted using

perturbation theory (see appendix C.1 for more details). Because the zero temperature IR

is AdS2 × R2 here, rather than the AdS4 of the neutral case considered above, the lattice

dies off as a power law rather than exponentially towards the horizon [54].

The case that is most novel compared to those that we have discussed so far is the

insulating regime. Translation invariance is strongly broken in the IR. It is difficult to

extract a clear asymptotic low temperature behavior of η/s in this case (γk/µ = 0.5 in
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figure 5). We have run the numerics down to considerably lower temperatures. Over the

temperature range we have probed, the behavior is close, but not exactly equal to, a power

law that is considerably weaker than T 2. A power law or not, however, the behavior is

weaker than the putative bound (2.8). Finally, γk/µ = 0.25 in figure 5 is in the range where

the scalar field has complex scaling dimensions from the perspective of the would-be AdS2.

In this regime, η/s also decreases slowly, but it is inconclusive — over the temperature

range we have probed — whether it will reach zero or if it will reach a constant.

6 Discussion

In this paper we have focused on simple holographic models for breaking translation in-

variance (i.e. ones that do not require solving PDEs), with a view to probing the rate of

entropy production and possible bounds on η/s. While we have considered various qualita-

tively different cases, we have certainly not been exhaustive. For instance, another simple

model that breaks translation invariance is ‘massive gravity’ in the bulk [38]. This model

has uncertain microscopic foundations in general, and so we have not studied it in detail.

However, as a check of the entropy production bound (2.8), we can quickly obtain the low

temperature behavior of the viscosity over entropy density for the simplest instance of this

class of theories (β = 0 in the terminology of [38]). In the neutral theory, the extremal

near horizon geometry is AdS2 × R2, and the mass for (δg)x y is found to be nonzero on

the extremal horizon. An analysis very much like that in section 4.3 above for the linear

axion model gives
η

s
∼ T

√
5−1 ∼ T 1.24 > T 2 as T → 0 , (6.1)

consistently with (2.8). In appendix D we give some details of the calculation leading to

this result.

Several lessons we have found will likely continue to hold in more generic scenarios,

in which the bulk spacetime itself is inhomogeneous. For instance, whenever translational

symmetry breaking is irrelevant at low energy scales, we expect η/s to tend to a constant at

low temperatures. This constant will become very small as translation symmetry breaking

becomes strong. In constrast, when translational symmetry breaking survives to the lowest

energy scales, we expect η/s to go to zero at low temperatures like some power of T , with

the power depending on operator dimensions at the low energy fixed point theory.

Entropy production is a central aspect of physical processes. The boundedness of en-

tropy production has appeared in several different contexts. For instance, the Boltzmann

equation (which is directly connected to transport quantities such as the viscosity in weakly

interacting systems) can be derived by extremizing entropy production [56]. The appropri-

ate quantum observable to think about may be entanglement entropy, whose production is

also subject to bounds, e.g. [57, 58]. A different class of bounds on entanglement entropy

leads to important constraints on the scale dependence of quantum dynamics, e.g. [59, 60].

A seemingly unrelated type of bound are those on operator dimensions in CFTs, e.g. [61].

However, operator dimensions control the time dependence of correlators and hence are

also directly related to the rate of entropy production — as indeed we have seen in several
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instances in this paper. The time may be ripe for this circle of ideas to lead to a possible

‘meta-theory’ of bounds that would, among other things, conclusively prove whether or

not physical quantities like η/s are bounded in some interesting sense.
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A Extremal shear viscosities

For an extremal black hole, the near horizon behavior of the geometry and corresponding

ingoing boundary conditions imposed on the (δg)x
y perturbations are different from the

finite temperature case considered in [35, 37]. In this appendix we show that despite these

differences the conclusion (3.6) remains the same. Furthermore, we demonstrate that if

the mass on the horizon for (δg)x
y remains non-zero in the T → 0 limit, then the shear

viscosity must vanish in this limit.

First we note that the metric near the horizon behaves as:

−gtt(r) ' grr(r) ' α(r − r+)2 + · · · , (A.1)

where α can be related to the AdS length of the near horizon AdS2 region:

ds2 = −α(r+ − r)2dt2 +
dr2

α(r+ − r)2
+ · · · = α−1

(
−ρ2dt2 +

dρ2

ρ2

)
+ · · · . (A.2)

From this, we conclude α−1 = L2
AdS2

.

Following [35, 37] we express the near horizon behavior of the irregular scalar mode

h1 in terms the regular solution ho, using the Wronskian/reduction of order technique:

h1(r) = ho(r)

∫ ∞
r

dr√
−ggrrho(r)2

. (A.3)

Note that near the boundary h(0)(r →∞)→ 1 and therefore

h1(r →∞)→ 1

Ld−1

∫ ∞
r

dr

rd+1
=

r−d

dLd−1
. (A.4)

This is exactly the form we expect for the subleading correction to gx
y. Now we check the

behavior near the horizon:

h1(r)→
1

ho(r+)
√
−g(r+)

∫
dr

α(r − r+)2
' 1

ho(r+)
√
γ(r+)

1

α(r − r+)
. (A.5)

Here γ(r+) is the determinant of the induced metric on the horizon.
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The ingoing boundary conditions for a scalar in an extremal background require:

h(r → r+) ' e
iω

α(r−r+) h̃(r) + · · · , (A.6)

where h̃ is some regular function of r. To first order in ω, the scalar modes satisfy the ω = 0

wave equation, and therefore, using the two linearly independent solutions ho and h1, the

scalar solution satisfying ingoing boundary conditions at the horizon can be written:

hxy(r) = ho(r) + iωho(r+)2
√
γ(r+)h1(r) + · · · . (A.7)

The imaginary part of the Green’s function resulting from this expansion is:

lim
ω→0

1

ω
ImGRTxyTxy(ω, k = 0) =

√
γ(r+)

16πGN
ho(r+)2 =

s

4π
ho(r+)2 , (A.8)

and thus again we have:

η

s
=

1

4π
ho(r+)2 , (A.9)

precisely in agreement with (3.6).

Next we show that a free, massive scalar vanishes on an extremal horizon. Coupled

with the expression for the shear viscosity, we conclude that η/s→ 0 as T → 0 if the mass

remains non-zero on the horizon.

The wave equation for a radially dependent, massive scalar h is

0 =
1√
−g

∂r
(√
−ggrr∂rh(r)

)
−m2(r)h(r) . (A.10)

To investigate the behavior near the horizon, we series expand as r → r+. We can use the

form (A.1) for the near horizon behavior of the background extremal metric components,

together with the fact that
√
−g is regular. The regular solution near the horizon is then

h(r) = (r − r+)
1
2

(
−1+
√

1+4m2(r+)/α
)
. (A.11)

Thus if m2(r+) > 0 we must have h(r+) = 0.

B Solving the perturbation equation: linear axion model

Equation (4.9) for the metric perturbation becomes particularly simple if we perform a

change of coordinates z = r+/r, which gives

z2
[
2− β2z2 − (2− β2)z3

]
h′′ − z

[
4 + z3(2− β2)

]
h′ − 2z2β2h = 0 . (B.1)

Here ′ denotes differentiation with respect to z and β ≡ α/r+. As anticipated from the

underlying conformal symmetry of the UV theory, all physical quantities can only depend

on β2. In this appendix we drop the subscript, so that ho → h.
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B.1 Second order perturbation theory in β2

It is fairly easy to compute η/s perturbatively in β2. We first expand the function h as

h(z) =

+∞∑
i=0

β2i h2i(z) (B.2)

and expand (B.1) order by order in β2. At first order one finds

z
(
1− z3

)
h′′0 −

(
2 + z3

)
h′0 = 0 . (B.3)

The only solution compatible with our boundary conditions is given by h0(z) = 1. To

second order in β2 one finds

z
(
1− z3

)
h′′2 −

(
2 + z3

)
h′2 − z = 0 . (B.4)

for which the relevant regular solution compatible with our boundary conditions reads

h2(z) =
1√
3

arctan

( √
3z

z + 2

)
− 1

2
log
(
1 + z + z2

)
. (B.5)

At fourth order one finds

z
(
1−z3

)
h′′4 −

(
2+z3

)
h′4 − z

[
1√
3

arctan

( √
3z

z + 2

)
− 1

2
log
(
1+z+z2

)
− z2(1−2z−2z2)

2 (1+z+z2)2

]
.

(B.6)

The solution with the relevant boundary condition reads

h4(z) =
5

6
√

3
arctan

( √
3z

2 + z

)
− 1

4
log
(
1 + z + z2

)
− (1− z)z

6 (1 + z + z2)
+ I1(z) , (B.7)

where

I1(z) ≡ 1

6

∫ z

0
dw

w

(1− w3)

[
w
(√

3π − 3 log 3
)
− 2
√

3(1 + 2w) arctan

( √
3w

2 + w

)

+ 3 log
(
1 + w + w2

) ]
. (B.8)

The integral above can be computed for general values of z in terms of dilogarithmic

functions evaluated at compex arguments, but we will not need it in what follows. The

only important thing to note is that the integral can be done in terms of much simpler

functions if z = 1. In particular, for z = 1 one finds

I1(1) =
log2 3

4
− π log 3

3
√

3
− 7π2

54
+

1

6
ψ(1)

(
1

3

)
(B.9)

where ψ(1)(x) is the first derivative of the digamma function (also known as trigamma

function).
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Using (3.6), and the definition of T in (4.6), one finds the following result:

4π η

s
= 1 +

√
3

16π

(
1− 3

√
3 log 3

π

)(α
T

)2
+

9
√

3

512π3

[
1− 3

√
3π

2
− 5 log 3−

√
3 log 3

π

+
9
√

3 log2 3

2π
+

2
√

3

π
ψ(1)

(
1

3

)](α
T

)4
+O

[(α
T

)6]
(B.10)

This formula has been quoted in (4.10) in the main text.

B.2 Perturbative results close to extremality β2 = 6

We expand h(z) in a power series around β2 − 6 as

h(z) =

+∞∑
i=0

(β2 − 6)i hi(z) . (B.11)

The procedure follows mutatis mutandis the calculation for small β2, so we just quote the

intermediate results.

At zeroth order one finds

h0(z) =
1

(1− z)2

[
1− 2z

(
1 + z +

1− 3z
4
3 − log 3

)
+

(
1− 2z − 2z2

)
log(1 + 2z)

4
3 − log 3

]
, (B.12)

while at first order one finds:

h1(z) = − z2

2(1− z)3(1 + 2z)

[
2z

(
1− 5 + z

4− 3 log 3

)
+

3(1 + 2z) log(1 + 2z)

4− 3 log 3
+ 1

]
. (B.13)

The results at second order are already too cumbersome to be presented here, but they

can be expressed in closed form in terms of polylogarithmic functions. For η/s one finds

up to this order in perturbation theory:

4πη

s
=

512π2

2187
(
4
3 − log 3

)2 (Tα
)2

+O

[(
T

α

)4
]
. (B.14)

Note that the term proportional to (T/α)3 is zero. This formula has been quoted in (4.11)

in the main text.

B.3 Sef-dual point: β2 = 2

There is a value of β for which (B.1) can be solved exactly. This was first noted in [44],

and occurs at β2 = 2. The solution with the appropriate boundary conditions is given in

terms of the Gaussian hypergeometric function:

h(z) =
2√
π

∣∣∣∣∣Γ
(

5

4
− i
√

7

4

)∣∣∣∣∣
2

2F1

(
−1

4
− i
√

7

4
,−1

4
+
i
√

7

4
; 1; 1− z2

)
, (B.15)

from which we can read using (3.6)

4π η

s
=

4

π

∣∣∣∣∣Γ
(

5

4
− i
√

7

4

)∣∣∣∣∣
4

. (B.16)

This expression was given in [44] and is quoted in (4.12).
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B.4 Numerical results for any value of β

Of course, equation (B.1) can be solved for any value of β using numerical methods. In

order to proceed, we need to specify boundary conditions. At the horizon, located at z = 1,

we demand regularity, which in turns yields

h′(1) +
2β2

6− β2
h(1) = 0 . (B.17)

At the boundary, as usual, we demand h(0) = 1. The equation was discretized using a

Chebyshev collocation grid with no less than 200 points on the grid and using octuple

precision. The results are shown in figure 1 in the main text.

B.5 Nonzero charge density

The action with a Maxwell field is now

S =
1

16πGN

∫
d4x
√
−g
[(
R+

6

L2
− 1

2

(
∇a~φ

)
·
(
∇a~φ

))
− 1

γ2
F 2

]
. (B.18)

The isotropic black brane backgrounds with nonzero charge density are

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dx21 + dx22

)
, (B.19)

f(r) = r2 − α2

2
−
(
r2+ −

α2

2
+
µ2

γ2

)(r+
r

)
+
µ2

γ2

(r+
r

)2
, (B.20)

At(r) = µ
(

1− r+
r

)
, (B.21)

φi = αxi , for i ∈ {1, 2} . (B.22)

As for the uncharged solutions discussed in section 4.1, these backgrounds preserve isotropy

but break spatial translation invariance when α 6= 0. They clearly reduce to the previous

case when µ = 0. The horizon is located at r = r+ and has a temperature of:

4πT = 3r+ −
1

r+

(
α2

2
+
µ2

γ2

)
. (B.23)

As in the neutral case discussed in the main text, the linearized equation of motion for

a shear perturbation hxy(r) is that of a free scalar with a positive, radially dependent mass:

1√
−g

∂r
(√
−ggrr∂rhxy

)
=
α2

r2
hxy . (B.24)

In particular, all of the arguments of section 3 apply directly to these backgrounds, and

η/s is explicitly determined by the regular solution to this wave equation. The equation

cannot be solved analytically in general, but it is easily solved numerically. In the main

text we obtain the viscosity to entropy density ratio analytically at low temperatures from

this equation. The two plots below show the low temperature dependence of the viscosity

over entropy density ratio as well as the agreement of the scaling with the analytic form

given in (4.14) in the main text.
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Figure 6. Left: log-log plot of 4πη/s as a function of low T/µ for different values of α/µ. Power

law scaling is seen with the power dependent on α/µ. Right: log derivative of 4πη/s with respect

to temperature, showing that the powers agree with the analytic prediction of T 2ν , with ν given

by (4.14) in the main text.

C Technical details for Q-lattices

We will write the general static, translationally and rotationally invariant spacetime as

ds2 =
1

(1− y2)2

[
−A(y)y2+y

2G(y)dt2 +
4B(y)dy2

G(y)
+ y2+S(y)(dx21 + dx22)

]
, (C.1)

with

G(y) = 3− 3y2 + y4 . (C.2)

Thus we must solve for three functions — A,B, S — of a single variable y. For the

reference metric of the Einstein-DeTurck trick, we will take the line element above with

A = B = S = 1, i.e. the four-dimensional planar Schwarzschild black hole. This in turn,

fixes the background temperature of our solution to be T = 3y+/(4π). Here, the conformal

boundary is located at y = 1, whereas the horizon is at y = 0.

Translation invariance is broken by the scalars, which take the form

ΦI(xI , y) = (1− y2) ei kIxIΨI(y) for I ∈ {1, 2} , (C.3)

where there is no sum over I and the ΨI are real. Since we are interested in isotropic

Q-lattices, we will take Ψ1(y) = Ψ2(y) = Ψ(y) and k1 = k2 = k.

We are thus left with four equations in four unknowns: {A,B, S,Ψ}. For our choice of

scalar field mass, the scalar field Ψ admits the following expansion in Fefferman-Graham

coordinates:5

Ψ = Ψ(1)Z + Ψ(2)Z2 + . . . . (C.4)

We shall use the standard quantization, in which case Ψ(1) ≡ V is the source for an operator

dual to ΦI , whose expectation value is proportional to Ψ(2). Here V has mass dimension 1.

Since we are interested in solutions that asymptote to a flat conformal boundary metric,

our parameter space is three-dimensional, depending on {V, T, k}. Because the UV theory

5The relation between Z and y can be found close to the conformal boundary y = 1 by solving the

equations of motion order by order in 1 − y. It turns out to be y = 1− y+
2

Z − y2+
8
Z2 − y3+

16
Z3 +O(Z4).
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Figure 7. Plots of the Weyl tensor squared at the horizon, as a function of V/T for several values

of k/V . W 2 returns to 12 at low temperatures, indicating the emergence of an AdS4 spacetime.

For small k/V , the approach is slow and indirect.

is conformally invariant, physical quantities can only depend on the dimensionless ratios

{k/V, T/V }.
We discretize the Einstein-Scalar DeTurck equations using a pseudo-spectral colloca-

tion method on the Chebyshev-Gauss-Lobatto points, and a Newton-Raphson method to

solve the resulting system of algebraic equations.

In figure 7 we see how the square of the Weyl tensor evaluated at the horizon, W 2
H ≡

CabcdC
abcd
∣∣
H, behaves as a function of V/T , for several values of k/V . In each case we

have probed, W 2
H approaches 12 as T/V is lowered, signalling that the system, as we lower

T , is returning to planar Schwarzschild at low temperatures, and thus to AdS4 at zero T .

This gives good evidence that, as anticipated, neutral Q-lattices are irrelevant from the IR

perspective. In cases where the lattice strength V is large, the approach to AdS4 at zero

temperature can be quite slow and roundabout, as is also shown in figure 7.

To obtain the shear viscosity, we again perturb the Einstein-scalar equations by

δgx1x2 = gx1x1(y)ho(y) . (C.5)

Since the background metric preserves translational symmetry, this perturbation decouples

from all other metric and scalar perturbations. The equation for ho takes a simple form:

�ho −
4k2(1− y2)4Ψ2

y2+S
ho = 0 . (C.6)

Again, the effective mass squared of eq. (3.3) is manifestly positive, i.e. m(y)2 = 4k2(1 −
y2)4Ψ2/(y2+S). Furthermore, because the scalar field Ψ vanishes on the horizon, so will

the mass squared. To complete the system, we need to provide boundary conditions. At

the conformal boundary, we impose ho(1) = 1, while at the horizon regularity demands

h′o(0) = 0.

For the zero temperature geometries, the metric and scalar field read:

ds2 =
1

y2

[
−(1− y)2A(y)dt2 +

B(y)dy2

(1− y)2
+ (1− y)2S(y)(dx21 + dx22)

]
, (C.7a)

and

ΦI(xI , y) =
y

1− y
Ψ(y) ei kIxI for I ∈ {1, 2} . (C.7b)
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The reference metric is obtained by setting A = B = S = 1, the conformal boundary

is located at y = 0, and the Poincaré horizon at y = 1. At the conformal boundary

we demand A(0) = B(0) = S(0) = 1, Ψ(0) = V and at the Poincaré horizon we set

A′(1) = S′(1) = Ψ(1) = 0 and B(1) = 1.

The computation of η/s parallels the finite temperature case, except that the mass

term is now changed to m(y)2 = 4k2y4Ψ̄2/[(1− y)4S(y)].

C.1 Perturbative expansion about extremal Reissner-Nordström

In figure 5 in the main text we saw that for large enough γk/µ, the ratio η/s tends to

a constant at zero temperature. In this section we obtain the constant analytically in a

perturbation theory in the strength of the lattice V . In this appendix we set γ = 1 for

simplicity, it is easily restored.

Write the metric, gauge field and scalar as

ds2 = −f(r)e−2δ(r)dt2 +
dr2

f(r)
+ r2(dx21 + dx22) , (C.8a)

A = at(r)dt , (C.8b)

and

ΦI(xI , r) = ei kIxI Φ̃I(r) for I ∈ {1, 2} , (C.8c)

where there is no sum over I and the ΨI are real. Since we are interested in isotropic

Q-lattices, we will take Φ̃1(r) = Φ̃2(r) = Φ(r) and k1 = k2 = k. At zeroth order in

perturbation theory, the extremal Reissner-Nordström black brane is

f(r) = f (0)(r) ≡
(

1− r+
r

)2 (
r2 + 2r+r + 3r2+

)
, (C.9)

at(r) = a
(0)
t (r) ≡

√
3r+

(
1− r+

r

)
, (C.10)

δ(r) = Φ(r) = 0 . (C.11)

We now set up a perturbative expansion in powers of Φ, of the following form:

Φ(r) =

+∞∑
m=0

Ṽ 2m+1Φ(2m+1)(r) , f(r) = f (0)(r)

[
1 +

+∞∑
m=1

Ṽ 2mf (2m)(r)

]
,

at(r) = a
(0)
t (r)

[
1 +

+∞∑
m=1

Ṽ 2ma
(2m)
t (r)

]
, δ(r) =

+∞∑
m=1

Ṽ 2mδ(2m)(r) , (C.12)

where Ṽ = V/r+.

At linear order in Ṽ , only Φ(1) is nontrivial, and is given by:

Φ(1)(r) = φ

(
r

r+

)
, (C.13)

with

φ(z) =
(−1)−n

2F1

(
n+1
2 , n+1

2 + 1
2 , n+ 3

2 ,−
1
2

) (1− z)n

(2+z)n+1 2F1

(
n+1

2
,
n+1

2
+

1

2
, n+

3

2
,− (1−z)2

2(z+2)2

)
.

(C.14)
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where we have defined (note n is not necessarily integer)

k2/r2+ ≡ 2(1 + 3n+ 3n2) . (C.15)

One can readily integrate for the second order metric and gauge field perturbations f (2)(r),

δ(2)(r) and a
(2)
t (r), but their expressions are too lengthy to be presented here.

One can now proceed perturbatively and compute the corrections to η/s in powers of

Ṽ . The first nontrivial correction to ho will appear at second order in Ṽ . Namely, we set

ho =

+∞∑
m=0

h(2m)
o

(
r

r+

)
Ṽ 2m . (C.16)

At zeroth order one finds the usual result h
(0)
o (z) = 1, while at second order h(2)(z) can

be expressed as a double integral of φ(z)2, where we have imposed as boundary condition

limz→+∞ h
(2)(z) = 0 and regularity at the horizon

h(2)(z) = −8(1 + 3n+ 3n2)

∫ +∞

z
dy

1

3− 4y + y4

∫ y

1
dxφ(x)2 . (C.17)

Note that the integrals converge. From (3.6) we can readily compute η/s, and we find:

4π
η

s
= 1 + 2h(2)(1)Ṽ 2 +O(Ṽ 2) . (C.18)

We have not found a way to evaluate h(2)(1) for general n, but for a given n the integral

can be evaluated exactly. For instance, for n = 1 one finds

h(2)(1)n=1 =
7

972
(
2−2
√

2λ+λ2
){− 64

√
6 4F3

({
1

2
,
1

2
,

1

2
,

1

2

}
,

{
3

2
,

3

2
,

3

2

}
,

1

3

)
− 48Cl2 (λ)

+ 80
√

2Cl2 (λ)− 72Cl3 (λ) + 72ζ(3) + 88 + 6
√

2π log2
(

4

3

)
+ 32
√

2 arcsin

(
1√
3

)3

+ 24
√

2 arctan
(√

2
)
λ2 − 55λ2 + 24

√
2 arctan

(√
2
)2
λ+ 12

√
2λ+ 16

√
2 arctan

(√
2
)3

− 24
√

2π arctan
(√

2
)2
− 8
√

2π2arccot

(
5√
2

)
− 6
√

2 log2
(

4

3

)
λ

− 12
√

2 log2
(

4

3

)
arctan

(√
2
)
− 6 log

(
4

3

)
λ2 + 40

√
2 log

(
4

3

)
λ

}
, (C.19)

where λ = arctan(2
√

2), 4F3({a1, a2, a3, a4}, {b1, b2, b3}, z) is a generalized hypergeometric

function and the Cln(θ) and Sln(θ) are the standard Clausen functions.

At large k, or equivalently large n, the integral can also be evaluated using a saddle

point approximation. The result turns out to take a remarkably simple form:

4π
η

s
= 1− V 2

k2
+O

[(
V

k

)3
]
. (C.20)
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D η/s in massive gravity

The simplest theory of ‘massive gravity’ that has been used to study momentum relaxation

in holography is [38]

S =
1

16πGN

∫
d4x
√
−g
(
R+

6

L2
+ α trK

)
, (D.1)

where Kab =
√
gacfcb and fµν is the reference metric which is taken to be f = diag(0, 0, 1, 1).

We are restricting to the neutral theory, so there is no Maxwell field. The equations of

motion following from this action are (setting L = 1):

Rab −
1

2
Rgab − 3gab = −1

2
α (Kab − trK gab) . (D.2)

These admit the simple black brane solution

ds2 =
1

r2

(
−f(r)dt2 +

dr2

f(r)
+ dx2 + dy2

)
, (D.3)

where the emblackening factor reads:

f(r) = 1− r3

r3+
− α

2
r

(
1− r2

r2+

)
. (D.4)

The horizon is located at r = r+ and has temperature

4πT =
3 + r+α

r+
. (D.5)

At T = 0, the horizon degenerates with α = −3
r+

, yielding a near-horizon AdS2×R2 region,

where the emblackening factor takes the form:

fT=0(r) =
1

2

(
r

r+
− 1

)2( r

r+
+ 2

)
. (D.6)

To evaluate the shear viscosity, we need to look at the metric perturbations about

this background. From the equations of motion (D.2), the wave equation for shear metric

fluctuations (δg)xy = ho(r) is found to be

�ho = m2(r)ho , m2(r) =
−αr

2
. (D.7)

Positive m2 corresponds to α < 0, which is the region of stability discussed in [38]. The

mass is nonzero on the horizon, even at zero temperature.

At T = 0, using the form of f(r) above, the near-horizon wave equation becomes

1√
−g

∂r
(√
−ggrr∂rho

)
=

3

2
∂ρ
(
ρ2∂ρho

)
=

3

2
ho , (D.8)

where we have set ρ = r
r+
− 1. Assuming ho ∼ ρν as ρ→ 0, one easily finds:

2ν =
√

5− 1 ' 1.236 . (D.9)

Therefore, as discussed in the main text, we expect that at low temperatures

4πη

s
∼ T

√
5−1 . (D.10)

We have verified this expectation by solving the full equation (D.7) numerically.
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