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Abstract

We characterize pairs of convex sets A,B in the k-dimensional space with the property
that every probability distribution (p1, . . . , pk) has a representation

pi = ai · bi, a ∈ A, b ∈ B.

Minimal pairs with this property are antiblocking pairs of convex corners. This result is
closely related to a new entropy concept. The main application is an information theoretic
characterization of perfect graphs.

1. Introduction

The concept of antiblocking pairs of polyhedra was introduced by Fulkerson [4];
it can be extended to non-polyhedral convex sets in a straightforward way (see [6]).
Let IRk

+ denote the non-negative orthant of the k-dimensional Euclidean space. If
a = (a1, . . . , ak)T , b = (b1, . . . , bk)T ∈ IRk

+, then bT · a denotes their inner produced,
and we write a ≤ b if ai ≤ bi for all i.

Definition. A set A ⊆ IRk
+ is called a convex corner if it is compact, convex, has

non-empty interior, and for every a ∈ A, a′ ∈ IRk
+ with a′ ≤ a we have a′ ∈ A. The

antiblocker of the convex corner A is the convex corner

A∗ = {b ∈ IRk
+ : bT · a ≤ 1 ∀a ∈ A}.

If B = A∗ then (A, B) is called an antiblocking pair. It is well knwon that (A∗)∗ = A and
hence if (A,B) is an antiblocking pair then so is (B, A).

If A,B ⊆ IRk
+ are convex corners and A ⊆ B then B∗ ⊆ A∗ and (A∗)∗ = A.

A vector p ∈ IRk
+ is called a probability distribution if its coordinates add up to 1.

We are interested in pairs of sets in IRk
+ that generate all probability distributions in the

following sense.
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Definition. For a, b ∈ IRk
+, let a ◦ b denote the vector (ai · bi : i = 1, . . . , k). For

two sets A,B ⊆ IRk, we put A ◦ B = {a ◦ b : a ∈ A, b ∈ B}. (If A and B are convex
corners then A ◦B is not necessarily a convex corner.) A pair of sets A, B ⊆ IRk

+ is called
a generating pair if every probability distribution p ∈ IRk

+ can be represented as

p = a ◦ b, a ∈ A, b ∈ B. (1)

For convex corners, this is equivalent to saying that S ⊆ A ◦ B. We shall prove that a
pair of convex corners A,B ⊆ IRk

+ is a generating pair iff A∗ ⊆ B (which is equivalent to
B∗ ⊆ A). Also, if (A,B) is an antiblocking pair then the representation (1) is essentially
unique.

These results are closely related to a new entropy concept.

Definition. Let A ⊆ IRk
+ be a convex corner, and p ∈ IRk

+ a probability distribution.
The entropy of p with respect to A is

HA(p) = min
a∈A

−
k∑

i=1

pi log ai

(the log’s are taken to the base 2).

Observe that the function to minimize is convex, tends to ∞ at the boundary of the
non-negative orthant but it tends monotone to −∞ along rays from the origin. Hence the
minimum is always achieved and finite, and is assumed at the boundary of A but in the
interior of the non-negative orthant. It also follows easily that each coordinate ai of the
minimizing vector a is uniquely determined provided pi > 0.

To justify the name “entropy” for this quantity, let us remark that the entropy HS(p)
of a probability distribution p with respect to the unit corner S = {x ≥ 0,

∑
i xi ≤ 1} is

just the Shannon entropy H(p) = −∑
i pi log pi.

There is another way to obtain this value. Consider the mapping Λ : int IRn
+ → IRn

defined by
Λ(x) = (− log x1, . . . ,− log xn).

It is easy to see using the concavity of the log function that if A is a convex corner then
Λ(A) is a closed, convex, full-dimensional set, which is up-monotone, i.e., a ∈ Λ(A), a′ ≥ a
imply a′ ∈ Λ(A). Now HA(p) is the minimum of the linear objective function

∑
i pixi over

Λ(A).
Our main result is the following.

1.1 Theorem. For convex corners A,B ⊆ IRk
+ the following three conditions are

equivalent:
(i) A∗ ⊆ B;
(ii) (A,B) is a generating pair;
(iii) H(p) ≥ HA(p) + HB(p) for every probability distribution p ∈ IRk

+.
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This and related results will be proved in Section 2. As a main application, in Section
3 we shall prove the following characterization of perfect graphs: a graph is perfect iff
it “splits graph entropy”. Graph entropy, introduced by Körner [7], is an information
theoretic functional on a graph with a probability distribution given on its vertex set; it
may also be considered as a probabilistic refinement of the notion of chromatic number.

Definition. Let G = (V, E) be a graph with vertex set V and edge set E , and let p
be a probability distribution on V . Let G(n) = (V n, E(n)) denote the n-th conormal power
of G, i.e., V n is the set of sequences of length n from V , and

E(n) = {(x, y) ∈ V n × V n : ∃i : (xi, yi) ∈ E}.

Define the probability distribution pn on V n by pn(x) =
∏n

i=1 p(xi). For U ⊆ V n, let
G(n)(U) denote the subgraph induced by U in G(n), and let χ(G(n)(U)) denote its chro-
matic number. Then for every 0 < ε < 1, the limit

H(G, p) = lim
n→∞

1
n

min
pn(U)≥1−ε

log χ(G(n)(U))

exists and is independent of ε. H(G, p) is called the graph entropy of the graph G with
respect to the probability distribution p.

We may view the elements of V as an alphabet, two letters being connected by an
edge iff they are “distinguishable”. The elements of V n are words of length k. Two such
words are connected in the n-th conormal power iff they are distinguishable (i.e., they are
distinguishable in at least one position). We want to encode these words by 0-1 words of
length as smal;l as possible, so that distinguishable words get different codes (two words
that are indistinguishable anyway may get the same code). Such an encoding corresponds
to a coloring of the n-th conormal power. However, we only want to encode the “majority”
of words, i.e., a fraction of ε is allowed not to get codes. Then for large n, the optimum
encoding uses words with length about H(G, p) · n.

[7] contains a non-asymptotic formula for H(G, p), from which we shall derive (see
Lemma 3.1 below) that H(G, p) is the entropy of p with respect to the so-called vertex
packing polytope of G (which is a convex corner).

Graph entropy can be used to obtain lower bounds for the minimum number of graphs
of a given type needed to cover the edge set of a fixed graph (cf. [9], [11]). This is based
on the following sub-additivity property of graph entropy. Let F = (V, E1), G = (V, E2) be
graphs on the same vertex set V ; their union is the graph

F ∪G = (V, E1 ∪ E2).

In [9] it is proved that
H(F ∪G, p) ≤ H(F, p) + H(G, p)

for all probability distributions p on V . In particular, for a graph G

H(p) = H(G ∪G, p) ≤ H(G, p) + H(G, p). (2)
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(The fact that the entropy of the complete graph with respect to the probability distri-
bution p is H(p), follows from the formula for H(G, p) given in [7] or from Lemma 3.1
below.)

Körner and Longo [10] introduced the following notion.

Definition. A graph G = (V, E) is strongly splitting if for every probability distribu-
tion p on V , (2) holds with equality, i.e.,

H(p) = H(G, p) + H(G, p) (3)

for every probability distribution p on V . A graph is called weakly splitting if (3) holds for
at least one probability distribution p > 0.

The results [8] and [10] show that every perfect graph is weakly splitting, but there are
weakly splitting graphs that are not perfect. A graph-theoretic characterization of weakly
splitting graphs is contained in [10] and [11]: a graph is weakly splitting if and only if it is
normal, i.e., it contains a a family A of independent sets and a family B of cliques, both
covering all points, such that every A ∈ A intersects every B ∈ B.

Körner and Marton [11] showed that bipartite graphs are strongly splitting while odd
cycles are not. They conjectured the following characterization, to be proved in section 3:

1.2 Theorem. A graph is strongly splitting iff it is perfect.

We use Theorems 1.1 and 1.2 to derive, for strongly splitting (i.e., perfect) graphs, a
stronger version of normality.

In Section 4 we generalize this characterization to some families of subsets of a given
set. We give an information theoretic interpretation of the entropy of a probability dis-
tribution with respect to the convex corner spanned by the indicator vectors of a family
of subsets of a given set. Another example of entropy with respect to a convex corner is
a probabilistic version of the functional θ(G) introduced by Lovász [14] to bound graph
capacity from above. This example will be studied in detail in [16].

In Section 5 we prove additivity and subadditivity properties of entropy with respect
to a convex corner. For graph entropy these are known results, but for the functional of
[16] the additivity is quite surprising.

2. Generating pairs of convex corners

We start with a simple lemma about entropy of convex corners.

2.1 Lemma. For two convex corners A,C ⊆ IRk
+, we have HA(p) ≥ HC(p) for all p

if and only if A ⊆ C.

Proof. The “if” part is obvious. Assume that HC(p) ≤ HA(p) for all p. As remarked
above, we have HA(p) = min{pT x : x ∈ Λ(A)}, and hence it follows that we must have
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Λ(A) ⊆ Λ(C). This clearly implies A ⊆ C.

In particular, it follows from this lemma that a convex corner A is completely deter-
mined if we know HA(p) for all p. Note that HA(p) may be negative or larger than H(p).
However, Lemma 2.1 has the following

2.2 Corollary. We have 0 ≤ HA(p) ≤ H(p) for every probability distribution p iff A
contains the unit corner and is contained in the unit cube.

Our next lemma relates entropy to antiblocking pairs.

2.3 Lemma. Let A,B ⊆ IRk
+ be convex corners and p ∈ IRn

k , a probability distribution.
Then

(a) If p = a ◦ b for some a ∈ A and b ∈ B then

H(p) ≥ HA(p) + HB(p),

with equality if and only if a and b achieve HA(p) and HB(p).

(b) If A∗ ⊇ B then
H(p) ≤ HA(p) + HB(p).

with equality iff p = a ◦ b for some a ∈ A, b ∈ B.

Proof. (a) We have

H(p) = −
∑

i

pi log aibi = −
∑

i

pi log ai −
∑

i

pi log bi

≥ HA(p) + HB(p).

We have equality here if and only if a and b achieve HA(p) and HB(p).

(b) Let a ∈ A and b ∈ B achieve HA(p) and HB(p), respectively. Then the strict
concavity of the log function and the relation bT a ≤ 1 imply

HA(p) + HB(p)−H(p) = −
∑

i

pi log
aibi

pi
≥ − log

∑

i

aibi ≥ 0.

Equality holds if and only if aibi = pi whenever pi > 0. But then by 1 ≥ ∑
i aibi ≥

∑
i pi =

1, equality also holds for those indices with pi = 0.

Proof of Theorem 1.1.
(i)⇒(ii): We have to show that if A∗ ⊆ B then every probability distribution p ∈ IRk

+

has a representation (1). Let a ∈ A minimize f(x) = −∑
i pi log xi over A (i.e., achieve

HA(p)). If pi > 0 then obviously ai > 0, so the vector b = (bi),

bi =
{

pi/ai, if pi > 0
0, otherwise.
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is well defined, and all we have to show is that b ∈ B.
Observe that the convex sets A and {x ∈ IRk

+ : f(x) < f(a)} are disjoint and so they
can be separated by a hyperplane. But the two sets touch at the point a and the second
one is smooth there, so this separating hyperplane must be its tangent there. Now the
gradient of −f at a is (p1/a1, . . . , pk/ak) = b and so this separating hyperplane is bT x = 1.
But this means that bT x ≤ 1 for every x ∈ A, i.e., b ∈ A∗ ⊆ B.

(ii)⇒(iii) follows from Lemma 2.3(a).

(iii)⇒(i): Notice first that, by the (already established) implication (i)⇒(iii) and by
Lemma 2.3(b), we have

H(p) = HA(p) + HA∗(p)

for every probability distribution p ∈ IRk
+, and hence HA∗(p) ≥ HB(p) for every p. By

Lemma 2.1, this implies that A∗ ⊆ B.

Notice that we do not know how to decide for an arbitrary pair of convex corners
A,B ⊆ IRk

+, and a given probability distribution p whether p has a representation (1).
Lemma 2.3 answers this question if A∗ ⊇ B.

Theorem 1.1 and Lemma 2.3 also imply the following characterization of antiblocking
pairs:

2.4 Corollary. Let A, B ⊆ IRk
+ be convex corners. (A,B) is an antiblocking pair iff

H(p) = HA(p) + HB(p)

for every probability distribution p ∈ IRk
+.

The next assertion describes, for an antiblocking pair (A,B), the pairs (a, b) needed
in representations of probability distributions. For a convex corner A, let A′ denote the
closure of that part of the boundary of A that is not contained in any of the coordinate
hyperplanes xi = 0.

2.5 Corollary. Let A be a convex corner in IRk
+ and a ∈ A′. Let b ≥ 0 be the normal

vector to a supporting hyperplane to A through a, normalized by bT a = 1. Then b ∈ A∗,
and a ◦ b is a probability distribution. Every probability distribution p ∈ IRk

+ has a repre-
sentation by pairs (a, b) obtained this way, and if pi > 0 for all i then this representation
is unique.

Let us remark that this proposition motivates an alternative proof of the generating
property which is topological and essentially different from the one given above. Here is
a sketch. Let A be a convex corner. Assume that A′ is smooth. Then through any point
a ∈ A′ there is a unique tangent hyperplane, and, consequently, a unique normal vector
b = b(a) ∈ A∗ satisfying bT a = 1. The function ϕ(a) = a ◦ b(a) is then a continuous
mapping from A′ into the simplex of probability distributions in IRk

+. Using Brouwer’s
Fixed Point Theorem, one can establish that ϕ is onto. The case when A′ is not smooth
follows by a compactness argument.
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3. Perfect graphs and entropy splitting

Let us first recall the definition of perfect graphs and of certain polytopes associated
with graphs. From now on, we assume V = {1, . . . , k}.

Definition. A graph G is perfect if for every induced subgraph G′ of G, the chromatic
number of G′ equals the maximum size of a clique in G′.

Perfect graphs have been introduced by Berge; cf. Berge [1] and Lovász [15]. We need
a pair of other important notions from graph theory ([5, 14]; see also [6]):

Definition. The vertex packing polytope V P (G) of the graph G is the convex hull of
the indicator vectors of the independent sets of G. The fractional vertex packing polytope
of G is defined as

FV P (G) = {b ∈ IRk
+ :

∑

i∈K

bi ≤ 1 for all cliques K of G}.

It is easy to see that V P (G) and FV P (G) are convex corners. Moreover, FV P (G) =
[V P (G)]∗, and V P (G) ⊆ FV P (G) for every graph G. Equality holds here if and only if
the graph is perfect (Fulkerson [5], Chvátal [2]). We can express the graph entropy H(G, p)
as the entropy of p with respect to V P (G):

3.1 Lemma. For every graph G = (V, E) and every probability distribution p on V ,

H(G, p) = HV P (G)(p).

Proof. We have to use some elementary concepts from information theory. The
interested reader may consult [3] or [17]. If X is a random variable with values in the
set V = {1, 2, . . . , k} and distributed according to the probability distribution p then the
Shannon entropy of X is H(X) = H(p) = −∑

i∈V pi log pi. If (X, Y ) is a pair of random
variables having finite range then the mutual information of X and Y is

I(X ∧ Y ) = H(X) + H(Y )−H(X, Y ).

Here we consider (X, Y ) as one random variable, and H(X, Y ) stands for the entropy of
this random variable. For graph entropy the following formula was proved in [7]:

H(G, p) = min{I(X ∧ Y ) : dist(X) = p, X ∈ Y ∈ F(G)}. (4)
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Here dist(X) denotes the distribution of X, F(G) is the family of independent sets of G,
and “X ∈ Y ∈ F(G)” means that (X, Y ) is a random pair, Y takes values in F(G), and
the random vertex X is bound to belong to the random set Y . First we prove

H(G, p) ≥ min
a∈V P (G)

−
k∑

i=1

pi log ai.

Let the min in (4) be achieved by a random pair (X,Y ), dist(X) = p, X ∈ Y ∈ F(G). Let
q denote the conditional distribution of Y given X, and let r be the distribution of Y . By
the definition of mutual information and some trivial identities,

H(G, p) = I(X ∧ Y ) = −
∑

i

pi

∑

i∈F∈F(G)

q(F | i) log
r(F )

q(F | i) .

By the concavity of the log function, the inner sum is at most log
∑

i∈F∈F(G) r(F ). Define
the vector a by ai =

∑
i∈F∈F(G) r(F ); then a ∈ V P (G), and H(G, p) ≥ −∑

i pi log ai.
To prove the reverse inequality, fix a point a ∈ V P (G), say, ai =

∑
i∈F∈F(G) s(F ),

where s is a probability distribution on F(G), and define the transition probabilities

q(F | i) =
{

s(F )/ai, if i ∈ F
0, if i /∈ F

(i ∈ V, F ∈ F(G)). We have

H(G, p) ≤
∑

i,F

piq(F | i) log
q(F | i)
r(F )

, (5)

where r(F ) =
∑

i piq(F | i). By the concavity of the log function,

−
∑

F

r(F ) log r(F ) ≤ −
∑

F

r(F ) log s(F ),

and hence
−

∑

i,F

piq(F | i) log r(F ) ≤ −
∑

i,F

piq(F | i) log s(F ).

Thus (5) can be continued:

H(G, p) ≤
∑

i,F

piq(F | i) log
q(F | i)
s(F )

= −
∑

i

pi log ai.
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Now we can characterize not only the strongly splitting graphs, but also those for
which (3) holds for a given p:

3.2 Lemma. For a probability distribution p on V , we have H(p) = H(G, p)+H(G, p)
iff HV P (G)(p) = HFV P (G)(p).

Proof. We have [V P (G)]∗ = FV P (G). Thus Lemma 3.1 and Corollary 2.4 imply

H(G, p) + H(G, p)−H(p) =HV P (G)(p) + HV P (G)(p)−H(p)

=HV P (G)(p)−HFV P (G)(p).

Proof of Theorem 1.2. By Lemmas 3.2 and 2.1, G is strongly splitting iff
V P (G) = FV P (G). This is equivalent to the perfectness of G.

Let F(G) and K(G) denote the families of the independent sets and cliques, respec-
tively, of the graph G. By definition, a vector a ∈ IRk

+ belongs to V P (G) iff there exists a
probability distribution q on F(G) such that the coordinates of a can be written as

ai =
∑

i∈F∈F(G)

q(F ).

Thus, by Lemma 2.2, Theorem 1.2 can be stated in the following equivalent, and perhaps
more transparent form (c.f. [11], [12]):

3.3 Corollary. The graph G = (V, E) is perfect iff for every probability distribution p
on V there exist probability distributions q on F(G) and r on K(G) such that for all i ∈ V ,

pi =
∑

i∈F∈F(G)

q(F )
∑

i∈K∈K(G)

r(K).

By Corollary 2.5, q and r are concentrated on the maximal independent sets and
maximal cliques of G, respectively, whenever pi > 0 for all i. In contrast to the uniqueness
of the representation (1), q and r are not uniquely determined.

Another way to put this result is the following. 4 It follows from Theorem 1.1 that
for each graph G,

S = V P (G) ◦ FV P (G) = FV P (G) ◦ V P (G)

(where S is the unit corner). Hence

V P (G) ◦ V P (G) ⊆ S ⊆ FV P (G) ◦ FV P (G).

4 We are grateful to the referee of our paper for this remark.
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Now corollary 3.3 asserts that G is perfect if and only if V P (G)◦V P (G) = S. This may be
contrasted with a result of Fulkerson [4] that can be phrased as follows: G is perfect if and
only if FV P (G)◦FV P (G) ⊆ S, i.e., that l ·w ≤ 1 for every l ∈ FV P (G) and w ∈ FV P (G)
(this inequality is sometimes called the length-width inequality or max-max inequality. In
view of the inequality above, this is equivalent to saying that FV P (G) ◦ FV P (G) = J .

By studying the structure of the representation in Corollary 3.4, we can derive the
following strengthening of the normality of perfect graphs.

3.4 Theorem. Let G be a perfect graph. Then G contains a family A of independent
sets and a family B of cliques with the following properties:

(a) |A|+ |B| = k + 1;
(b) the sets in A (B) cover all points;
(c) the incidence vectors of sets in A (B) are linearly independent;
(d) every A ∈ A intersects every B ∈ B.

Proof. For every probability distribution p > 0, we have a family A of independent
sets and a family B of cliques, and non-negative reals λA (A ∈ A) and µB (B ∈ B) such
that

∑
A λA = 1,

∑
B µB = 1, and for each i ∈ V ,

∑

i∈A

∑

i∈B

λAµB = pi. (6)

We may assume here that λA, µB > 0 and that the incidence vectors a1, . . . , as of the
members of A as well as the incidence vectors b1, . . . , bt of the members of B are affinely
independent. Adding up (6) for each i, we get that

1 =
∑

i

pi =
∑

A∈A

∑

B∈B
λAµB |A ∩B|

≤
∑

A∈A

∑

B∈B
λAµB =

( ∑

A∈A
λA

)
·
(∑

B∈B
µB

)

= 1.

Hence we see that we must have |A ∩ B| = 1 for every A ∈ A and B ∈ B, i.e., (d) holds.
Since p > 0, (b) is obvious. (c) follows by observing that every ai satisfies aT

i b1 = 1
and hence the affine independence of the ai implies their linear independence: any linear
dependence relation

∑
i αiai = 0 would imply

∑
i αi =

∑
i αia

T
i b1 = 0, i.e., it would be

an affine dependence. This proves (c). It is an easy linear algebra that (c) and (d) imply
“one half” of (a): for each bj , (d) provides a linear equation bT

J x = 1 satisfied by the
ai, and since these relations are linearly independent by (c), the affine hull of the ai has
dimension at most k − |B|. Since they are affine independent, the number of the ai is at
most k − |B|+ 1. This proves that |A|+ |B| ≤ k + 1.

To show that equality can be achieved here, we have to use that every p has such a
representation. Note that there are only finitely many possible pairs A,B, and each fixed
pair provides a representation of the form (6) for a closed set of probability distributions p.
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Hence there must be a pair A,B that provides representation for a (k− 1)-dimensional set
of probability distributions. But (6) can be viewed as a polynomial mapping of the direct
product of a simplex with |A| vertices and a simplex with |B| vertices into the simplex of
probability distributions. Since such a mapping does not increase dimension, this implies
that

(|A| − 1) + (|B| − 1) ≥ k − 1,

which proves (a).

Unfortunately, this theorem does not characterize perfect graphs: for example, the
9-cycle has the property stated in the theorem. In fact, let V = {1, . . . , 9} be the vertex
set of the 9-cycle, and consider the cliques

{1, 2}, {2, 3}, {4, 5}, {5, 6}, {7, 8}, {8, 9}
and the independent sets

{2, 5, 8}, {1, 3, 5, 8}, {2, 4, 6, 8}, {2, 5, 7, 9}.
To conclude this section, we consider briefly a notion analogous to graph entropy,

but defined using the normal, rather than the conormal, powers of a graph. Theorem 2
will imply that, for perfect graphs, the value of the entropy is independent of the graph
multiplication involved.

Definition. The n-th normal power G[n] = (V n, E [n]) of the graph G = (V, E) is
defined by

E [n] = {(x, y) ∈ V n × V n : x 6= y, ∀i : (xi, yi) ∈ E or xi = yi}.
Note that the normal and conormal powers are related by complementation: G[n] = G

(n)
.

Definition [10]. The π-entropy of the graph G = (V, E) with respect to the probability
distribution p on V is defined as

Hπ(G, p) = lim
δ→0

lim
n→∞

min
U⊆V n

pn(U)≥1−δ

1
n

log χ(G[n](U)).

It was noted in [10] that H(p) ≤ Hπ(G, p) + H(G, p). Moreover, evidently, Hπ(G, p) ≤
H(G, p). Thus Theorem 1.2 implies the following.

3.5 Corollary. If G is perfect then

Hπ(G, p) = H(G, p) (7)

for every probability distribution p on V .

In [10] the problem of characterization of the graphs satisfying (7) was raised. Though
this Corollary gives some information, we still do not know whether there exist non-perfect
graphs with the property (7). Note that no non-asymptotic formula is known for Hπ(G, p)
in general; indeed, such a formula would imply a formula for graph capacity (c.f. [16]). In
[16] a lower bound is given for Hπ(G, p).
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4. Families of subsets of a given set

Here we discuss the limits of validity of Corollary 3.3 if F(G) and K(G) are replaced
by arbitrary families of subsets of the set V = {1, 2, . . . , k}. We only allow families the
union of which covers the whole set V .

Definition. The families F and K of subsets of the set V are said to form a generating
pair if for every probability distribution p on V there exist probability distributions q on
F and r on K such that

pi =
∑

i∈F∈F
q(F )

∑

i∈K∈K
r(K), (8)

for every i ∈ V .
First note that only the maximal elements of F and K occur in the representation

(8), and so we may assume that F and K are hereditary families, i.e., together with any
member they contain all subsets of it. (We might as well assume that they are clutters,
i.e., they do not contain any comparable pairs of sets; but this will be more convenient.)

Denote by C(F) the convex hull of the indicator vectors of the members of F ; this is
a convex corner. Our definition says that F and K form a generating pair if (C(F), C(K))
is a generating pair in IRk

+. Thus Theorem 2.1 implies the following:

4.1 Corollary. (F ,K) is generating if and only if C(F) and C(K) contain each
other’s antiblockers.

Unfortunately, this characterization of generating pairs of families of sets is not easy
to use. In the case when we have that |F ∩K| ≤ 1 for each K ∈ K and F ∈ F , we can
give the following more definite description. (Note, however, that since the class of perfect
graphs is not well-characterized in the sense of complexity theory, even in this special case
the answer is not complete.)

4.2 Theorem. For each pair of hereditary set-systems F and K on the same set V ,
the following conditions are equivalent:

(i) |F ∩K| ≤ 1 for all F ∈ F and K ∈ K, and (F ,K) is a generating pair;
(ii) (C(F), C(K)) is an antiblocking pair;
(iii) HC(F)(p) + HC(K)(p) = H(p) for all p on V ;
(iv) there exists a perfect graph G = (V, E) such that F and K are exactly the inde-

pendent sets and the cliques of G, respectively.

Proof (i)⇔(ii): By Corollary 4.1, (F ,K) is generating iff C(F)∗ ⊆ C(K). On the
other hand, |F ∩ K| ≤ 1 for every F ∈ F and K ∈ K means in polyhedral terms that
uT v ≤ 1 holds for every vertex u of C(F) and v of C(K). This is clearly equivalent to the
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same relation holding when u and v are arbitrary points in C(F) and C(K), respectively.
This is equivalent to saying that C(F)∗ ⊇ C(K).

(ii)⇔(iii) by Corollary 2.4.

(i)⇒(iv): Define the graph G = (V, E), connecting two vertices iff they are contained
in a common K ∈ K.Every K ∈ K becomes then a clique, whereas, by (i), every F ∈ F
becomes an independent set. Hence

C(F) ⊆ V P (G) and C(K) ⊆ V P (G).

By (iii) and Lemma 3.1, we have for any probability distribution p on V

H(p) = HC(F)(p) + HC(K)(p) ≥ H(G, p) + H(G, p) ≥ H(p),

i.e., G is strongly splitting, and so perfect. Moreover, by Lemma 2.2, C(F) = V P (G), i.e.,
the maximal independent sets of G coincide with the maximal sets in F , and similarly for
K.

(iv)⇒(i) by Corollary 3.3.

Finally, we mention an information theoretic interpretation of HC(F)(p), where F
is a family of subsets of the set V (cf. [3], Chapter 2, §2). Let U be a finite set, and
d : V × U → {0, 1} a function called distortion function. We assume that, for every
i ∈ V , there exists a j ∈ U with d(i, j) = 0. Let us consider a discrete memoryless source
emitting symbols from V according to a probability distribution p. A number R is called
an achievable rate (at distortion level 0) if for every ε > 0 and sufficiently large n, there
exists a function f : V n → Un (called coding function) such that the size of the range of
f is at most 2nR, and for every x ∈ V n,

Pr{d(x, f(x)) > 0} < ε.

Here

d(x, y) =
1
n

n∑

i=1

d(xi, yi)

for x = (x1, . . . , xn) ∈ V n, y = (y1, . . . , yn) ∈ Un.
In data compression, one is interested in the infimum of the achievable rates. Let

Rd(p) denote this infimum. (In information theory, Rd(p) is called the value of the rate
distortion function of the source with probability distribution p, at distortion level 0.)

Now define the family F = Fd as follows. Write

Fu = {v ∈ V : d(v, u) = 0}, (u ∈ U)

and
F = Fd = {X : X ⊆ Fu, u ∈ U}.

Then we have
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Lemma 4.3. Rd(p) = HC(Fd)(p).

Proof. This is a generalization of Lemma 3.1. To prove it, we need the following
generalization of (4):

Rd(p) = min{I(X ∧ Y ) : dist(X) = p, X ∈ Y ∈ Fd}. (9)

(9) is an equivalent form of the following well known formula (c.f. [3 Chapter 2, §2]):

Rd(p) = min{I(X ∧ Y ) :
dist(X) = p, Y takes values in U, E{d(X,Y )} = 0}.

(Here E denotes mathematical expectation.) Lemma 4.3 follows from (9) in exactly the
same way as Lemma 3.1 from (4).

Notice that HC(F)(p) equals the entropy of the “probabilistic hyperclub (V,F , p)”
defined in [11] as the right-hand-side of formula (9).

In the light of this interpretation of HC(Fd)(p), Theorem 6 can be considered as a
characterization of those pairs (d, d) of (0, 1)-valued distortion functions for which, given
any source distribution p on V , there exists an essentially error-free loss-less two-step
encoding of the corresponding discrete memoryless source in the sense of [10] and [13].

5. Additivity and sub-additivity

If a ∈ IRk
+ and b ∈ IRl

+ then their tensorial product a× b ∈ IRkl
+ is defined by

(a× b)ij = ai · bj , i = 1, . . . , k, j = 1, . . . , l.

Note that if p and q are probability distribution then p×q is the usual product distribution.
Recall that if k = l then also the dyadic product a ◦ b ∈ IRk

+ is defined by

(a ◦ b)i = ai · bi, i = 1, . . . , k.

Definition. Let A ⊆ IRk
+ and B ⊆ IRl

+ be convex corners. Their tensorial product
A⊗ B ⊆ IRkl

+ is the convex corner spanned by the tensorial products a× b, a ∈ A, b ∈ B.
The dyadic product A ¯ B of the convex corners A,B ⊆ IRk

+ is the convex corner in that
same space spanned by the vectors a◦b, a ∈ A, b ∈ B. In other words, A¯B = conv(A◦B).

5.1 Theorem. (i) Let A ⊆ IRk
+, B ⊆ IRl

+ be convex corners, and p ∈ IRk
+, q ∈ IRl

+

probability distributions. Then

HA⊗B(p× q) = HA(p) + HB(q) = H(A∗⊗B∗)∗(p× q).
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(ii) Let A, B ⊆ IRk
+ be convex corners, and p ∈ IRk

+ a probability distribution. Then

HA¯B(p) ≤ HA(p) + HB(p).

Proof. (i) For a ∈ A, b ∈ B, we have a× b ∈ A⊗B, implying

HA⊗B(p× q) ≤ −
k∑

i=1

l∑

j=1

piqj log aibi

= −
k∑

i=1

pi log ai −
l∑

j=1

qj log bj .

Hence HA⊗B(p× q) ≤ HA(p) + HB(q). By Corollary 2.4,

H(p× q) = HA⊗B(p× q) + H(A⊗B)∗(p× q).

Since obviously A∗ ⊗B∗ ⊆ (A⊗B)∗, we obtain:

H(p× q) ≤ HA⊗B(p× q) + HA∗⊗B∗(p× q) (10)
≤ HA(p) + HB(q) + HA∗(p) + HB∗(q)H(p) + H(q)
= H(p× q).

We must have equality everywhere in (10), proving

HA⊗B(p× q) = HA(p) + HB(q)

and
H(A⊗B)∗(p× q) = HA∗⊗B∗(p× q) = HA∗(p) + HB∗(q).

This proves (i). Statement (ii) is obvious.
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