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Abstract: The focus of this article is on entropy and Markov processes. We study the

properties of functionals which are invariant with respect to monotonic transformations and

analyze two invariant “additivity” properties: (i) existence of a monotonic transformation

which makes the functional additive with respect to the joining of independent systems

and (ii) existence of a monotonic transformation which makes the functional additive with

respect to the partitioning of the space of states. All Lyapunov functionals for Markov

chains which have properties (i) and (ii) are derived. We describe the most general ordering

of the distribution space, with respect to which all continuous-time Markov processes are

monotonic (the Markov order). The solution differs significantly from the ordering given by

the inequality of entropy growth. For inference, this approach results in a convex compact

set of conditionally “most random” distributions.

Keywords: Markov process; Lyapunov function; entropy functionals; attainable region;
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1. Introduction

1.1. A Bit of History: Classical Entropy

Two functions, energy and entropy, rule the Universe.

In 1865 R. Clausius formulated two main laws [1]:
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1. The energy of the Universe is constant.

2. The entropy of the Universe tends to a maximum.

The universe is isolated. For non-isolated systems energy and entropy can enter and leave, the change

in energy is equal to its income minus its outcome, and the change in entropy is equal to entropy

production inside the system plus its income minus outcome. The entropy production is always positive.

Entropy was born as a daughter of energy. If a body gets heat ΔQ at the temperature T then for this

body dS = ΔQ/T . The total entropy is the sum of entropies of all bodies. Heat goes from hot to cold

bodies, and the total change of entropy is always positive.

Ten years later J.W. Gibbs [2] developed a general theory of equilibrium of complex media based on

the entropy maximum: the equilibrium is the point of the conditional entropy maximum under given

values of conserved quantities. The entropy maximum principle was applied to many physical and

chemical problems. At the same time J.W. Gibbs mentioned that entropy maximizers under a given

energy are energy minimizers under a given entropy.

The classical expression
∫
p ln p became famous in 1872 when L. Boltzmann proved his

H-theorem [3]: the function

H =

∫
f(x, v) ln f(x, v)dxdv

decreases in time for isolated gas which satisfies the Boltzmann equation (here f(x, v) is the distribution

density of particles in phase space, x is the position of a particle, v is velocity). The statistical entropy

was born: S = −kH . This was the one-particle entropy of a many-particle system (gas).

In 1902, J.W. Gibbs published a book “Elementary principles in statistical dynamics” [4]. He

considered ensembles in the many-particle phase space with probability density ρ(p1, q1, . . . pn, qn),

where pi, qi are the momentum and coordinate of the ith particle. For this distribution,

S = −k
∫
ρ(p1, q1, . . . pn, qn) ln(ρ(p1, q1, . . . pn, qn))dq1 . . .dqndp1 . . .dpn (1)

Gibbs introduced the canonical distribution that provides the entropy maximum for a given expectation

of energy and gave rise to the entropy maximum principle (MaxEnt).

The Boltzmann period of history was carefully studied [5]. The difference between the Boltzmann

entropy which is defined for coarse-grained distribution and increases in time due to gas dynamics, and

the Gibbs entropy, which is constant due to dynamics, was analyzed by many authors [6,7]. Recently,

the idea of two functions, energy and entropy which rule the Universe was implemented as a basis of

two-generator formalism of nonequilibrium thermodynamics [8,9].

In information theory, R.V.L. Hartley (1928) [10] introduced a logarithmic measure of information

in electronic communication in order “to eliminate the psychological factors involved and to establish

a measure of information in terms of purely physical quantities”. He defined information in a text of

length n in alphabet of s symbols as H = n log s.

In 1948, C.E. Shannon [11] generalized the Hartley approach and developed “a mathematical theory

of communication”, that is information theory. He measured information, choice and uncertainty by

the entropy:

S = −
n∑

i=1

pi log pi (2)
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Here, pi are the probabilities of a full set of n events (
∑n

i=1 pi = 1). The quantity S is used to

measure of how much “choice” is involved in the selection of the event or of how uncertain we are

of the outcome. Shannon mentioned that this quantity form will be recognized as that of entropy, as

defined in certain formulations of statistical mechanics. The classical entropy (1), (2) was called the

Boltzmann–Gibbs–Shannon entropy (BGS entropy). (In 1948, Shannon used the concave function (2),

but under the same notation H as for the Boltzmann convex function. Here we use H for the convex

H-function, and S for the concave entropy.)

In 1951, S. Kullback and R.A. Leibler [12] supplemented the BGS entropy by the relative BGS

entropy, or the Kullback–Leibler divergence between the current distribution P and some “base” (or

“reference”) distribution Q:

DKL(P‖Q) =
∑

i

pi log
pi

qi
(3)

The Kullback–Leibler divergence is always non-negative DKL(P‖Q) ≥ 0 (the Gibbs inequality). It

is not widely known that this “distance” has a very clear physical interpretation. This function has been

well known in physical thermodynamics since 19th century under different name. If Q is an equilibrium

distribution at the same temperature as P has, then

DKL(P‖Q) =
F (P ) − F (Q)

kT
(4)

where F is free energy and T is thermodynamic temperature. In physics, F = U − TS, where

physical entropy S includes an additional multiplier k, the Boltzmann constant. The thermodynamic

potential −F/T has its own name, Massieu function. Let us demonstrate this interpretation of the

Kullback–Leibler divergence. The equilibrium distribution Q provides the conditional entropy (2)

maximum under a given expectation of energy
∑

i uiqi = U and the normalization condition
∑

i qi = 1.

With the Lagrange multipliers μU and μ0 we get the equilibrium Boltzmann distribution:

qi = exp(−μ0 − μUui) =
exp(−μUui)∑
i exp(−μUui)

(5)

The Lagrange multiplier μU is in physics (by definition) 1/kT , so S(Q) = μ0 + U
kT

, hence, μ0 = −F (Q)
kT

.

For the Kullback–Leibler divergence this formula gives (4).

After the classical work of Zeldovich (1938, reprinted in 1996 [13]), the expression for free energy in

the “Kullback–Leibler form”

F = kT
∑

i

ci

(
ln

(
ci

c∗i (T )

)
− 1

)

where ci is concentration and c∗i (T ) is the equilibrium concentration of the ith component, is recognized

as a useful instrument for the analysis of kinetic equations (especially in chemical kinetics [14,15]).

Each given positive distributionQ could be represented as an equilibrium Boltzmann distribution for

given T > 0 if we take ui = −kT log qi + u0 for an arbitrary constant level u0. If we change the order

of arguments in the Kullback–Leibler divergence then we get the relative Burg entropy [16,17]. It has

a much more exotic physical interpretation: for a current distribution P we can define the “auxiliary

energy” functional UP for which P is the equilibrium distribution under a given temperature T . We can
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calculate the auxiliary free energy of any distributionQ and this auxiliary energy functional: FP (Q). (Up

to an additive constant, for P = P ∗ this FP (Q) turns into the classical free energy, F ∗
P (Q) = F (Q).) In

particular, we can calculate the auxiliary free energy of the physical equilibrium, FP (P ∗). The relative

Burg entropy is

DKL(P ∗‖P ) =
FP (P ∗) − FP (P )

kT

This functional should also decrease in any Markov process with given equilibrium P ∗.

Information theory developed by Shannon and his successors focused on entropy as a measure of

uncertainty of subjective choice. This understanding of entropy was returned from information theory to

statistical mechanics by E.T. Jaynes as a basis of “subjective” statistical mechanics [18,19]. He followed

Wigner’s idea “entropy is an antropocentric concept”. The entropy maximum approach was declared

as a minimization of the subjective uncertainty. This approach gave rise to a MaxEnt “anarchism”. It

is based on a methodological hypothesis that everything unknown could be estimated by the principle

of the entropy maximum under the condition of fixed known quantities. At this point the classicism

in entropy development changed to a sort of scientific modernism. The art of model fitting based on

entropy maximization was developed [20]. The principle of the entropy maximum was applied to plenty

of problems: from many physical problems [21], chemical kinetics and process engineering [15] to

econometrics [22,23] and psychology [24]. Many new entropies were invented and now one has rich

choice of entropies for fitting needs [25]. The most celebrated of them are the Rényi entropy [26], the

Burg entropy [16,17], the Tsallis entropy [27,28] and the Cressie–Read family [29,30]. The nonlinear

generalized averaging operations and generalized entropy maximization procedures were suggested [31].

Following this impressive stream of works we understand the MaxEnt approach as conditional

maximization of entropy for the evaluation of the probability distribution when our information is partial

and incomplete. The entropy function may be the classical BGS entropy or any function from the rich

family of non-classical entropies. This rich choice causes a new problem: which entropy is better for a

given class of applications?

The MaxEnt “anarchism” was criticized many times as a “senseless fitting”. Arguments pro and

contra the MaxEnt approach with non-classical entropies (mostly the Tsallis entropy [27]) were collected

by Cho [32]. This sometimes “messy and confusing situation regarding entropy-related studies has

provided opportunities for us: clearly there are still many very interesting studies to pursue” [33].

1.2. Key Points

In this paper we do not pretend to invent new entropies. (There appear new functions as limiting cases

of the known entropy families, but this is not our main goal). Entropy is understood in this paper as a

measure of uncertainty which increases in Markov processes. In our paper we consider a Markov process

as a semigroup on the space of positive probability distributions. The state space is finite. Generalizations

to compact state spaces are simple. We analyze existent relative entropies (divergences) using several

simple ideas:

1. In Markov processes probability distributions P (t) monotonically approach equilibrium P ∗:

divergence D(P (t)‖P ∗) monotonically decrease in time.
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2. In most applications, conditional minimizers and maximizers of entropies and divergences are

used, but the values are not. This means that the system of level sets is more important than the

functions’ values. Hence, most of the important properties are invariant with respect to monotonic

transformations of entropy scale.

3. The system of level sets should be the same as for additive functions: after some rescaling the

divergences of interest should be additive with respect to the joining of statistically independent

systems.

4. The system of level sets should after some rescaling the divergences of interest should have the

form of a sum (or integral) over states
∑

i f(pi, p
∗
i ), where the function f is the same for all

states. In information theory, divergences of such form are called separable, in physics the term

trace–form functions is used

The first requirement means that if a distribution becomes more random then it becomes closer

to equilibrium (Markov process decreases the information excess over equilibrium). For example,

classical entropy increases in all Markov processes with uniform equilibrium distributions. This is

why we may say that the distribution with higher entropy is more random, and why we use entropy

conditional maximization for the evaluation of the probability distribution when our information is partial

and incomplete.

It is worth to mention that some of the popular Bregman divergences, for example, the squared

Euclidean distance or the Itakura–Saito divergence, do not satisfy the first requirement (see Section 4.3).

The second idea is just a very general methodological thesis: to evaluate an instrument (a divergence)

we have to look how it works (produces conditional minimizers and maximizers). The properties of the

instrument which are not related to its work are not important. The number three allows to separate

variables if the system consists of independent subsystems, the number four relates to separation of

variables for partitions of the space of probability distributions.

Amongst a rich world of relative entropies and divergences, only two families meet these

requirements. Both were proposed in 1984. The Cressie–Read (CR) family [29,30]:

HCR λ(P‖P ∗) =
1

λ(λ+ 1)

∑
i

pi

[(
pi

p∗i

)λ

− 1

]
, λ ∈] −∞,∞[

and the convex combination of the Burg and Shannon relative entropies proposed in [34] and further

analyzed in [35,36]:

H(P‖P ∗) =
∑

i

(βpi − (1 − β)p∗i ) log

(
pi

p∗i

)
, β ∈ [0, 1]

When λ → 0 the CR divergence tends to the KL divergence (the relative Shannon entropy) and when

λ → −1 it turns into the Burg relative entropy. The Tsallis entropy was introduced four years later

[27] and became very popular in thermostatistics (there are thousands of works that use or analyze this

entropy [37]). The Tsallis entropy coincides (up to a constant multiplier λ + 1) with the CR entropy for

λ ∈] − 1,∞[ and there is no need to study it separately (see discussion in Section 2.2).
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A new problem arose: which entropy is better for a specific problem? Many authors compare

performance of different entropies and metrics for various problems (see, for example, [39,40]). In

any case study it may be possible to choose “the best” entropy but in general we have no sufficient

reasons for such a choice. We propose a possible way to avoid the choice of the best entropy.

Let us return to the idea: the distribution Q is more random than P if there exists a continuous-time

Markov process (with given equilibrium distribution P ∗) that transforms P into Q. We say in this case

that P and Q are connected by the Markov preorder with equilibrium P ∗ and use notation P �0
P ∗ Q.

The Markov order �P ∗ is the transitive closure of the Markov preorder.

If a priori information gives us a set of possible distributions W then the conditionally “maximally

random distributions” (the “distributions without additional information”, the “most indefinite

distributions” in W ) should be the minimal elements in W with respect to Markov order. If a Markov

process (with equilibrium P ∗) starts at such a minimal element P then it cannot produce any other

distribution from W because all distributions which are more random that P are situated outside W . In

this approach, the maximally random distributions under given a priori information may be not unique.

Such distributions form a set which plays the same role as the standard MaxEnt distribution. For the

moment based a priori information the set W is an intersection of a linear manifold with the simplex

of probability distributions, the set of minimal elements in W is also polyhedron and its description is

available in explicit form. In low-dimensional case it is much simpler to construct this polyhedron than

to find the MaxEnt distributions for most of specific entropies.

1.3. Structure of the Paper

The paper is organized as follows. In Section 2 we describe the known non-classical divergences

(relative entropies) which are the Lyapunov functions for the Markov processes. We discuss the general

construction and the most popular families of such functions. We pay special attention to the situations,

when different divergences define the same order on distributions and provide the same solutions of the

MaxEnt problems (Section 2.2). In two short technical Sections 2.3 and 2.4 we present normalization

and symmetrization of divergences (similar discussion of these operations was published very recently

[38].

The divergence between the current distribution and equilibrium should decrease due to Markov

processes. Moreover, divergence between any two distributions should also decrease (the generalized

data processing Lemma, Section 3).

Definition of entropy by its properties is discussed in Section 4. Various approaches to this definition

were developed for the BGS entropy by Shannon [11], [41] and by other authors for the Rényi entropy

[43,44], the Tsallis entropy [42], the CR entropy and the convex combination of the BGS and Burg

entropies [46]. Csiszár [45] axiomatically characterized the class of Csiszár–Morimoto divergences

(formula (6) below). Another characterization of this class was proved in [46] (see Lemma 1, Section 4.3

below).

From the celebrated properties of entropy [47] we selected the following three:

1. Entropy should be a Lyapunov function for continuous-time Markov processes;

2. Entropy is additive with respect to the joining of independent systems;
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3. Entropy is additive with respect to the partitioning of the space of states (i.e., has the trace–form).

To solve the MaxEnt problem we have to find the maximizers of entropy (minimizers of the relative

entropy) under given conditions. For this purpose, we have to know the sublevel sets of entropy,

but not its values. We consider entropies with the same system of sublevel sets as equivalent ones

(Section 2.2). From this point of view, all important properties have to be invariant with respect to

monotonic transformations of the entropy scale. Two last properties from the list have to be substituted

by the following:

2’. There exists a monotonic transformation which makes entropy additive with respect to the joining

of independent systems (Section 4.2);

3’. There exists a monotonic transformation which makes entropy additive with respect to the

partitioning of the space of states (Section 4.1).

Several “No More Entropies” Theorems are proven in Section 4.3: if an entropy has properties 1, 2’

and 3’ then it belongs to one of the following one-parametric families: to the Cressie–Read family, or

to a convex combination of the classical BGS entropy and the Burg entropy (may be, after a monotonic

transformation of scale).

It seems very natural to consider divergences as orders on distribution spaces (Section 5.1), the

sublevel sets are the lower cones of this orders. For several functions, H1(P ), . . . , Hk(P ) the sets

{Q | Hi(P ) > Hi(Q) for all i} give the simple generalization of the sublevel sets. In Section 5 we

discuss the more general orders in which continuous time Markov processes are monotone, define the

Markov order and fully characterize the local Markov order. The Markov chains with detailed balance

define the Markov order for general Markov chains (Section 5.2). It is surprising that there is no necessity

to consider other Markov chains for the order characterization (Section 5.2) because no reversibility is

assumed in this analysis.

In Section 6.1 we demonstrate how is it possible to use the Markov order to reduce the uncertainty in

the standard settings when a priori information is given about values of some moments. Approaches to

construction of the most random distributions are presented in Section 6.2.

Various approaches for the definition of the reference distribution (or the generalized canonical

distribution) are compared in Section 7.

In Conclusion we briefly discuss the main results.

2. Non-Classical Entropies

2.1. The Most Popular Divergences

Csiszár–Morimoto Functions Hh

During the time of modernism plenty of new entropies were proposed. Esteban and Morales [25]

attempted to systemize many of them in an impressive table. Nevertheless, there are relatively few
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entropies in use now. Most of the relative entropies have the form proposed independently in 1963 by

I. Csiszar [49] and T. Morimoto [48]:

Hh(p) = Hh(P‖P ∗) =
∑

i

p∗ih
(
pi

p∗i

)
(6)

where h(x) is a convex function defined on the open (x > 0) or closed x ≥ 0 semi-axis. We use here

notation Hh(P‖P ∗) to stress the dependence of Hh both on pi and p∗i .

These relative entropies are the Lyapunov functions for all Markov chains with equilibrium

P ∗ = (p∗i ). Moreover, they have the relative entropy contraction property given by the generalized

data processing lemma (Section 3.2 below).

For h(x) = x log x this function coincides with the Kullback–Leibler divergence from the current

distribution pi to the equilibrium p∗i . Some practically important functions h have singularities at

0. For example, if we take h(x) = − log x, then the correspondent Hh is the relative Burg entropy

Hh = −∑i p
∗
i log(pi/p

∗
i ) → ∞ for pi → 0.

Required Properties of the Function h(x)

Formally, h(x) is an extended real-valued proper convex function on the closed positive real half-line

[0,∞[. An extended real-valued function can take real values and infinite values ±∞. A proper function

has at least one finite value. An extended real valued function on a convex set U is called convex if

its epigraph

epi(h) = {(x, y) | x > 0, y ≥ h(x)}
is a convex set [50]. For a proper function this definition is equivalent to the Jensen inequality

h(ax+ (1 − a)y) ≤ ah(x) + (1 − a)h(y) for all x, y ∈ U, a ∈ [0, 1]

It is assumed that the function h(x) takes finite values on the open positive real half-line ]0,∞[ but

the value at point x = 0 may be infinite. For example, functions h(x) = − log x or h(x) = x−α (α > 0)

are allowed. A convex function h(x) with finite values on the open positive real half-line is continuous

on ]0,∞[ but may have a discontinuity at x = 0. For example, the step function, h(x) = 0 if x = 0 and

h(x) = −1 if x > 0, may be used.

A convex function is differentiable almost everywhere. Derivative of h(x) is a monotonic function

which has left and right limits at each point x > 0. An inequality holds: h ′(x)(y − x) ≤ h(y) − h(x)

(Jensen’s inequality in the differential form). It is valid also for left and right limits of h ′ at any point

x > 0.

Not everywhere differentiable functions h(x) are often used, for example, h(x) = |x − 1|.
Nevertheless, it is convenient to consider the twice differentiable on ]0,∞[ functions h(x) and to produce

a non-smooth h(x) (if necessary) as a limit of smooth convex functions. We use widely this possibility.

The Most Popular Divergences Hh(P‖P ∗)

1. Let h(x) be the step function, h(x) = 0 if x = 0 and h(x) = −1 if x > 0. In this case,

Hh(P‖P ∗) = −
∑

i, pi>0

1 (7)
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The quantity −Hh is the number of non-zero probabilities pi and does not depend on P ∗.

Sometimes it is called the Hartley entropy.

2. h = |x− 1|,
Hh(P‖P ∗) =

∑
i

|pi − p∗i |

this is the l1-distance between P and P ∗.

3. h = x ln x,

Hh(P‖P ∗) =
∑

i

pi ln

(
pi

p∗i

)
= DKL(P‖P ∗) (8)

this is the usual Kullback–Leibler divergence or the relative BGS entropy;

4. h = − ln x,

Hh(P‖P ∗) = −
∑

i

p∗i ln

(
pi

p∗i

)
= DKL(P ∗‖P ) (9)

this is the relative Burg entropy. It is obvious that this is again the Kullback–Leibler divergence,

but for another order of arguments.

5. Convex combinations of h = x ln x and h = − ln x also produces a remarkable family of

divergences: h = βx ln x− (1 − β) lnx (β ∈ [0, 1]),

Hh(P‖P ∗) = βDKL(P‖P ∗) + (1 − β)DKL(P ∗‖P ) (10)

The convex combination of divergences becomes a symmetric functional of (P, P ∗) for β = 1/2.

There exists a special name for this case, “Jeffreys’ entropy”.

6. h = (x−1)2

2
,

Hh(P‖P ∗) =
1

2

∑
i

(pi − p∗i )
2

p∗i
(11)

This is the quadratic term in the Taylor expansion of the relative Botzmann–Gibbs-Shannon

entropy, DKL(P‖P ∗), near equilibrium. Sometimes, this quadratic form is called the Fisher

entropy.

7. h = x(xλ−1)
λ(λ+1)

,

Hh(P‖P ∗) =
1

λ(λ+ 1)

∑
i

pi

[(
pi

p∗i

)λ

− 1

]
(12)

This is the CR family of power divergences [29,30]. For this family we use notation HCR λ. If

λ → 0 then HCR λ → DKL(P‖P ∗), this is the classical BGS relative entropy; if λ → −1 then

HCR λ → DKL(P ∗‖P ), this is the relative Burg entropy.

8. For the CR family in the limits λ→ ±∞ only the maximal terms “survive”. Exactly as we get the

limit l∞ of lp norms for p→ ∞, we can use the root (λ(λ+ 1)HCR λ)
1/|λ| for λ→ ±∞ and write

in these limits the divergences:

HCR ∞(P‖P ∗) = max
i

{
pi

p∗i

}
− 1 (13)
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HCR −∞(P‖P ∗) = max
i

{
p∗i
pi

}
− 1 (14)

The existence of two limiting divergences HCR ±∞ seems very natural: there may be two types

of extremely non-equilibrium states: with a high excess of current probability pi above p∗i and,

inversely, with an extremely small current probability pi with respect to p∗i .

9. The Tsallis relative entropy [27] corresponds to the choice h = (xα−x)
α−1

, α > 0.

Hh(P‖P ∗) =
1

α− 1

∑
i

pi

[(
pi

p∗i

)α−1

− 1

]
(15)

For this family we use notation HTs α.

Rényi Entropy

The Rényi entropy of order α > 0 is defined [26] as

HR α(P ) =
1

1 − α
log

(
n∑

i=1

pα
i

)
(16)

It is a concave function, and

HR α(P ) → S(P )

when α→ 1, where S(P ) is the Shannon entropy.

When α → ∞, the Rényi entropy has a limit H∞(X) = − log maxi=1,...n pi, which has a special

name “Min-entropy”.

It is easy to get the expression for a relative Rényi entropy HR α(P‖P ∗) from the requirement that it

should be a Lyapunov function for any Markov chain with equilibrium P ∗:

HR α(P‖P ∗) =
1

α− 1
log

(
n∑

i=1

pi

(
pi

p∗i

)α−1
)

For the Min-entropy, the correspondent divergence (the relative Min-entropy) is

H∞(P‖P ∗) = log max
i=1,...n

(
pi

p∗i

)
It is obvious from (22) below that maxi=1,...n(pi/p

∗
i ) is a Lyapunov function for any Markov chain with

equilibrium P ∗, hence, the relative Min-entropy is also the Lyapunov functional.

2.2. Entropy Level Sets

A level set of a real-valued function f is a set of the form :

{x | f(x) = c}
where c is a constant (the “level”). It is the set where the function takes on a given constant value. A

sublevel set of f is a set of the form

{x | f(x) ≤ c}



Entropy 2010, 12 1155

A superlevel set of f is given by the inequality with reverse sign:

{x | f(x) ≥ c}

The intersection of the sublevel and the superlevel sets for a given value c is the level set for this level.

In many applications, we do not need the entropy values, but rather the order of these values on the

line. For any two distributions P,Q we have to compare which one is closer to equilibrium P ∗, i.e., to

answer the question: which of the following relations is true: H(P‖P ∗) > H(Q‖P ∗), H(P‖P ∗) =

H(Q‖P ∗) or H(P‖P ∗) < H(Q‖P ∗)? To solve the MaxEnt problem we have to find the maximizers of

entropy (or, in more general settings, the minimizers of the relative entropy) under given conditions. For

this purpose, we have to know the sublevel sets, but not the values. All the MaxEnt approach does not

need the values of the entropy but the sublevel sets are necessary.

Let us consider two functions, φ and ψ on a set U . For any V ⊂ U we can study conditional

minimization problems φ(x) → min and ψ(x) → min, x ∈ V . The sets of minimizers for these two

problems coincide for any V ⊂ U if and only if the functions φ and ψ have the same sets of sublevel

sets. It should be stressed that here just the sets of sublevel sets have to coincide without any relation to

values of level.

Let us compare the level sets for the Rényi, the Cressie-Read and the Tsallis families of divergences

(for α− 1 = λ and for all values of α). The values of these functions are different, but the level sets are

the same (outside the Burg limit, where α→ 0): for α 
= 0, 1

HR α(P‖P ∗) =
1

α− 1
ln c; HCR α−1(P‖P ∗) =

1

α(α− 1)
(c−1); HTs α(P‖P ∗) =

1

α− 1
(c−1) (17)

where c =
∑

i pi(pi/p
∗
i )

α−1.

Beyond points α = 0, 1

HCR α−1(P‖P ∗) =
1

α(α− 1)
exp((α− 1)HR α(P‖P ∗)) =

1

α
HTs α(P‖P ∗)

For α → 1 all these divergences turn into the Shannon relative entropy. Hence, if α 
= 0 then for any

P , P ∗, Q, Q∗ the following equalities A, B, C are equivalent, A⇔B⇔C:

A. HR α(P‖P ∗) = HR α(Q‖Q∗)

B. HCR α+1(P‖P ∗) = HCR α+1(Q‖Q∗)

C. HTs α(P‖P ∗) = HTs α(Q‖Q∗)

(18)

This equivalence means that we can select any of these three divergences as a basic function and

consider the others as functions of this basic one.

For any α ≥ 0 and λ = α + 1 the Rényi, the Cressie–Read and the Tsallis divergences have the

same family of sublevel sets. Hence, they give the same maximizers to the conditional relative entropy

minimization problems and there is no difference which entropy to use.

The CR family has a more convenient normalization factor 1/λ(λ+1) which gives a proper convexity

for all powers, both positive and negative, and provides a sensible Burg limit for λ → −1 (in contrary,

when α→ 0 both the Rényi and Tsallis entropies tend to 0).
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When α < 0 then for the Tsallis entropy function h = (xα−x)
α−1

loses convexity, whereas for the

Cressie-Read family convexity persists for all values of λ. The Rényi entropy also loses convexity for

α < 0. Neither the Tsallis, nor the Rényi entropy were invented for use with negative α.

There may be a reason: for α < 0 the function xα is defined for x > 0 only and has a singularity at x =

0. If we assume that the divergence should exist for all non-negative distributions, then the cases α ≤ 0

should be excluded. Nevertheless, the Burg entropy which is singular at zeros is practically important and

has various attractive properties. The Jeffreys’ entropy (the symmetrized Kullback–Leibler divergence)

is also singular at zero, but has many important properties. We can conclude at this point that it is not

obvious that we have to exclude any singularity at zero probability. It may be useful to consider positive

probabilities instead (“nature abhors a vacuum”).

Finally, for the MaxEnt approach (conditional minimization of the relative entropy), the Rényi and

the Tsallis families of divergences (α > 0) are particular cases of the Cressie–Read family because they

give the same minimizers. For α ≤ 0 the Rényi and the Tsallis relative entropies lose their convexity,

while the Cressie–Read family remains convex for λ ≤ −1 too.

2.3. Minima and normalization

For a given P ∗, the function Hh achieves its minimum on the hyperplane
∑

i pi =
∑

i p
∗
i =const at

equilibrium p∗i , because at this point

gradHh = (h′(1), . . . h′(1)) = h′(1)grad

(∑
i

pi

)

The transformation h(x) → h(x) + ax+ b just shifts Hh by constant value: Hh → Hh + a
∑

i pi + b =

Hh + a+ b. Therefore, we can always assume that the function h(x) achieves its minimal value at point

x = 1, and this value is zero. For this purpose, one should just transform h:

h(x) := h(x) − h(1) − h′(1)(x− 1) (19)

This normalization transforms x ln x into x ln x − (x − 1), − ln x into − ln x+ (x − 1), and xα into

xα − 1 − α(x − 1). After normalization Hh(P‖P ∗) ≥ 0. If the normalized h(x) is strictly positive

outside point x = 1 (h(x) > 0 if x 
= 1) thenHh(P‖P ∗) = 0 if and only if P = P ∗ (i.e., in equilibrium).

The normalized version of any divergence Hh(P‖P ∗) could be produced by the normalization

transformation h(x) := h(x) − h(1) − h′(1)(x− 1) and does not need separate discussion.

2.4. Symmetrization

Another technical issue is symmetry of a divergence. If h(x) = x ln x then both Hh(P‖P ∗) (the

KL divergence) and Hh(P
∗‖P ) (the relative Burg entropy) are the Lyapunov functions for the Markov

chains, and Hh(P
∗‖P ) = Hg(P‖P ∗) with g(x) = − ln x. Analogously, for any h(x) we can write

Hh(P
∗‖P ) = Hg(P‖P ∗) with

g(x) = xh

(
1

x

)
(20)
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If h(x) is convex on R+ then g(x) is convex on R+ too because

g′′(x) =
1

x3
h′′
(

1

x

)

The transformation (20) is an involution:

xg

(
1

x

)
= h(x)

The fixed points of this involution are such functions h(x) that Hh(P‖P ∗) is symmetric with respect

to transpositions of P and P ∗. There are many such h(x). An example of symmetric Hh(P‖P ∗) gives

the choice h(x) = −√
x:

Hh(P‖P ∗) = −
∑

i

√
pip∗i

After normalization, we get

h(x) :=
1

2
(
√
x− 1)2 ; Hh(P‖P ∗) =

1

2

∑
i

(
√
pi −

√
p∗i )

2

Essentially (up to a constant addition and multiplier) this function coincides with a member of the CR

family, HCR − 1
2

(12), and with one of the Tsallis relative entropies HTs 1
2

(15). The involution (20) is a

linear operator, hence, for any convex h(x) we can produce its symmetrization:

hsym(x) =
1

2
(h(x) + g(x)) =

1

2

(
h(x) + xh

(
1

x

))

For example, if h(x) = x log x then hsym(x) = 1
2
(x log x − log x); if h(x) = xα then hsym(x) =

1
2
(xα + x1−α).

3. Entropy Production and Relative Entropy Contraction

3.1. Lyapunov Functionals for Markov Chains

Let us consider continuous time Markov chains with positive equilibrium probabilities p ∗
j . The

dynamics of the probability distribution pi satisfy the Master equation (the Kolmogorov equation):

dpi

dt
=
∑
j, j �=i

(qijpj − qjipi) (21)

where coefficients qij (i 
= j) are non-negative. For chains with a positive equilibrium distribution p∗j
another equivalent form is convenient:

dpi

dt
=
∑
j, j �=i

qijp
∗
j

(
pj

p∗j
− pi

p∗i

)
(22)

where p∗i and qij are connected by identity

∑
j, j �=i

qijp
∗
j =

(∑
j, j �=i

qji

)
p∗i (23)
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The time derivative of the Csiszár–Morimoto function Hh(p) (6) due to the Master equation is

dHh(P‖P ∗)
dt

=
∑

i,j, j �=i

qijp
∗
j

[
h

(
pi

p∗i

)
− h

(
pj

p∗j

)
+ h′

(
pi

p∗i

)(
pj

p∗j
− pi

p∗i

)]
≤ 0 (24)

To prove this formula, it is worth to mention that for any n numbers hi,
∑

i,j, j �=i qijp
∗
j (hi − hj) =

0. The last inequality holds because of the convexity of h(x): h′(x)(y − x) ≤ h(y) − h(x)

(Jensen’s inequality).

Inversely, if

h(x) − h(y) + h′(y)(x− y) ≤ 0 (25)

for all positive x, y then h(x) is convex on R+. Therefore, if for some function h(x) Hh(p) is the

Lyapunov function for all the Markov chains with equilibrium P ∗ then h(x) is convex on R+.

The Lyapunov functionals Hh do not depend on the kinetic coefficients qij directly. They depend

on the equilibrium distribution p∗ which satisfies the identity (23). This independence of the kinetic

coefficients is the universality property.

3.2. “Lyapunov Divergences” for Discrete Time Markov Chains

The Csiszár–Morimoto functions (6) are also Lyapunov functions for discrete time Markov chains.

Moreover, they can serve as a “Lyapunov distances” [51] between distributions which decreases due to

time evolution (and not only the divergence between the current distribution and equilibrium). In more

detail, let A = (aij) be a stochastic matrix in columns:

aij ≥ 0,
∑

i

aij = 1 for all j

The ergodicity contraction coefficient for A is a number α(A) [52,53]:

α(A) =
1

2
max

i,k

{∑
j

|aij − akj |
}

0 ≤ α(A) ≤ 1.

Let us consider in this subsection the normalized Csiszár–Morimoto divergences Hh(P‖Q) (19):

h(1) = 0, h(x) ≥ 0.

Theorem about relative entropy contraction. (The generalized data processing Lemma.) For each

two probability positive distributionsP,Q the divergenceHh(P‖Q) decreases under action of stochastic

matrix A [54,55]:

Hh(AP‖AQ) ≤ α(A)Hh(P‖Q) (26)

The generalizations of this theorem for general Markov kernels seen as operators on spaces

of probability measures was given by [56]. The shift in time for continuous-time Markov chain

is a column-stochastic matrix, hence, this contraction theorem is also valid for continuous-time

Markov chains.
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The question about a converse theorem arises immediately. Let the contraction inequality hold for

two pairs of positive distributions (P,Q) and (U, V ) and for all Hh:

Hh(U‖V ) ≤ Hh(P‖Q) (27)

Could we expect that there exists such a stochastic matrix A that U = AP and V = AP ? The answer

is positive:

The converse generalized data processing lemma. Let the contraction inequality (27) hold for two

pairs of positive distributions (P,Q) and (U, V ) and for all normalized Hh. Then there exists such a

column-stochastic matrix A that U = AP and V = AQ [54].

This means that for the system of inequalities (27) (for all normalized convex functions h on ]0,∞[)

is necessary and sufficient for existence of a (discrete time) Markov process which transform the pair

of positive distributions (P,Q) in (U, V ). It is easy to show that for continuous-time Markov chains

this theorem is not valid: the attainable regions for them are strictly smaller than the set given by

inequalities (27) and could be even non-convex (see [62] and Section 8.1 below).

4. Definition of Entropy by its Properties

4.1. Separation of Variables for Partition of the State Space

An important property of separation of variables is valid for all divergences which have the form of a

sum of convex functions f(pi, p
∗
i ). Let the set of states be divided into two subsets, I1 and I2, and let the

functionals u1, . . . um be linear. We represent each probability distribution as a direct sum P = P 1⊕P 2,

where P 1,2 are restrictions of P on I1,2.

Let us consider the problem

H(P‖P ∗) → min

subject to conditions ui(P ) = Ui for a set of linear functionals ui(P ).

The solution Pmin to this problem has a form Pmin = Pmin
1 ⊕ Pmin

2 , where P 1,2 are solutions to

the problems

H(P 1,2‖P ∗ 1,2) → min

subject to conditions ui(P1,2) = U1,2
i and

∑
i∈I1,2

p1,2
i = π1,2 for some redistribution of the linear

functionals values, Ui = U1
i + U2

i , and of the total probability, 1 = π1 + π2 (π1,2 ≥ 0) .

The solution to the divergence minimization problem is composed from solutions of the partial

maximization problems. Let us call this property the separation of variables for incompatible events

(because I1 ∩ I2 = ∅).

This property is trivially valid for the Tsallis family (for α > 0, and for α < 0 with the change of

minimization to maximization) and for the CR family. For the Rényi family it also holds (for α > 0, and

for α < 0 with the change from minimization to maximization), because the Rényi entropy is a function

of those trace–form entropies, their level sets coincide.

A simple check shows that this separation of variables property holds also for the convex combination

of Shannon’s and Burg’s entropies, βDKL(P‖P ∗) + (1 − β)DKL(P ∗‖P ).
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4.2. Additivity Property

The additivity property with respect to joining of subsystems is crucial both for the classical

thermodynamics and for the information theory.

Let us consider a system which is result of joining of two subsystems. A state of the system is an

ordered pair of the states of the subsystems and the space of states of the system is the Cartesian product

of the subsystems spaces of state. For systems with finite number of states this means that if the states

of subsystems are enumerated by indexes j and k then the states of the system are enumerated by pairs

jk. The probability distribution for the whole system is pjk, and for the subsystems the probability

distributions are the marginal distributions qj =
∑

k pjk, rk =
∑

j pjk.

The additive functions of state are defined for each state of the subsystems and for a state of the whole

system they are sums of these subsystem values:

ujk = vj + wk

where vj and wk are functions of the subsystems state.

In classical thermodynamics such functions are called the extensive quantities. For expected values

of additive quantities the similar additivity condition holds:∑
j,k

ujkpjk =
∑
j,k

(vj + wk)pik =
∑

j

vjqj +
∑

k

wkrk (28)

Let us consider these expected values as functionals of the probability distributions: u({pjk}), v({qj})
and w({rk}). Then the additivity property for the expected values reads:

u({pjk}) = v({qj}) + w({rk}) (29)

where qj and the rk are the marginal distributions.

Such a linear additivity property is impossible for non-linear entropy functionals, but under some

independence conditions the entropy can behave as an extensive variable.

Let P be a product of marginal distributions. This means that the subsystems are statistically

independent: pjk = qjrk. Assume also that the distribution P ∗ is also a product of marginal

distributions p∗jk = q∗j r
∗
k. Then some entropies reveal the additivity property with respect to joining of

independent systems.

1. The BGS relative entropy DKL(P‖P ∗) = DKL(Q‖Q∗) +DKL(R‖R∗).

2. The Burg entropy DKL(P ∗‖P ) = DKL(Q∗‖Q) + DKL(R∗‖R) . It is obvious that a convex

combination of the Shannon and Burg entropies has the same additivity property.

3. The Rényi entropy HR α(P‖P ∗) = HR α(Q‖Q∗) + HR α(R‖R∗). For α → ∞ the Min-entropy

also inherits this property.

This property implies the separation of variables for the entropy maximization problems if the system

consists of independent subsystems, pjk = qjrk. Let functionals u1({pjk}), . . . um({pjk}) be additive

(28) (29) and let the relative entropy H(P‖P ∗) be additive with respect to joining of independent
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systems. Assume that in equilibrium subsystems are also independent, p∗
jk = q∗j r

∗
k. Then the solution to

the problem

H(P‖P ∗) → min

subject to conditions

ui(P ) = Ui (i = 1, . . .m); pjk = qjrk (30)

is pmin
jk = qmin

j rmin
k , where qmin

j , rmin
k are solutions of partial problems:

H(Q‖Q∗) → min

subject to the conditions

vi(Q) = Vi (i = 1, . . .m)

and

H(R‖R∗) → min

subject to the conditions

wi(Q) = Wi (i = 1, . . .m)

for some redistribution of the additive functionals values Ui = Vi +Wi.

Let us call this property the separation of variables for independent subsystems.

Neither the CR, nor the Tsallis divergences families have the additivity property. It is proven [46] that

a function Hh has the additivity property if and only if it is a convex combination of the Shannon and

Burg entropies. See also Theorem 3 in Appendix.

Nevertheless, both the CR and the Tsallis families have the property of separation of variables for

independent subsystems because of the coincidence of the level sets with the additive function, the Rényi

entropy (for all α > 0).

The Tsallis entropy family has absolutely the same property of separation of variables as the Rényi

entropy. To extend this property of the Rényi Tsallis entropies for negative α, we have to change there

min to max.

For the CR family the result sounds even better: because of better normalization, the separation of

variables is valid for HCR λ → min problem for all values λ ∈] −∞,∞[.

The condition of independence of subsystems pjk = qjrk in (30) cannot be relaxed: if we

assume p∗jk = q∗j r
∗
k only then the correlations between subsystems may emerge in the solution of the

minimization problem. For example, without assumption of independence, for the Burg entropy, the

method of Lagrange multipliers gives (φi and ψi are the Lagrange multipliers):

p∗jk
pmin

jk

=
∑

i

(φiv
i
j + ψiw

i
k)

and the subsystems are not independent in this state even if they are independent in equilibrium and

the conditions are additive. These emergent correlations may be considered as spurious [57] or may

be interpreted as sensible ones for some finite systems far from thermodynamic limit for modelling of

non-canonic ensembles [35]. In any case, the use of entropies which are additive with respect to joining

of independent subsystem does not guarantee independence of subsystems but allows only to separate

variables under condition of independence.
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The stronger condition was used by Shore and Johnson [58] in the axiomatic derivation of the principle

of maximum entropy and the principle of minimum divergence (or ‘cross-entropy’). They postulated

that the MaxEnt distribution for the whole system is the product of the distributions of the subsystems if

the known information (conditions) is the information about subsystems (Axiom III). Independence of

subsystems in this axioms is not assumed but should be the consequence of the entropy maximization.

This axiom can be called ‘separation of variables under independent conditions’. They supplement this

assumption by the separation of variables for partition of the state space (Axiom IV), by the condition of

uniqueness of the MaxEnt distribution (Axiom I), and by the requirement of the invariance with respect

to the coordinate transformations (Axiom II). All these axioms together give the unique classical BGS

entropy. For further discussion see [57].

Violation of the Shore and Johnson Axiom III leads to correlation between subsystems and this is an

essential difference of the non-classical MaxEnt ensembles from the classical canonical ensembles.

We use the weaker assumption of separation of variables for independent subsystems and additive

conditions. Its violation leads to much more counterintuitive consequences: Subsystems remain

independent (condition) and other conditions are additive (30) but the solution of the MaxEnt problem is

the product of distributions which are not solutions of the partial MaxEnt problems. In other words, the

probability distribution for a subsystem is modified just by existence of another subsystem without any

interactions and correlations.

It seems to be difficult to find a reason for such a behavior and therefore the assumption of separation

of variables for independent subsystems and additive conditions is a sensible axiom. It is weaker than

the Shore and Johnson Axiom III [58] and, therefore, leads to a wider family of entropies than just a

classical BGS entropy. This wider family includes the CR family (12) and the convex combination of

the Shannon and the Burg entropies (10).

The question arises: is there any new divergence that has the following three properties: (i) the

divergence H(P‖P ∗) should decrease in Markov processes with equilibrium P ∗, (ii) for minimization

problems the separation of variables for independent subsystems holds and (iii) the separation of

variables for incompatible events holds. A new divergence means here that it is not a function of a

divergence from the CR family or from the convex combination of the Shannon and the Burg entropies.

The answer is: no, any divergence which has these three properties and is defined and differentiable

for positive distributions is a monotone function of Hh for h(x) = αpα (α ∈] − ∞,∞[, α 
= 0, 1),

that is, essentially, the CR family (12), or h(x) = βx ln x − (1 − β) lnx (β ∈ [0, 1]). If we relax the

differentiability property, then we have to add to the CR family the limits for λ → ±∞. For λ → +∞
we get the CR analogue of min-entropy

HCR ∞(P‖P ∗) = max
i

{
pi

p∗i

}
− 1

The limiting case for the CR family for λ→ −∞ is less known but is also a continuous and piecewise

differential Lyapunov function for the Master equation:

HCR −∞(P‖P ∗) = max
i

{
p∗i
pi

}
− 1

Both properties of separation of variables are based on the specific additivity properties: additivity

with respect to the composition of independent systems and additivity with respect to the partitioning
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of the space of states. Separation of variables can be considered as a weakened form of additivity: not

the minimized function should be additive but there exists such a monotonic transformation of scale

after which the function becomes additive (and different transformations may be needed for different

additivity properties).

4.3. “No More Entropies” Theorems

The classical Shannon work included the characterization of entropy by its properties. This meant

that the classical notion of entropy is natural, and no more entropies are expected. In the seminal work of

Rényi, again the characterization of entropy by its properties was proved, and for this, extended family

the no more entropies theorem was proved too. In this section, we prove the next no more entropies

theorem, where two one-parametric families are selected as sensible: the CR family and the convex

combination of Shannon’s and Burg’s entropies. They are two branches of solutions of the correspondent

functional equation and intersect at two points: Shannon’s entropy (λ = 1 in the CR family) and Burg’s

entropy (λ = 0). We consider entropies as equivalent if their level sets coincide. In that sense, the Rényi

entropy and the Tsallis entropy (with α > 0) are equivalent to the CR entropy with α− 1 = λ, λ > −1.

Following Rényi, we consider entropies of incomplete distributions: pi ≥ 0,
∑

i pi ≤ 1. The

divergence H(P‖P ∗) is a C1 smooth function of a pair of positive generalized probability distributions

P = (pi), pi > 0 and P ∗ = (p∗i ), p
∗
i > 0, i = 1, . . . n.

The following 3 properties are required for characterization of the “natural” entropies.

1. To provide the separation of variables for incompatible events together with the symmetry property

we assume that the divergence is separable, possibly, after a scaling transformation: there exists

such a function of two variables f(p, p∗) and a monotonic function of one variable φ(x) that

H(P‖P ∗) = φ(
∑

i f(pi, p
∗
i )). This formula allows us to define H(P‖P ∗) for all n.

2. H(P‖P ∗) is a Lyapunov function for the Kolmogorov equation (22) for any Markov chain with

equilibrium P ∗. (One can call these functions the universal Lyapunov functions because they do

not depend on the kinetic coefficients directly, but only on the equilibrium distribution P ∗.)

3. To provide separation of variables for independent subsystems we assume that H(P‖P ∗) is

additive (possibly after a scaling transformation): there exists such a function of one variable ψ(x)

that the function ψ(H(P‖P ∗)) is additive for the union of independent subsystems: if P = (pij),

pij = qjrj, p∗ij = q∗j r
∗
j , then ψ(H(P‖P ∗)) = ψ(H(Q‖Q∗)) + ψ(H(R‖R∗)).

Theorem 1. If a C1-smooth divergence H(P‖P ∗) satisfies the conditions 1-3 then, up to

monotonic transformation, it is either the CR divergence HCR λ or a convex combination of the

Botlzmann–Gibbs–Shannon and the Burg entropies,Hh(P‖P ∗) = βDKL(P‖P ∗)+(1−β)DKL(P ∗‖P ).

In a paper [46] this family was identified as the Tsallis relative entropy with some abuse of language,

because in the Tsallis entropy the case with α < 0 is usually excluded.

First of all, let us prove that any function which satisfies the conditions 1 and 2 is a monotone function

of a Csiszár–Morimoto function (6) for some convex smooth function h(x). This was mentioned in 2003

by P. Gorban [46]. Recently, a similar statement was published by S. Amari (Theorem 1 in [59]).



Entropy 2010, 12 1164

Lemma 1. If a Lyapunov functionH(p) for the Markov chain is of the trace–form (H(p) =
∑

i f(pi, p
∗
i ))

and is universal, then f(p, p∗) = p∗h( p
p∗ ) + const(p∗), where h(x) is a convex function of one variable.

Proof. Let us consider a Markov chain with two states. For such a chain

dp1

dt
= q12p

∗
2

(
p2

p∗2
− p1

p∗1

)
= −q21p∗1

(
p1

p∗1
− p2

p∗2

)
= −dp2

dt
(31)

If H is a Lyapunov function then Ḣ ≤ 0 and the following inequality holds:

(
∂f(p2, p

∗
2)

∂p2
− ∂f(p1, p

∗
1)

∂p1

)(
p1

p∗1
− p2

p∗2

)
≤ 0

We can consider p1, p2 as independent variables from an open triangle D = {(p1, p2) | p1,2 > 0, p1 +

p2 < 1}. For this purpose, we can include the Markov with two states into a chain with three states and

q3i = qi3 = 0.

If for a continuous function of two variables ψ(x, y) in an open domain D ⊂ R
2 an inequality

(ψ(x1, y1) − ψ(x2, y2))(y1 − y2) ≤ 0 holds then this function does not depend on x in D. Indeed,

let there exist such values x1,2 and y that ψ(x1, y) 
= ψ(x2, y), ψ(x1, y) − ψ(x2, y) = ε > 0. We can

find such δ > 0 that (x1, y + Δy) ∈ D and |ψ(x1, y + Δy) − ψ(x1, y)| < ε/2 if |Δy| < δ. Hence,

ψ(x1, y+ Δy)−ψ(x2, y) > ε/2 > 0 if |Δy| < δ. At the same time (ψ(x1, y+ Δy)−ψ(x2, y))Δy ≤ 0,

hence, for a positive 0 < Δy < δ we have a contradiction. Therefore, the function ∂f(p,p∗)
∂p

is a monotonic

function of p
p∗ , hence, f(p, p∗) = p∗h( p

p∗ )+ const(p∗), where h is a convex function of one variable.

This lemma has important corollaries about many popular divergences H(P (t)‖P ∗) which are not

Lyapunov functions of Markov chains. This means that there exist such distributions P0 and P ∗ and a

Markov chain with equilibrium distribution P ∗ that due to the Kolmogorov equations

dH(P (t)‖P ∗)
dt

∣∣∣∣
t=0

> 0

if P (0) = P0. This Markov process increases divergence between the distributions P, P ∗ (in a vicinity

of P0) instead of making them closer. For example,

Corollary 1. The following Bregman divergences [60] are not universal Lyapunov functions for Markov

chains:

• Squared Euclidean distance B(P‖P ∗) =
∑

i(pi − p∗i )
2;

• The Itakura–Saito divergence [61] B(P‖P ∗) =
∑

i

(
pi

p∗i
− log pi

p∗i
− 1
)

. �

These divergences violate the requirement: due to the Markov process distributions always

monotonically approach equilibrium. (Nevertheless, among the Bregman divergences there exists a

universal Lyapunov function for Markov chains, the Kulback–Leibler divergence.)

We place the proof of Theorem 1 in Appendix.

Remark. If we relax the requirement of smoothness and consider in conditions of Theorem 1 just

continuous functions, then we have to add to the answer the limit divergences,

HCR ∞(P‖P ∗) = max
i

{
pi

p∗i

}
− 1 ;
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HCR −∞(P‖P ∗) = max
i

{
p∗i
pi

}
− 1

5. Markov Order

5.1. Entropy: a Function or an Order?

Theorem 1 gives us all of the divergences for which (i) the Markov chains monotonically approach

their equilibrium, (ii) the level sets are the same as for a separable (sum over states) divergence and (iii)

the level sets are the same as for a divergence which is additive with respect to union of independent

subsystems.

We operate with the level sets and their orders, compare where the divergence is larger (for

monotonicity of the Markov chains evolution), but the values of entropy are not important by themselves.

We are interested in the following order: P precedes Q with respect to the divergence H...(P‖P ∗) if

there exists such a continuous curve P (t) (t ∈ [0, 1]) that P (0) = P , P (1) = Q and the function

H(t) = H...(P (t)‖P ∗) monotonically decreases on the interval t ∈ [0, 1]. This property is invariant with

respect to a monotonic (increasing) transformation of the divergence. Such a transformation does not

change the conditional minimizers or maximizers of the divergence.

There exists one important property that is not invariant with respect to monotonic transformations.

The increasing function F (H) of a convex function H(P ) is not obligatorily a convex function.

Nevertheless, the sublevel sets given by inequalities H(P ) ≤ a coincide with the sublevel sets

F (H(P )) ≤ F (a). Hence, sublevel sets for F (H(P )) remain convex.

The Jensen inequality

H(θP + (1 − θ)Q) ≤ θH(P ) + (1 − θ)H(Q)

(θ ∈ [0, 1]) is not invariant with respect to monotonic transformations. Instead of them, there appears the

max form analogue of the Jensen inequality (quasiconvexity [64]):

H(θP + (1 − θ)Q) ≤ max{H(P ), H(Q)} , θ ∈ [0, 1] (32)

This inequality is invariant with respect to monotonically increasing transformations and it is equivalent

to convexity of sublevel sets.

Proposition 1. All sublevel sets of a function H on a convex set V are convex if and only if for any two

points P,Q ∈ V and every θ ∈ [0, 1] the inequality (32) holds. �

It seems very natural to consider divergences as orders on distribution spaces, and discuss only

properties which are invariant with respect to monotonic transformations. From this point of view, the

CR family appears absolutely naturally from the additivity (ii) and the “sum over states” (iii) axioms,

as well as the convex combination βDKL(P‖P ∗) + (1 − β)DKL(P ∗‖P ) (α ∈ [0, 1]), and in the above

property context there are no other smooth divergences.

5.2. Description of Markov Order

The CR family and the convex combinations of Shannon’s and Burg relative entropies are

distinguished families of divergences. Apart from them there are many various “divergences”, and even
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the Csiszár–Morimoto functions (6) do not include all used possibilities. Of course, most users prefer

to have an unambiguous choice of entropy: it would be nice to have “the best entropy” for any class of

problems. But from some point of view, ambiguity of the entropy choice is unavoidable. In this section

we will explain why the choice of entropy is necessarily non unique and demonstrate that for many

MaxEnt problems the natural solution is not a fixed distribution, but a well defined set of distributions.

The most standard use of divergence in many application is as follows:

1. On a given space of states an “equilibrium distribution” P ∗ is given. If we deal with the probability

distribution in real kinetic processes then it means that without any additional restriction the current

distribution will relax to P ∗. In that sense, P ∗ is the most disordered distribution. On the other

hand, P ∗ may be considered as the “most disordered” distribution with respect to some a priori

information.

2. We do not know the current distribution P , but we do know some linear functionals, the moments

u(P ).

3. We do not want to introduce any subjective arbitrariness in the estimation of P and define it as the

“most disordered” distribution for given value u(P ) = U and equilibrium P ∗. That is, we define

P as solution to the problem:

H...(P‖P ∗) → min subject to u(P ) = U (33)

Without the condition u(P ) = U the solution should be simply P ∗.

Now we have too many entropies and do not know what is the optimal choice of H ... and what should

be the optimal estimate of P . In this case the proper question may be: which P could not be such

an optimal estimate? We can answer the exclusion question. Let for a given P 0 the condition hold,

u(P 0) = U . If there exists a Markov process with equilibrium P ∗ such that at point P 0 due to the

Kolmogorov equation (22)
dP

dt

= 0 and

d(u(P ))

dt
= 0

then P 0 cannot be the optimal estimate of the distribution P under condition u(P ) = U .

The motivation of this approach is simple: any Markov process with equilibriumP ∗ increases disorder

and brings the system “nearer” to the equilibrium P ∗. If at P 0 it is possible to move along the condition

plane towards the more disordered distribution then P 0 cannot be considered as an extremely disordered

distribution on this plane. On the other hand, we can consider P 0 as a possible extremely disordered

distribution on the condition plane, if for any Markov process with equilibrium P ∗ the solution of the

Kolmogorov equation (22) P (t) with initial condition P (0) = P 0 has no points on the plane u(P ) = U

for t > 0.

Markov process here is considered as a “randomization”. Any set C of distributions can be divided in

two parts: the distributions which retain in C after some non-trivial randomization and the distributions

which leave C after any non-trivial randomization. The last are the maximally random elements of

C: they cannot become more random and retain in C. Conditional minimizers of relative entropies

Hh(P‖P ∗) in C are maximally random in that sense.
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There are too many functions Hh(P‖P ∗) for effective description of all their conditional minimizers.

Nevertheless, we can describe the maximally random distributions directly, by analysis of Markov

processes.

To analyze these properties more precisely, we need some formal definitions.

Definition 1. (Markov preorder). If for distributions P 0 and P 1 there exists such a Markov process with

equilibrium P ∗ that for the solution of the Kolmogorov equation with P (0) = P 0 we have P (1) = P 1

then we say that P 0 and P 1 are connected by the Markov preorder with equilibrium P ∗ and use notation

P 0 �0
P ∗ P 1.

Definition 2. Markov order is the closed transitive closure of the Markov preorder. For the Markov

order with equilibrium P ∗ we use notation P 0 �P ∗ P 1.

For a given P ∗ = (p∗i ) and a distribution P = (pi) the set of all vectors v with coordinates

vi =
∑
j, j �=i

qijp
∗
j

(
pj

p∗j
− pi

p∗i

)

where p∗i and qij ≥ 0 are connected by identity (23) is a closed convex cone. This is a cone of all

possible time derivatives of the probability distribution at point P for Markov processes with equilibrium

P ∗ = (p∗i ). For this cone, we use notation Q(P,P ∗)

Definition 3. For each distribution P and a n-dimensional vector Δ we say that Δ <(P,P ∗) 0 if Δ ∈
Q(P,P ∗). This is the local Markov order.

Proposition 2. Q(P,P ∗) is a proper cone, i.e., it does not include any straight line.

Proof. To prove this proposition its is sufficient to analyze the formula for entropy production (for

example, in form (24)) and mention that for strictly convex h (for example, for traditional x ln x or

(x − 1)2/2) dHh/dt = 0 if and only if dP/dt = 0. If the cone Q(P,P ∗) includes both vectors x and −x
(x 
= 0 it means that there exist Markov chains with equilibrium P ∗ and with opposite time derivatives

at point P . Due to the positivity of entropy production (24) this is impossible.

The connection between the local Markov order and the Markov order gives the following proposition,

which immediately follows from definitions.

Proposition 3. P 0 �P ∗ P 1 if and only if there exists such a continuous almost everywhere differentiable

curve P (t) in the simplex of probability distribution that P (0) = P 0, P (1) = P 1 and for all t ∈ [0, 1],

where P (t) is differentiable,
dP (t)

dt
∈ Q(P (t),P ∗) � (34)

For our purposes, the following estimate of the Markov order through the local Markov order

is important.

Proposition 4. If P 0 �P ∗ P 1 then P 0 >(P 0,P ∗) P
1, i.e., P 1 − P 0 ∈ Q(P,P ∗).
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This proposition follows from the characterization of the local order and detailed description of the

cone Q(P (t),P ∗) (Theorem 2 below).

Let us recall that a convex pointed cone is a convex envelope of its extreme rays. A ray with directing

vector x is a set of points λx (λ ≥ 0). We say that l is an extreme ray of Q if for any u ∈ l and any

x, y ∈ Q, whenever u = (x + y)/2, we must have x, y ∈ l. To characterize the extreme rays of the

cones of the local Markov order Q(P,P ∗) we need a graph representation of the Markov chains. We use

the notation Ai for states (vertices), and designate transition from state Ai to state Aj by an arrow (edge)

Ai → Aj . This transition has its transition intensity qji (the coefficient in the Kolmogorov equation

(21)).

Lemma 2. Any extreme ray of the cone Q(P,P ∗) corresponds to a Markov process which transition graph

is a simple cycle

Ai1 → Ai2 → . . . Aik → Ai1

where k ≤ n, all the indices i1, . . . ik are different, and transition intensities for a directing vector of

such an extreme ray qij+1 ij may be selected as 1/p∗ij :

qij+1 ij =
1

p∗ij
(35)

(here we use the standard convention that for a cycle qik+1 ik = qi1 ik ).

Proof. First of all, let us mention that if for three vectors x, y, u ∈ Q(P,P ∗) we have u = (x + y)/2

then the set of transitions with non-zero intensities for corresponding Markov processes for x and y are

included in this set for u (because negative intensities are impossible). Secondly, just by calculation

of the free variables in the equations (23) (with additional condition) we find that the the amount of

non-zero intensities for a transition scheme which represents an extreme ray should be equal to the

amount of states included in the transition scheme. Finally, there is only one scheme with k vertices, k

edges and a positive equilibrium, a simple oriented cycle.

Theorem 2. Any extreme ray of the cone Q(P,P ∗) corresponds to a Markov process whose transition

graph is a simple cycle of the length 2: Ai � Aj . A transition intensities qij , qji for a directing vector

of such an extreme ray may be selected as

qij =
1

p∗j
, qji =

1

p∗i
(36)

Proof. Due to Lemma 2, it is sufficient to prove that for any distribution P the right hand side of the

Kolmogorov equation (22) for a simple cycle with transition intensities (35) is a conic combination (the

combination with non-negative real coefficients) of the right hand sides of this equation for simple cycles

of the length 2 at the same point P . Let us prove this by induction. For the cycle length 2 it is trivially

true. Let this hold for the cycle lengths 2, . . . n−1. For a cycle of length n, Ai1 → Ai2 → . . . Aik → Ai1 ,

with transition intensities given by (35) the right hand side of the Kolmogorov equation is the vector v

with coordinates

vij =
pij−1

p∗ij−1

− pij

p∗ij
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(under the standard convention regarding cyclic order). Other coordinates of v are zeros. Let us find the

minimal value of pij/p
∗
ij

and rearrange the indices by a cyclic permutation to put this minimum in the

first place:

min
j

{
pij

p∗ij

}
=
pi1

p∗i1

The vector v is a sum of two vectors: a directing vector for the cycle Ai2 → . . . Aik → Ai2 of the length

n − 1 with transition intensities given by formula (35) (under the standard convention about the cyclic

order for this cycle) and a vector
pin

p∗in
− pi1

p∗i1
pi2

p∗i2
− pi1

p∗i1

v2

where v2 is the directing vector for a cycle of length 2, Ai1 � Ai2 which can have only two

non-zero coordinates:

v2
i1 =

pi2

p∗i2
− pi1

p∗i1
= −v2

i2

The coefficient in front of v2 is positive because pi1/p
∗
i1

is the minimal value of pijp
∗
ij

. A case when

pi1/p
∗
i1

= pi2/p
∗
i2

does not need special attention because it is equivalent to the shorter cycle Ai1 →
Ai3 → . . . Aik → Ai1 (Ai2 could be omitted). A conic combination of conic combinations is a conic

combination again.

It is quite surprising that the local Markov order and, hence, the Markov order also are generated

by the reversible Markov chains which satisfy the detailed balance principle. We did not include any

reversibility assumptions, and studied the general Markov chains. Nevertheless, for the study of orders,

the system of cycles of length 2 all of which have the same equilibrium is sufficient.

5.3. Combinatorics of Local Markov Order

Let us describe the local Markov order in more detail. First of all, we represent kinetics of the

reversible Markov chains. For each pair Ai, Aj (i 
= j) we select an arbitrary order in the pair and write

the correspondent cycle of the length 2 in the form Ai � Aj . For this cycle we introduce the directing

vector γij with coordinates

γij
k = −δik + δjk (37)

where δik is the Kronecker delta. This vector has the ith coordinate −1, the jth coordinate 1 and other

coordinates are zero. Vectors γij are parallel to the edges of the standard simplex in Rn. They are

antisymmetric in their indexes: γ ij = −γji.

We can rewrite the Kolmogorov equation in the form

dP

dt
=
∑

pairs ij

γijwji (38)

where i 
= j, each pair is included in the sum only once (in the preselected order of i, j) and

wji = rji

(
pi

p∗i
− pj

p∗j

)



Entropy 2010, 12 1170

The coefficient rji ≥ 0 satisfies the detailed balance principle:

rji = qjip
∗
i = qijp

∗
j = rij

We use the three-value sign function:

signx =

⎧⎪⎨
⎪⎩

−1, if x < 0;

0, if x = 0;

1, if x > 0

(39)

With this function we can rewrite Equation (38) again as follows:

dP

dt
=

∑
pairs ij, rji �=0

rjiγ
ijsign

(
pi

p∗i
− pj

p∗j

) ∣∣∣∣ pi

p∗i
− pj

p∗j

∣∣∣∣ (40)

The non-zero coefficients rji may be arbitrary positive numbers. Therefore, using Theorem 2, we

immediately find that the cone of the local Markov order at point P is

Q(P,P ∗) = cone

{
γijsign

(
pi

p∗i
− pj

p∗j

) ∣∣∣∣ rji > 0

}
(41)

where cone{} stands for the conic hull.

The number sign
(

pi

p∗i
− pj

p∗j

)
is 1, when pi

p∗i
>

pj

p∗j
, −1, when pi

p∗i
<

pj

p∗j
and 0, when pi

p∗i
=

pj

p∗j
. For a

given P ∗, the standard simplex of distributions P is divided by planes pi

p∗i
=

pj

p∗j
into convex polyhedra

where functions sign
(

pi

p∗i
− pj

p∗j

)
are constant. In these polyhedra the cone of the local Markov order (41)

Q(P,P ∗) is also constant. Let us call these polyhedra compartments.

In Figure 1 we represent compartments and cones of the local Markov order for the Markov chains

with three states,A1,2,3. The reversible Markov chain consists of three reversible transitionsA1 � A2 �
A3 � A1 with corresponding directing vectors γ12 = (−1, 1, 0)�; γ23 = (0,−1, 1)�; γ31 = (1, 0,−1)�.

The topology of the partitioning of the standard simplex into compartments and the possible values of

the cone Q(P,P ∗) do not depend on the position of the equilibrium distribution P ∗.
Let us describe all possible compartments and the correspondent local Markov order cones. For

every natural number k ≤ n− 1 the k-dimensional compartments are numerated by surjective functions

σ : {1, 2, . . . , n} → {1, 2, . . . , k+1}. Such a function defines the partial ordering of quantities pj

p∗j
inside

the compartment:
pi

p∗i
>
pj

p∗j
if σ(i) < σ(j);

pi

p∗i
=
pj

p∗j
if σ(i) = σ(j) (42)

Let us use for the correspondent compartment notation Cσ and for the Local Markov order cone

Qσ . Let ki be a number of elements in preimage of i (i = 1, . . . , k): ki = |{j | σ(j) = i}|. It

is convenient to represent surjection σ as a tableau with k rows and ki cells in the ith row filled by

numbers from {1, 2, . . . , n}. First of all, let us draw diagram, that is a finite collection of cells arranged

in left-justified rows. The ith row has ki cells. A tableau is obtained by filling cells with numbers

{1, 2, . . . , n}. Preimages of i are located in the ith row. The entries in each row are increasing. (This is

convenient to avoid ambiguity of the representation of the surjection σ by the diagram.) Let us use for

tableaus the same notation as for the corresponding surjections.
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Figure 1. Compartments Cσ , corresponding cones Qσ (the angles) and all tableaus σ for

the Markov chain with three states (the choice of equilibrium (p∗i = 1/3), does not affect

combinatorics and topology of tableaus, compartments and cones).
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Let a tableau A have k rows. We say that a tableau B follows A (and use notation A → B) if B has

k − 1 rows and B can be produced from A by joining of two neighboring rows in A (with ordering the

numbers in the joined row). For the transitive closure of the relation → we use notation �.

Proposition 5. r∂Qσ =
⋃

σ�ς Qς �

Here r∂U stands for the “relative boundary” of a set U in the minimal linear manifold which includes

U .

The following Proposition characterizes the local order cone through the surjection σ. It is sufficient

to use in definition of Qσ (41) vectors γij (37) with i and j from the neighbor rows of the diagram (see

Figure 1).

Proposition 6. For a given surjection σ compartment Cσ and cone Qσ have the following description:

Cσ =

{
P | pi

p∗i
=
pj

p∗j
for σ(i) = σ(j) and

pi

p∗i
>
pj

p∗j
for σ(j) = σ(i) + 1

}
(43)
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Qσ = cone{γij | σ(j) = σ(i) + 1} � (44)

Compartment Cσ is defined by equalities pi

p∗i
=

pj

p∗j
where i, j belong to one row of the tableau σ and

inequalities pi

p∗i
>

pj

p∗j
where j is situated in a row one step down from i in the tableau (σ(j) = σ(i) + 1).

Cone Qσ is a conic hull of
∑k−1

i=1 kiki+1 vectors γij. For these vectors, j is situated in a row one step

down from i in the tableau. Extreme rays of Qσ are products of the positive real half-line on vectors γ ij

(44).

Each compartment has the lateral faces and the base. We call the face a lateral face, if its closure

includes the equilibrium P ∗. The base of the compartment belongs to a border of the standard simplex

of probability distributions.

To enumerate all the lateral faces of a k-dimensional compartment Cσ of codimension s (in Cσ) we

have to take all subsets with s elements in {1, 2, . . . , k}. For any such a subset J the correspondent

k − s-dimensional lateral face is given by additional equalities pi

p∗i
=

pj

p∗j
for σ(j) = σ(i) + 1, i ∈ J .

Proposition 7. All k − s-dimensional lateral faces of a k-dimensional compartment Cσ are in bijective

correspondence with the s-element subsets J ⊂ {1, 2, . . . , k}. For each J the correspondent lateral face

is given in Cσ by equations

pi

p∗i
=
pj

p∗j
for all i ∈ J and σ(j) = σ(i) + 1 � (45)

The 1-dimensional lateral faces (extreme rays) of compartment Cσ are given by selection of one

number from {1, 2, . . . , k} (this number is the complement of J). For this number r, the correspondent

1-dimensional face is a set parameterized by a positive number a ∈]1, ar], ar = 1/
∑

σ(i)≤r p
∗
i :

pi

p∗i
= a, for σ(i) ≤ r ;

pi

p∗i
= b, for σ(i) > r ;

a > 1 > b ≥ 0, a
∑

i, σ(i)≤r

p∗i + b
∑

i, σ(i)>r

p∗i = 1
(46)

The compartment Cσ is the interior of the k-dimensional simplex with vertices P ∗ and vr (r =

1, 2, . . . k). The vertex vr is the intersection of the correspondent extreme ray (46) with the border of

the standard simplex of probability distributions: P = vr if

pi = p∗iar, for σ(i) ≤ r; pi = 0 for σ(i) > r (47)

The base of the compartment Cσ is a k − 1-dimensional simplex with vertices vr (r = 1, 2, . . . k).

It is necessary to stress that we use the reversible Markov chains for construction of the general

Markov order due to Theorem 2.

6. The “Most Random” and Conditionally Extreme Distributions

6.1. Conditionally Extreme Distributions in Markov Order

The Markov order can be used to reduce the uncertainty in the standard settings. Let the plane L

of the known values of some moments be given: ui(P ) = Ui on L. Assume also that the “maximally
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Figure 2. If the moments are just some of pi then all points of conditionally minimal

divergence are the same for all the main divergences and coincide with the unique

conditionally extreme point of the Markov order (example for the Markov chain with three

states, symmetric equilibrium (p∗i = 1/3)) and the moment plane p2 =const.

Conditional 
minimiser of all 
CR divergences 

Extreme point 
of the Markov 
order on L

L

disordered” distribution (equilibrium) P ∗ is known and we assume that the probability distribution is P ∗

if there is no restrictions. Then, the standard way to evaluate P for given moment conditions u i(P ) = Ui

is known: just to minimizeH...(P‖P ∗) under these conditions. For the Markov order we also can define

the conditionally extreme points on L.

Definition 4. Let L be an affine subspace of Rn, Σn be a standard simplex in Rn. A probability

distribution P ∈ L ∩ Σn is a conditionally extreme point of the Markov order on L if

(P + Q(P,P ∗)) ∩ L = {P}

It is useful to compare this definition to the condition of the extremum of a differentiable function H

on L: gradH⊥L.

First of all, it is obvious that in the case when all the moments u i(P ) are just some of the values pi,

then there exists only one extreme point of the Markov order on L, and this point is, at the same time, the

conditional minimum on L of all Csiszár–Morimoto functions Hh(P ) (6) (see, for example, Figure 2).

This situation is unstable, and for a small perturbation of L the set of extreme points of the Markov order

on L includes the intersection of L with one of compartments (Figure 3a). For the Markov chains with

three states, each point of this intersection is a conditional minimizer of one of the CR divergences (see

Fig. 3a). Such a situation persists for all L in general positions (Figure 3b). The extreme points of the

family βDKL(P‖P ∗) + (1 − β)DKL(P ∗‖P ) form an interval which is strictly inside the interval of the

extreme points of the Markov order on L. For higher dimensions of L ∩ Σn the Markov order on L also
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includes the intersection of L with some compartments, however the conditional minimizers of the CR

divergences form a curve there, and extreme points of the family βDKL(P‖P ∗) + (1 − β)DKL(P ∗‖P )

on L form another curve. These two curves intersect at two points (λ = 0,−1), which correspond to the

BGS and Burg relative entropies.

Figure 3. The set of conditionally extreme points of the Markov order on the moment

plane in two general positions. For the main divergences the points of conditionally minimal

divergence are distributed in this set. For several of the most important divergences these

minimizers are pointed out. In this simple example each extreme point of the Markov order

is at the same time a minimizer of one of the HCR λ (λ ∈] − ∞,+∞[) (examples for the

Markov chain with three states, symmetric equilibrium (p∗i = 1/3)).

a)

Extreme points 
of the Markov 
order on L

L

Extreme points of the 
CR divergences, 

b)

Extreme points 
of the Markov 
order on L

L

Extreme points of the 
CR divergences on L,
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6.2. How to Find the Most Random Distributions?

Let the plane L of the known values of some moments be given: ui(P ) =
∑

j u
i
jpj = Ui (i = 1, . . .m)

on L. For a given divergence H(P‖P ∗) we are looking for a conditional minimizer P :

H(P‖P ∗) → min subject to ui(P ) = Ui(i = 1, . . .m) (48)

We can assume that H(P‖P ∗) is convex. Moreover, usually it is one of the Csiszár–Morimoto

functions (6). This is very convenient for numerical minimization because the matrix of second

derivatives is diagonal. Let us introduce the Lagrange multipliers μi (i = 1, . . .m) and write the system

of equations (μ0 is the Lagrange multiplier for the total probability identity
∑

j pj = 1 :

∂H

∂pj
= μ0 +

m∑
i=1

μiu
i
j ;

n∑
j=1

ui
jpj = Ui ;

n∑
j=1

pj = 1

(49)

Here we have n +m+ 1 equations for n+m+ 1 unknown variables (pj, μi, μ0).

Usually H is a convex function with a diagonal matrix of second variables and the method of choice

for solution of this equation (49) is the Newton method. On the l+1st iteration to find P l+1 = P l +ΔP

we have to solve the following system of linear equations

n∑
s=1

∂2H

∂pj∂ps

∣∣∣∣
P=P l

Δps = μ0 +
m∑

i=1

μiu
i
j −

∂H

∂pj

∣∣∣∣
P=P l

;

n∑
j=1

ui
jΔpj = 0 ;

n∑
j=1

Δpj = 0

(50)

For a diagonal matrix of the second derivatives the first n equations can be explicitly resolved. If for the

solution of this system (50) the positivity condition p l
j + Δpj > 0 does not hold (for some of j) then we

should decrease the step, for example by multiplication ΔP := θΔP , where

0 < θ < min
pl

i+Δpi<0

pl
i

|Δpi|
For initial approximation we can take any positive normalized distribution which satisfies the

conditions ui(P ) = Ui (i = 1, . . .m).

For the Markov orders the set of conditionally extreme distributions consists of intersections of L

with compartments.

Here we find this set for one moment condition of the form u(P ) =
∑

j ujpj = U . First of all, assume

that U 
= U∗, where U∗ = u(P ∗) =
∑

j ujp
∗
j (if U = U∗ then equilibrium is the single conditionally
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extreme distribution). In this case, the set of conditionally extreme distributions is the intersection of the

condition hyperplane with the closure of one compartment and can be described by the following system

of equations and inequalities (under standard requirements pi ≥ 0,
∑

i pi = 1 ):∑
j

ujpj = U ;

pi

p∗i
≥ pj

p∗j
if ui(U − U∗) ≥ uj(U − U∗)

(51)

(hence, pi

p∗i
=

pj

p∗j
if ui = uj).

To find this solution it is sufficient to study dynamics of u(P ) due to equations (38) and to compare it

with dynamics of u(P ) due to a model system Ṗ = P ∗ − P . This model system is also a Markov chain

and, therefore, P ∗ − P ∈ Q(P,P ∗). Equations and inequalities (51) mean that the set of conditionally

extreme distributions is the intersection of the condition hyperplane with the closure of compartment C.

In C, numbers pi

p∗i
have the same order on the real line as numbers ui(U − U∗) have, these two tuples of

numbers correspond to the same tableau σ and C = Cσ .

For several linearly independent conditions there exists a condition plane L:

ui(P ) =
∑

j

ui
jpj = Ui (i = 1, . . .m) (52)

Let us introduce the m-dimensional space T with coordinates ui. Operator u(P ) = (ui(P )) maps the

distribution space into T and the affine manifold L (52) maps into a point with coordinates u i = Ui.

If P ∗ ∈ L then the problem is trivial and the only extreme distribution of the Markov order on L is

P ∗. Let us assume that P ∗ /∈ L.

For each distribution P ∈ L we can study the possible direction of motions of projection distributions

onto T due to the Markov processes.

First of all, let us mention that if u(γ ij) = 0 then the transitions Ai � Aj move the distribution

along L. Hence, for any conditionally extreme distribution P ∈ L this transition A i � Aj should be in

equilibrium and the partial equilibrium condition holds: pi

p∗i
=

pj

p∗j
.

Let us consider processes with u(γ ij) 
= 0. If there exists a convex combination (40) of vectors

u(γij)sign
(

pi

p∗i
− pj

p∗j

)
(u(γij) 
= 0) that is equal to zero then P cannot be an extreme distribution of the

Markov order on L.

These two conditions for vectors γ ij with u(γij) = 0 and for the set of vectors with non-zero

projection on the condition space define the extreme distributions of the Markov order on the condition

plane L for several conditions.

7. Generalized Canonical Distribution

7.1. Reference Distributions for Main Divergences

A system with equilibrium P ∗ is given and expected values of some variables uj(P ) = Uj are known.

We need to find a distribution P with these values uj(P ) = Uj and is “the closest” to the equilibrium

distribution under this condition.
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This distribution parameterized through expectation values is often called the reference distribution

or generalized canonical distribution. After Gibbs and Jaynes, the standard statement of this problem is

an optimization problem:

H(P‖P ∗) → min, uj(P ) = Uj

for appropriate divergence H(P‖P ∗). If the number of conditions is m then this optimization problem

can be often transformed into m+ 1 equations with m+ 1 unknown Lagrange multipliers.

In this section, we study the problem of the generalized canonical distributions for single condition

u(P ) =
∑n

i=1 uipi = U , U 
= U∗.

For the Csiszár–Morimoto functions Hh(P‖P ∗)

∂Hh

∂pi
= h′

(
pi

p∗i

)
(53)

We assume that the function h′(x) has an inverse function g: g(h′(x)) = x for any x ∈]0,∞[. The

method of Lagrange multipliers gives for the generalized canonical distribution:

∂Hh

∂pi

= μ0

∂(
∑n

j=1 pj)

∂pi

+ μ
∂U

∂pi

, h′
(
pi

p∗i

)
= μ0 + μui,

n∑
i=1

pi = 1,
n∑

i=1

piui = U (54)

As a result, we get the final expression for the distribution

pi = p∗i g(μ0 + uiμ)

and equations for Lagrange multipliers μ0 and μ:

n∑
i=1

p∗i g(μ0 + uiμ) = 1,

n∑
i=1

p∗i g(μ0 + uiμ)ui = U (55)

If the image of h′(x) is the whole real line (h′(]0,∞[) = R) then for any real number y the value g(y) ≥ 0

is defined and there exist no problems about positivity of pi due to (55).

For the BGS relative entropy h′(x) = ln x (we use the normalized h(x) = x ln x − (x − 1) (19)).

Therefore, g(x) = exp x and for the generalized canonical distribution we get

pi = p∗i e
μ0euiμ, e−μ0 =

n∑
i=1

p∗i e
uiμ, ‘

n∑
i=1

p∗iuie
uiμ = U

n∑
i=1

p∗i e
uiμ (56)

As a result, we get one equation for μ and an explicit expression for μ0 through μ.

These μ0 and μ have the opposite sign comparing to (5) just because the formal difference between

the entropy maximization and the relative entropy minimization. Equation (56) is essentially the same

as (5).

For the Burg entropy h′(x) = − 1
x

, g(x) = − 1
x

too and

pi = − p∗i
μ0 + uiμ

(57)

For the Lagrange multipliers μ0, μ we have a system of two algebraic equations

n∑
i=1

p∗i
μ0 + uiμ

= −1,

n∑
i=1

p∗iui

μ0 + uiμ
= −U (58)
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For the convex combination of the BGS and Burg entropies h′(x) = β lnx − 1−β
x

(0 < β < 1), and

the function x = g(y) is a solution of a transcendent equation

β ln x− 1 − β

x
= y (59)

Such a solution exists for all real y because this h′(x) is a (monotonic) bijection of ]0,∞[ on the real

line.

Solution to Equation (59) can be represented through a special function, the Lambert function [65].

This function is a solution to the transcendent equation

wew = z

and is also known as W function, Ω function or modified logarithm lmz [36]. Below we use the main

branch w = lmz for which lmz > 0 if z > 0 and lm0 = 0. Let us write (59) in the form

ln x− δ

x
= −Λ (60)

where δ = (1 − β)/β, Λ = −y/β. Then

x = e−Λelm(δeΛ)

Another equivalent representation of the solution gives

x =
δ

lm(δeΛ)

Indeed, let us take z = δ/x and calculate exponent of both sides of (60). After simple transformations,

we obtain zez = δeΛ.

The identity lma = ln a − ln lma is convenient for algebraic operations with this function. Many

other important properties are collected in [65].

The generalized canonical distribution for the convex combination of the BGS and Burg divergence

is [36]

pi = p∗i e
−Λielm(δeΛi ) =

δp∗i
lm(δeΛi)

(61)

where Λi = − 1
β
(μ0 + uiμ), δ = (1 − β)/β and equations (55) hold for the Lagrange multipliers.

For small 1 − β (small addition of the Burg entropy to the BGS entropy) we have

pi = p∗i

(
e−Λi +

1 − β

β
− (1 − β)2

2β2
eΛi

)
+ o((1 − β)2)

For the CR family h(x) = x(xλ−1)
λ(λ+1)

, h′(x) = (λ+1)xλ−1
λ(λ+1)

, g(x) = (λ(λ+1)x+1
(λ+1)

)
1
λ and

pi = p∗i

(
λ(λ+ 1)(μ0 + uiμ) + 1

(λ+ 1)

) 1
λ

(62)

For λ = 1 (a quadratic divergence) we easily get linear equations and explicit solutions for μ0 and

μ. If λ = 1
2

then equations for the Lagrange multipliers (55) become quadratic and also allow explicit
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solution. The same is true for λ = 1
3

and 1
4

but explicit solutions to the correspondent cubic or quartic

equations are too cumbersome.

We studied the generalized canonical distributions for one condition u(P ) = U and main families

of entropies. For the BGS entropy, the method of Lagrange multipliers gives one transcendent equation

for the multiplier μ1 and explicit expression for μ0 as a function of μ1 (56). In general, for functions

Hh, the method gives a system of two equations (55). For the Burg entropy this is a system of

algebraic equation (58). For a convex combination of the BGS and the Burg entropies the expression

for generalized canonical distribution function includes the special Lambert function (61). For the CR

family the generalized canonical distribution is presented by formula (62). for several values of λ it can

be represented in explicit form. The Tsallis entropy family is a subset of the CR family (up to constant

multipliers).

7.2. Polyhedron of Generalized Canonical Distributions for the Markov Order

The set of the most random distributions with respect to the Markov order under given condition

consists of those distributions which may be achieved by randomization which has the given equilibrium

distribution and does not violate the condition.

In the previous section, this set was characterized for a single condition
∑

i piui = U , U 
= U∗ by a

system of inequalities and equations (51). It is a polyhedron that is an intersection of the closure of one

compartment with the hyperplane of condition. Here we construct the dual description of this polyhedron

as a convex envelope of the set of extreme points (vertices).

The Krein–Milman theorem gives general backgrounds of such a representation of convex compact

sets in locally convex topological vector spaces [66]: a compact convex set is the closed convex hull of

its extreme points. (An extreme point of a convex set K is a point x ∈ K which cannot be represented

as an average x = 1
2
(y + z) for y, z ∈ K, y, z 
= x.)

Let us assume that there are k+1 ≤ n different numbers in the set of numbers ui(U−U∗). There exists

the unique surjection σ : {1, 2, . . . n} → {1, 2, . . . k + 1} with the following properties: σ(i) < σ(j) if

and only if ui(U−U∗) > uj(U−U∗) (hence, σ(i) = σ(j) if and only if ui(U−U∗) = uj(U−U∗)). The

polyhedron of generalized canonical distributions is the intersection of the condition plane
∑

i piui = U

with the closure of Cσ.

This closure is a simplex with vertices P ∗ and vr (r = 1, 2, . . . k) (47). The vertices of the intersection

of this simplex with the condition hyperplane belong to edges of the simplex, hence we can easily find

all of them: the edge [x, y] has nonempty intersection with the condition hyperplane if either u(x) ≥
U&u(y) ≤ U or u(x) ≤ U&u(y) ≥ U . This intersection is a single point P if u(x) 
= u(y):

P = λx+ (1 − λ)y, λ =
u(y)− U

u(y)− u(x)
(63)

If u(x) = u(y) then the intersection is the whole edge, and the vertices are x and y.

For example, if U is sufficiently close to U ∗ then the intersection is a simplex with k vertices wr

(r = 1, 2, . . . k). Each wr is the intersection of the edge [P ∗, vr] with the condition hyperplane.
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Let us find these vertices explicitly. We have a system of two equations

a
∑

i, σ(i)≤r

p∗i + b
∑

i, σ(i)>r

p∗i = 1 ;

a
∑

i, σ(i)≤r

uip
∗
i + b

∑
i, σ(i)>r

uip
∗
i = U

(64)

Position of the vertex wr on the edge [P ∗, vr] is given by the following expressions

pi

p∗i
= a, for σ(i) ≤ r ;

pi

p∗i
= b, for σ(i) > r

a = 1 +
(U − U∗)

∑
i, σ(i)>r p

∗
i∑

i, σ(i)>r p
∗
i

∑
i, σ(i)≤r uip∗i −

∑
i, σ(i)≤r p

∗
i

∑
i, σ(i)>r uip∗i

b = 1 − (U − U∗)
∑

i, σ(i)≤r p
∗
i∑

i, σ(i)>r p
∗
i

∑
i, σ(i)≤r uip

∗
i −

∑
i, σ(i)≤r p

∗
i

∑
i, σ(i)>r uip

∗
i

(65)

If b ≥ 0 for all r then the polyhedron of generalized canonical distributions is a simplex with vertices

wr. If the solution becomes negative for some r then the set of vertices changes qualitatively and some

of them belong to the base of Cσ. For example, in Figure 3a the interval of the generalized canonical

distribution (1D polyhedron) has vertices of two types: one belongs to the lateral face, another is situated

on the basement of the compartment. In Figure 3b both vertices belong to the lateral faces.

Vertices wr on the edges [P ∗, vr] have very special structure: the ratio pi/p
∗
i can take for them only

two values, it is either a or b.

Another form for representation of vertices wr (65) can be found as follows. wr belongs to the edge

[P ∗, vr], hence, wr = λP ∗ + (1− λ)vr for some λ ∈ [0, 1]. Equation for the value of λ follows from the

condition u(wr) = U : λU∗ + (1 − λ)u(vr) = U . Hence, we can use (63) with x = P ∗, y = vr.

For sufficiently large value of U −U∗ for some of these vertices b loses positivity, and instead of them

the vertices on edges [vr, vq] (47) appear.

There exists a vertex on the edge [vr, vq] if either u(vr) ≥ U&u(vq) ≤ U or u(vr) ≤ U&u(vq) ≥ U .

If u(vr) 
= u(vq) then his vertex has the form P = λvr + (1 − λ)vq and for λ the condition u(P ) = U

gives (63) with x = vr, y = vq. If u(vr) = u(vq) then the edge [u(vr), u(vq)] belongs to the condition

plane and the extreme distributions are u(vr) u(vq).

For each of vr the ratio pi/p
∗
i can take only two values: ar or 0. Without loss of generality we can

assume that q > r. For a convex combination λvr + (1− λ)vq (1 > λ > 0) the ratio pi/p
∗
i can take three

values: λar + (1 − λ)aq (for σ(i) ≤ r), (1 − λ)aq (for r < σ(i) ≤ q) and 0 (for σ(i) > q).

The case when a vertex is one of the vr is also possible. In this case, there are two possible values of

pi/p
∗
i , it is either ar or 0.

All the generalized canonical distributions from the polyhedron are convex combinations of its

extreme points (vertices). If the set of vertices is {wr}, then for any generalized canonical distributions

P =
∑
λiwi (λi ≥ 0,

∑
i λi = 1). The vertices can be found explicitly. Explicit formulas for the extreme

generalized canonical distributions are given in this section: (65) and various applications of (63). These

formulas are based on the description of compartment Cσ given in Proposition 7 and Equation (47).
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8. History of the Markov Order

8.1. Continuous Time Kinetics

We have to discuss the history of the Markov order in the wider context of orders, with respect to

which the solutions of kinetic equations change monotonically in time. The Markov order is a nice and

constructive example of such an order and at the same time the prototype of all of them (similarly the

Master Equation is a simple example of kinetic equations and, at the same time, the prototype of all

kinetic equations).

The idea of orders and attainable domains (the lower cones of these orders) in phase space was

developed in many applications: from biological kinetics to chemical kinetics and engineering. A kinetic

model includes information of various levels of detail and of variable reliability. Several types of building

block are used to construct a kinetic model. The system of these building blocks can be described, for

example, as follows:

1. The list of components (in chemical kinetics) or populations (in mathematical ecology) or states

(for general Markov chains);

2. The list of elementary processes (the reaction mechanism, the graph of trophic interactions or

the transition graph), which is often supplemented by the lines or surfaces of partial equilibria of

elementary processes;

3. The reaction rates and kinetic constants.

We believe that the lower level information is more accurate and reliable: we know the list of

component better than the mechanism of transitions, and our knowledge of equilibrium surfaces is better

than the information about exact values of kinetic constants.

It is attractive to use the more reliable lower level information for qualitative and quantitative study

of kinetics. Perhaps, the first example of such a analysis was performed in biological kinetics.

In 1936, A.N. Kolmogorov [67] studied the dynamics of a pair of interacting populations of prey (x)

and predator (y) in general form:

ẋ = xS(x, y), ẏ = yW (x, y)

under monotonicity conditions: ∂S(x, y)/∂y < 0, ∂W (x, y)/∂y < 0. The zero isoclines, the lines at

which the rate of change for one population is zero (given by equations S(x, y) = 0 or W (x, y) = 0),

are graphs of two functions y(x). These isoclines divide the phase space into compartments (generically

with curvilinear borders). In every compartment the angle of possible directions of motion is given

(compare to Figure 1).

Analysis of motion in these angles gives information about dynamics without an exact knowledge of

the kinetic constants. The geometry of the zero isoclines intersection together with some monotonicity

conditions give important information about the system dynamics [67] without exact knowledge of the

right hand sides of the kinetic equations.
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This approach to population dynamics was further developed by many authors and applied to various

problems [68,69]. The impact of this work on population dynamics was analyzed by K. Sigmund in

review [70].

It seems very attractive to use an attainable region instead of the single trajectory in situations with

incomplete information or with information with different levels of reliability. Such situations are typical

in many areas of engineering. In 1964, F. Horn proposed to analyze the attainable regions for chemical

reactors [71]. This approach was applied both to linear and nonlinear kinetic equations and became

popular in chemical engineering. It was applied to the optimization of steady flow reactors [72], to

batch reactor optimization by use of tendency models without knowledge of detailed kinetics [73] and

for optimization of the reactor structure [74]. Analysis of attainable regions is recognized as a special

geometric approach to reactor optimization [75] and as a crucially important part of the new paradigm of

chemical engineering [76]. Plenty of particular applications was developed: from polymerization [77]

to particle breakage in a ball mill [78]. Mathematical methods for study of attainable regions vary from

the Pontryagin’s maximum principle [79] to linear programming [80], the Shrink-Wrap algorithm [81]

and convex analysis.

The connection between attainable regions, thermodynamics and stoichiometric reaction mechanisms

was studied by A.N. Gorban in the 1970s. In 1979, he demonstrated how to utilize the knowledge about

partial equilibria of elementary processes to construct the attainable regions [62].

He noticed that the set (a cone) of possible direction for kinetics is defined by thermodynamics and

the reaction mechanism (the system of the stoichiometric equation of elementary reactions).

Thermodynamic data are more robust than the reaction mechanism and the reaction rates are

known with lower accuracy than the stoichiometry of elementary reactions. Hence, there are two

types of attainable regions. The first is the thermodynamic one, which use the linear restrictions and

the thermodynamic functions [82]. The second is generated by thermodynamics and stoichiometric

equations of elementary steps (but without reaction rates) [62,83].

It was demonstrated that the attainable regions significantly depend on the transition mechanism

(Figure 4) and it is possible to use them for the mechanisms discrimination [84].

Already simple examples demonstrate that the sets of distributions which are accessible from a given

initial distribution by Markov processes with equilibrium are, in general, non-convex polytopes [62,85]

(see, for example, the outlined region in Figure 4, or, for particular graphs of transitions, any of the

shaded regions there). This non-convexity makes the analysis of attainability for continuous time Markov

processes more difficult (and also more intriguing).

This approach was developed for all thermodynamic potentials and for open systems as well [34].

Partially, the results are summarized in [14,63].

This approach was rediscovered by F.J. Krambeck [86] for linear systems, that is, for Markov chains,

and by R. Shinnar and other authors [87] for more general nonlinear kinetics. There was even an open

discussion about priority [89]. Now this geometric approach is applied to various chemical and industrial

processes.
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Figure 4. Attainable regions from an initial distribution a0 for a linear system with three

components A1, A2, A3 in coordinates c1, c2 (concentrations of A1, A2) (c3 = const − c1 −
c2) [62]: for a full mechanism A1 � A2 � A3 � A1 (outlined region), for a two-step

mechanism A1 � A2, A1 � A3 (horizontally shaded region) and for a two-step mechanism

A1 � A2, A2 � A3 (vertically shaded region). Equilibrium is a∗. The dashed lines are

partial equilibria.

a0

a*
c2

c1

8.2. Discrete Time Kinetics

In our paper we deal mostly with continuous time Markov chains. For the discrete time Markov

chains, the attainable regions have two important properties: they are convex and symmetric with respect

to permutations of states. Because of this symmetry and convexity, the discrete time Markov order is

characterized in detail. As far as we can go in history, this work was begun in early 1970s by A. Uhlmann

and P.M. Alberti. The results of the first 10 years of this work were summarized in monograph [90]. A

more recent bibliography (more than 100 references) is collected in review [91].

This series of work was concentrated mostly on processes with uniform equilibrium (doubly

stochastic maps). The relative majorization, which we also use in Section 5, and the Markov order with

respect to a non-uniform equilibrium was introduced by P. Harremoës in 2004 [92]. He used formalism

based on the Lorenz diagrams.

9. Conclusion

Is playing with non-classical entropies and divergences just an extension to the fitting possibilities

(no sense—just fitting)? We are sure now that this is not the case: two one-parametric families of

non-classical divergences are distinguished by the very natural properties:

1. They are Lyapunov functions for all Markov chains;
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2. They become additive with respect to the joining of independent systems after a monotone

transformation of scale;

3. They become additive with respect to a partitioning of the state space after a monotone

transformation of scale.

Two families of smooth divergences (for positive distributions) satisfy these requirements: the

Cressie–Read family [29,30]

HCR λ(P‖P ∗) =
1

λ(λ+ 1)

∑
i

pi

[(
pi

p∗i

)λ

− 1

]
, λ ∈] −∞,∞[

and the convex combination of the Burg and Shannon relative entropies [34,35]:

H(P‖P ∗) =
∑

i

(βpi − (1 − β)p∗i ) log

(
pi

p∗i

)
, β ∈ [0, 1]

If we relax the differentiability property, then we have to add to the the CR family two limiting cases:

HCR ∞(P‖P ∗) = max
i

{
pi

p∗i

}
− 1 ;

HCR −∞(P‖P ∗) = max
i

{
p∗i
pi

}
− 1

Beyond these two distinguished one-parametric families there is the whole world of the

Csiszár–Morimoto Lyapunov functionals for the Master equation (6). These functions monotonically

decrease along any solution of the Master equation. The set of all these functions can be used to reduce

the uncertainty by conditional minimization: for each h we could find a conditional minimizer of Hh(p).

Most users prefer to have an unambiguous choice of entropy: it would be nice to have “the best

entropy” for any class of problems. But from a certain point of view, ambiguity of the entropy choice

is unavoidable, and the choice of all conditional optimizers instead of a particular one is a possible

way to avoid an arbitrary choice. The set of these minimizers evaluates the possible position of a

“maximally random” probability distribution. For many MaxEnt problems the natural solution is not

a fixed distribution, but a well defined set of distributions.

The task to minimize functions Hh(p) which depend on a functional parameter h seems too

complicated. The Markov order gives us another way for the evaluation of the set of possible “maximally

random” probability distribution, and this evaluation is, in some sense, the best one. We defined the

Markov order, studied its properties and demonstrated how it can be used to reduce uncertainty.

It is quite surprising that the Markov order is generated by the reversible Markov chains which

satisfy the detailed balance principle. We did not include any reversibility assumptions and studied

the general Markov chains. There remain some questions about the structure and full description of the

global Markov order. Nevertheless, to find the set of conditionally extreme (“most random”) probability

distributions, we need the local Markov order only. This local order is fully described in Section 5.2

and has a very clear geometric structure. For a given equilibrium distribution P ∗, the simplex of

probability distributions is divided by n(n − 1)/2 hyperplanes of “partial equilibria” (this terminology
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comes from chemical kinetics [62,63]): pi

p∗i
=

pj

p∗j
(there is one hyperplane for each pair of states (i, j)).

In each compartment a cone of all possible time derivatives of the probability distribution is defined as a

conic envelope of n(n − 1)/2 vectors (41). The extreme rays of this cone are explicitly described in

Proposition 6 (44). This cone defines the local Markov order. When we look for conditionally

extreme distributions, this cone plays the same role as a hyperplane given by entropy growth condition

( dS/dt > 0) in the standard approach.

For the problem of the generalized canonical (or reference) distribution the Markov order gives a

polyhedron of the extremely disordered distributions. The vertices of that polyhedron can be computed

explicitly.

The construction of efficient algorithms for numerical calculation of conditionally extreme compacts

in high dimensions is a challenging task for our future work as well as the application of this methodology

to real life problems.
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36. Gorban, A.N.; Karlin, I.V.; Öttinger, H.C. The additive generalization of the Boltzmann entropy.

Phys. Rev. E 2003 67, 067104. Available online: http://arxiv.org/abs/cond-mat/0209319 (accessed

on 4 May 2010).

37. Nonextensive statistical mechanics and thermodynamics: bibliography. Available online:

http://tsallis.cat.cbpf.br/TEMUCO.pdf (accessed on 4 May 2010).

38. Petz, D. From f -divergence to quantum quasi-entropies and their use. Entropy 2010, 12, 304–325.
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Appendix

Proof of Theorem 1. The problem is to find all such universal and trace–form Lyapunov functions H for

Markov chains, that there exists a monotonous function F , such that F (H(P )) = F (H(Q))+F (H(R))

if P = pij = qirj.

With Lemma 1 we get that

H(P ) =
∑
i,j

q∗i r
∗
jh

(
qirj

q∗i r
∗
j

)
, H(Q) =

∑
i

q∗i h
(
qi
q∗i

)
, H(R) =

∑
j

r∗jh
(
rj

r∗j

)

Let F (x) and h(x) be differentiable as many times as needed. Differentiating the equality F (H(P )) =

F (H(Q)) + F (H(R)) on r1 and q1 taking into account that qn = 1 −∑n−1
i=1 qi and rm = 1 −∑m−1

j=1 rj

we get that F ′(H(P ))H ′′
q1r1

(P ) = −F ′′(H(P ))H ′
q1

(P )H ′
r1

(P ), or, if − F ′(H(P ))
F ′′(H(P ))

= G(H(P )) then

G(H(P )) =
H ′

q1
(P )H ′

r1
(P )

H ′′
q1r1

(P )
(66)

It is possible if and only if every linear differential operator of the first order, which annulates H(P ) and∑
pi, annulates also

H ′
q1

(P )H ′
r1

(P )

H ′′
q1r1

(P )
(67)

and it means that every differential operator which has the form

D =

(
∂H(P )

∂qγ
− ∂H(P )

∂qα

)
∂

∂qβ
+

(
∂H(P )

∂qβ
− ∂H(P )

∂qγ

)
∂

∂qα
+

(
∂H(P )

∂qα
− ∂H(P )

∂qβ

)
∂

∂qγ
(68)

annulates (67). For β = 2, α = 3, γ = 4 we get the following equation

F1(Q,R)
[
h′
(

q2r1

q∗2r∗1

)
− h′

(
q2rm

q∗2r∗m

)
+ q2r1

q∗2r∗1
h′′
(

q2r1

q∗2r∗1

)
− q2rm

q∗2r∗m
h′′
(

q2rm

q∗2r∗m

)]
+

F2(Q,R)
[
h′
(

q3r1

q∗3r∗1

)
− h′

(
q3rm

q∗3r∗m

)
+ q3r1

q∗3r∗1
h′′
(

q3r1

q∗3r∗1

)
− q3rm

q∗3r∗m
h′′
(

q3rm

q∗3r∗m

)]
+

F3(Q,R)
[
h′
(

q4r1

q∗4r∗1

)
− h′

(
q4rm

q∗4r∗m

)
+ q4r1

q∗4r∗1
h′′
(

q4r1

q∗4r∗1

)
− q4rm

q∗4r∗m
h′′
(

q4rm

q∗4r∗m

)]
= 0

(69)

where
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F1(Q,R) =
∑

j

rj

[
h′
(
q4rj

q∗4r
∗
j

)
− h′

(
q3rj

q∗3r
∗
j

)]
;

F2(Q,R) =
∑

j

rj

[
h′
(
q2rj

q∗2r
∗
j

)
− h′

(
q4rj

q∗4r
∗
j

)]
;

F3(Q,R) =
∑

j

rj

[
h′
(
q3rj

q∗3r
∗
j

)
− h′

(
q2rj

q∗2r
∗
j

)]

If we apply the differential operator ∂
∂r2

− ∂
∂r3

, which annulates the conservation law
∑

j rj = 1, to

the left part of (69), and denote f(x) = xh′′(x) + h′(x), x1 = q2

q∗2
, x2 = q3

q∗3
, x3 = q4

q∗4
, y1 = r1

r∗1
, y2 = rm

r∗m
,

y3 = r2

r∗2
, y4 = r3

r∗3
, we get the equation

(f(x3y3) − f(x2y3) − f(x3y4) + f(x2y4))(f(x1y1) − f(x1y2)) +

(f(x1y3) − f(x3y3) − f(x1y4) + f(x3y4))(f(x2y1) − f(x2y2)) + (70)

(f(x2y3) − f(x1y3) − f(x2y4) + f(x1y4))(f(x3y1) − f(x3y2)) = 0

or, after differentiation on y1 and y3 and denotation g(x) = f ′(x)

x1g(x1y1)(x3g(x3y3) − x2g(x2y3)) + x2g(x2y1)(x1g(x1y3) − (71)

−x3g(x3y3)) + x3g(x3y1)(x2g(x2y3) − x1g(x1y3)) = 0

If y3 = 1, y1 
= 0, ϕ(x) = xg(x), we get after multiplication (71) on y1

ϕ(x1y1)(ϕ(x3) − ϕ(x2)) + ϕ(x2y1)(ϕ(x1) − ϕ(x3)) + ϕ(x3y1)(ϕ(x2) − ϕ(x1)) = 0 (72)

It implies that for every three positive numbers α, β, γ the functions ϕ(αx), ϕ(βx), ϕ(γx) are linearly

dependent, and for ϕ(x) the differential equation

ax2ϕ′′(x) + bxϕ′(x) + cϕ(x) = 0 (73)

holds. This differential equation has solutions of two kinds:

1. ϕ(x) = C1x
k1 + C2x

k2 , k1 
= k2, k1 and k2 are real or complex-conjugate numbers.

2. ϕ(x) = C1x
k + C2x

k ln x.

Let us check, which of these solutions satisfy the functional equation (72).

1. ϕ(x) = C1x
k1 + C2x

k2 . After substitution of this into (72) and calculations we get

C1C2(y
k1
1 − yk2

1 )(xk1
1 x

k2
3 − xk1

1 x
k2
2 + xk2

1 x
k1
2 − xk1

2 x
k2
3 + xk2

2 x
k1
3 − xk2

1 x
k1
3 ) = 0

This means that C1 = 0, or C2 = 0, or k1 = 0, or k2 = 0 and the solution of this kind can have

only the form ϕ(x) = C1x
k + C2.
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2. ϕ(x) = C1x
k + C2x

k ln x. After substitution of this into (72) and some calculations if y1 
= 0 we

get

C2
2((x

k
1 − xk

2)x
k
3 ln x3 + (xk

3 − xk
1)x

k
2 ln x2 + (xk

2 − xk
3)x

k
1 ln x1) = 0

This means that either C2 = 0 and the solution is ϕ(x) = C1x
k or k = 0 and the solution is

ϕ(x) = C1 + C2 ln x.

So, the equation (72) has two kinds of solutions:

1. ϕ(x) = C1x
k + C2,

2. ϕ(x) = C1 + C2 ln x

Let us solve the equation f(x) = xh′′(x) + h′(x) for each of these two cases.

1. ϕ(x) = C1x
k + C2, g(x) = C1x

k−1 + C2

x
, there are two possibilities:

1.1) k = 0. Then g(x) = C
x

, f(x) = C ln x+ C1, h(x) = C1x ln x+ C2 ln x+ C3x+ C4;

1.2) k 
= 0. Then f(x) = Cxk + C1 ln x+ C2, and here are also two possibilities:

1.2.1) k = −1. Then h(x) = C1 ln2 x+ C2x ln x+ C3 ln x+ C4x+ C5;

1.2.2) k 
= −1. Then h(x) = C1x
k+1 + C2x ln x+ C3 ln x+ C4x+ C5;

2. ϕ(x) = C1 + C2 ln x; g(x) = C1
ln x
x

+ C2

x
; f(x) = C1 ln2 x + C2 ln x + C3; h(x) = C1x ln2 x +

C2x ln x+ C3 ln x+ C4x+ C5.

(We have renamed constants during the calculations).

For the next step let us check, which of these solutions remains a solution to equation (69). The result

is that there are just two families of functions h(x) such, that equation (69) holds:

1. h(x) = Cxk + C1x+ C2, k 
= 0, k 
= 1,

2. h(x) = C1x ln x+ C2 lnx+ C3x+ C4.

The function h(x) should be convex. This condition determines the signs of coefficients C i.

The corresponding divergence H(P‖P ∗) is either one of the CR entropies or a convex combination

of Shannon’s and Burg’s entropies up to a monotonic transformation. �

Characterization of Additive Trace–form Lyapunov Functions for Markov Chains. We will consider

three important properties of Lyapunov functions H(P‖P ∗):

1. Universality: H is a Lyapunov function for Markov chains (22) with a given equilibrium P ∗ for

every possible values of kinetic coefficients kij ≥ 0.

2. H is a trace–form function.

H(P‖P ∗) =
∑

i

f(pi, p
∗
i ) (74)

where f is a differentiable function of two variables.
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3. H is additive for composition of independent subsystems. It means that if P = p ij = qirj and

P ∗ = p∗ij = q∗i r
∗
j then H(P‖P ∗) = H(Q‖Q∗) +H(R‖R∗).

Here and further we suppose 0 < pi, p
∗
i , qi, q

∗
i , ri, r

∗
i < 1.

We consider the additivity condition as a functional equation and solve it. The following

theorem describes all Lyapunov functions for Markov chains, which have all three properties 1) - 3)

simultaneously.

Let f(p, p∗) be a twice differentiable function of two variables.

Theorem 3. If a function H(P‖P ∗) has all the properties 1)-3) simultaneously, then

f(p, p∗) = p∗ih
(
p

p∗

)
, H(P‖P ∗) =

∑
i

p∗ih
(
pi

p∗i

)
(75)

where

h(x) = C1 ln x+ C2x ln x, C1 ≤ 0, C2 ≥ 0 (76)

Proof. We follow here the P. Gorban proof [46]. Another proof of this theorem was proposed in [93].

Due to Lemma 1 let us take H(P‖P ∗) in the form (75). Let h be twice differentiable in the interval

]0,+∞[. The additivity equation

H(P‖P ∗) −H(Q‖Q∗) −H(R‖R∗) = 0 (77)

holds. Here (in (77))

qn = 1 −
n−1∑
i=1

qi, rm = 1 −
m−1∑
j=1

rj, P = pij = qirj

H(P‖P ∗) =
∑
i,j

q∗i r
∗
jh

(
qirj

q∗i r
∗
j

)
, H(Q‖Q∗) =

∑
i

q∗i h
(
qi
q∗i

)
, H(R‖R∗) =

∑
j

r∗jh
(
rj

r∗j

)

Let us take the derivatives of this equation first on q1 and then on r1. Then we get the equation (g(x) =

h′(x))

g( q1r1

q∗1r∗1
) − g( qnr1

q∗nr∗1
) − g( q1rm

q∗1r∗m
) + g( qnrm

q∗nr∗m
) +

+ q1r1

q∗1r∗1
g′( q1r1

q∗1r∗1
) − qnr1

q∗nr∗1
g′( qnr1

q∗nr∗1
) − q1rm

q∗1r∗m
g′( q1rm

q∗1r∗m
) + qnrm

q∗nr∗m
g′( qnrm

q∗nr∗m
) = 0

Let us denote x = q1r1

q∗1r∗1
, y = qnr1

q∗nr∗1
, z = q1rm

q∗1r∗m
, and ψ(x) = g(x) + xg′(x). It is obvious that if n and m are

more than 2, then x, y and z are independent and can take any positive values. So, we get the functional

equation:

ψ
(yz
x

)
= ψ(y) + ψ(z) − ψ(x) (78)

Let’s denote C2 = −ψ(1) and ψ1(α) = ψ(α) − ψ(1) and take x = 1. We get then

ψ1(yz) = ψ1(y) + ψ1(z) (79)

the Cauchy functional equation [94]. The solution of this equation in the class of measurable functions is

ψ1(α) = C1 lnα, where C1 is constant. So we get ψ(x) = C1 ln x+C2 and g(x)+xg′(x) = C1 ln x+C2.
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The solution is g(x) = C3

x
+ C1 ln x + C2 − C1; h(x) =

∫
(C3

x
+ C1 ln x + C2 − C1)dx = C3 lnx +

C1x ln x + (C2 − 2C1)x + C4, or, renaming constants, h(x) = C1 ln x + C2x ln x + C3x + C4. In the

expression for h(x) there are two parasite constants C3 and C4 which occurs because the initial equation

was differentiated twice. So, C3 = 0, C4 = 0 and h(x) = C1 ln x + C2x lnx. Because h is convex, we

have C1 ≤ 0 and C2 ≥ 0.

So, any universal additive trace–form Lyapunov function for Markov chains is a convex combination

of the BGS entropy and the Burg entropy.
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