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Entry flow of fiber suspensions in a straight channel 
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Abstract  

The planar channel entry flow of a Newtown fluid containing neutrally buoyant, non- 

Brownian, slender particles is stcdied numerically. In particular, the effects of Reynolds 

number, Re, and a nondimensional suspension parameter, C, on the developin velocity and 

orientation fields are investigaatcd. The governing orientation equations are solved along 
particle paths, whereas the flow kinematics is determined from an Eulerian viewpoint. The 

fourth-order orientation tensor, which characterizes the orientation structure, is obtained 

from the differential orientation evolution equations and also from the Lagrangian descrip- 

tion of the orientation an&s of a number of fictitious fibers in the orientation space. It is 

found that both the second- and fourth-order orientation evolution equations, if used with 

quadratic closure approximations, inaccurately predict an earlier alignment of fibers in the 

flow direction. Furthermore, for higher values of suspension parameter C, convergent results 

are not obtained by using such evolution equations. On the other hand, the results obtained 

by following a number of orientation angles indicate that the entry length increases linearly 

with C, and the effect of Reynolds number on the entry length becomes negligible for high 

C values. 

KeyworAF: Entry flow; Fiber suspensions; Straight channel; Suspension parameter 

1. Intrdnetlon 

The laminar entry tIow of both Newtonian and non-Newtonian fluids has 

attracted considerable interest for several decades due to its technological impor- 

tance in numerous applications. Most of the studies for Newtonian fluids are 

performed by using assumptions inherent in the boundary layer theory (see for 

example, Schlichting [I] and Van Dyke [2]), or by using numerical techniques [3,4]. 

0377-0257/95/$09.50 @ 1995 - Elsevier Science B.V. All rights reserved 

SsDIO377-0257(94)01280-6 



184 L. Tang, M.C. Altan 1 J. Non-Newtonian Fluid Mech. 56 (1995) 183-216 

The non-Newtonian entry flows have also been studied extensively where the 
power-law [5,6], Bingham plastic [ 71, or viscoelastic [8,9] flow models are used. More 
recently, entry flows of Newtonian, inelastic non-Newtonian, and viscoelastic flows 
through a sudden contraction have been reviewed in detail by Boger [lo]. 

In recent years, with the increase in composition materials usage, interest in the 
rheology and processing of fiber suspensions has increased significantly. Hence, com- 
plex flows of dilute and semi-dilute fiber suspensions have been studied numerically 
for a few flow configurations using the constitutive equations developed in the last 
three decades. Initially, Evans [ 1 l] worked on the flow of fiber suspensions through 

a number of simple geometries, including the start-up channel ilow. Approximately 
a decade later, the isothermal extrusion of a fiber suspension in a Newtonian medium 
was analyzed by Papanastasiou and Alexandrou [ 121 by using a constitutive model 
proposed for semi-dilute suspensions [ 131. Lipscomb et al. [ 141 performed finite 
element simulations for the flow of suspensions through an axisymmetric contraction 

by using a constitutive equation similar to those developed by Batchelor [ 151, Evans 
[ 161, Hinch and Lea1 [ 17,181, and Ericksen [ 191. Following Lipscomb et al., Chiba 
et al. [20] extended the results of axisymmetric contraction flow to nonzero Reynolds 
numbers by a finite difference scheme. In addition, Rosenberg et al. [21], aud 
Phan-Thien and Graham [22] presented numerical simulations for the falling ball 
rheometry of fiber suspensions. Altan et al. [23] studied the interaction between the 
fluid kinematics and the orientation field resulting from the introduction of randomly 
oriented fibers in a fully developed channel flow. Comer and sink flows of a suspension 
of rigid rods have also been investigated by Keiller and coworkers [24-261. 

Most of the constitutive models used in recent numerical simulations of complex 
suspension flows utilize similar expressions to describe the extra stresses due to the 
presence of particles. In essence, the suspension microstructure is characterized by 
a fourth-order tensor which is defined as the fourth-order moments of an orientation 
distribution function. Then, depending on the particle aspect ratio and concentration 
regime, the fourth- and sometimes the second-order orientation tensors are employed 
to relate the strain rate to stress tensor. For a nonhomogeneous steady suspension 

flow where the velocity gradients are spatially nonuniform, the conformation of nricro- 
structure and the flow kinematics are usually specified from an Eulerian view-point. 
However, the orientation conformation at a point depends on the fluid defomlation 
history. Therefore, one needs to develop computationally efficient and accurate 
methods to determine the orientation conformation, and a Lagrangian approach may 
be appropriate for the deformation dependent microstructure evolution. 

In this paper, we present the numerical results ,>f the flow and orientation fields 
in a channel entry flow containing slender, non-Brownian fibers. We also investigate 
the accuracy and efficiency of commonly used methods for solving the orientation 
field. In particular, the following three different solution techniques are use;l to 
determine the orientation field. 

( 1) The orientation evolution equation for the second-order orientation tensor with 
a fourth-order quadratic closure approximation is solved along the particle path for 
each grid point. 

(2) The orientation evolution equation for the fourth-order orientation tensor with 
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a sixth-order quadratic closure approximation is solved along the particle path for 
each grid point. 

(3) Orientation angles for a number,of trace fibers are solved analytically along 
the particle path for each grid point, iilus forming an orientation state which is 
subsequently described by a fourth-order orientation tensor. 

The last method proved to be the most accurate efliciens one to be used in complex 
suspension flows. In addition, the development of flow and orientation fields. the effect 
of Reynolds number, the entry length, and the pressure drop are investigated, and the 
results are presented as a function of the nondimensional suspension parameter‘c. 

2. Constitutive models 

Several constitutive models have been proposed to describe the bulk stress tensor 
for suspensions of neutrally buoyant ellipsoidal particles in a Newtonian fluid. The 
constitutive equations for such systems, either obtained by invoking continuum 
mechanics principles [ 191 or by using microstructural information [ 15,17,18], have 
the same form despite different starting points. In gene& the total viscous stress 
tensor for the suspension, rii, is taken to be the sum of the stress contributions from 
the Newton& suspending fluid, r$, and from the ellipsoidal particles, TF. Hence, the 
resulting constitutive equations for the suspension of rigid, non-Browman ellipsoids 
of revolutions can be expressed as 

‘L@ = T; + r;, 

7< = /l(UQ + Uji), (1) 

r !j = PA (AS+IG + BIS, (+ + +c) + (uik + uki)S~~l + C(uu + up) ), 

where pis the viscosity of the suspending fluid, #“is the volume fraction of the suspended 
particles, uii is the velocity gradient tensor, S, and S,,, are the second- and fourth-order 
moments ofthe orientation distribution function, and A, B, Care the material constants 
specified by the particle aspect ratio. Most constitutivemodels for dilute and semi-dilute 
suspensions differ from each other based on how the material coefficients A, B, and 
C are defined. Recently, the explicit expressions for A, B, and C suggested by different 
constitutive models have been discussed and briefly reviewed by Lipscomb et al. [ 141, 
Altan [ 271, Tucker [233, and Phan-Thien and Graham [ 221. As shown in these studies, 
the form of the material coefficients simplifies significantly for particles with very smali 
or very large aspect ratios, such as for thin disks and for slender bodies, respectively. 
For slender bodies, it can be shown that C z B << A; therefore, for dilute suspensions, 
the viscous stress tensor due to particles, ~8, simplifies to 

r$ = &AS~,u,,, (2) 

where up is the aspect ratio of the fiber. As an zliternative, a similar but somewhat 
less accurate asymptotic value for A can be expressed as [ 141 

2 

A=a, 

In 4 

(4) 
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In semi-dilute suspensions, the average fiber spacing may change between fiber 
length and diameter, and therefore, a hydrodynamic interaction between the 
particles exists. For such material systems, an expression similar to Eq. (2) was 
proposed by Dinh and Armstrong [ 131 as 

where n is the fiber number density, 1 and dare the length and diametur of the fiber, 
and h is defined to be the average fiber spacing as 

h = 

I 

(nlj-‘I2 for aligned orientations, 

(nP) -I  for random orientations. 
(6) 

In fact, the average fiber spacing h can be considered to be dependent on the 
orientation state which changes between the minimum and maximum values 
corresponding to the randomly oriented and fully aligned fibers, respectively. 
Recently, Shaqfeh and Fredrickson [29] provided higher order corrections for the 
coefficient A in both dilute and semi-concentrated suspensions. They also suggested 
the use of h = (nl) -‘P in Eq. (5) as the first-order approximation regardless of the 
orientation state. Experimental data towards verification of Eqs. (2) and (5) are 
rather limited; however, the available experimental studies [14,30,31] suggest that 
both equations, despite their inherent limitations, are capable of predicting a 
number of important rheological features observed in both dilute and semi-dilute 
fiber suspensions. In this paper, following Eqs. (2) and (S), the constitutive 
equation for suspensions containing slender fibers is taken as 

r$’ = @ sijklukl (7) 

where we choose to define C as a nondimensional suspension parameter which 
includes the combined effects of volume fraction and fiber aspect ratio. For 
example, the variation of C as a function I):: fiber aspect ratio and volume fraction 
based on dilute suspension models is shown in Fig. 1 (see a similar figure in Ref. 
[28]). Obviously, the value oi C increases considerably for very high aspect ratio 
fibers even at low volume fractions. 

3. Theery and governing equations 

3.1. Equations fir flow kiltematics 

The governing momentum equations of a two-dimensional, steady, incompress- 
ible flow are expressed in rectangular coordinates as 

(9) 
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Fig. 1. Variation of nondimensional suspension parameter C in different concentration regiov~ 

where p is the density of the fluid, u is the velocity component along the x axis, 1) 
is the velocity component along the y axis, p is the hydrostatic pressure, anct ‘ii are 
the viscous stress tensor components given in Eq. ( I). After introducing Eq. (7) for 
75 into the Eqs. (8) and (9) and subtracting Eq. (9) from Eq. (8), the gcveming 
momentum equation for fiber suspensions can be explicitly written as 
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The geometry and the relevant parameters for the planar channel entry flow are 

shown in Fig. 2. For such flow problems, it is customary to nondimensionalize the 

equations by using the half-channel width H as the characteristic length and the 

uniform inlet velocity U as the characteristic velocity. Hence, the nondimensional 

parameters are expressed as 

2=X. U 

H' 
y=u. 

H’ 
li=,; +v 

u’ 

In addition, the stream funcrion Y is defined by 

aY a\y 
u=T-: U=-ax’ (12) 

0 

(11) 

and nondimensionalized 

+$. 

After introducing the nondimensional parameters given in Eqs. ( 11) and ( 13), 

to be 

(13) 

and dropping the bars from nondimensional parameters, Eq. (10) can be written in 

terms of the stream function as 

$+$$+2& 

=C 
{ 
&KSIIII - 2& 122 + S2222)R + PI, 12 - S22,KQ - 01 

+(g&)KS 1112 -&222M + &,22(Q --PI1 
I 
3 

Wall 
. 

+ U=l.O 

Enay 1L Downstream 

-Y 

X 
+ 

Centerline 

Fig, 2. Planar channel geometry and iiow parameters. 
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It should be noted that the Reynolds number, given in Eq. (15), is defined 

based on the channel length scale and the macroscopic inlet velocity U. In this 

study, the Reynolds number range is taken to be O-50 to represent practical 

processing conditions for fiber suspensions. However, for small particles sus- 

pended in the channel, the particle Reynolds number may still be considered as 

much less than one. Therefore, Stokes flow governs the particle rotation, and 

consequently, Jeffery’s expressions [32] can be utilized to describe the rotation of 

each particle (a detailed discussion on different scales and Reynolds numbers 

involved in such multi-scale systems is provided by Batchelor [ 151). 

Since the channel is symmetric about the centerline, the flow domain is taken to 

be only half the channel as shown in Fig. 2. Then the boundary condition to the 

centerline can be expressed as 

av 

ay=O; Y =o. (16) 

On the channel wall, a no-slip bcindary condition is imposed on the velocity field: 

iw 
av=O; Y= I. 

At the inlet, a uniform ve1ocir.y profile is specified as 

a* 
Y=y; s=o. 

(17) 

(18) 

At the exit, a fully developed velocity pro& is expected if the channel is long 

enough. Hence, the boundary conditions become: 

ay 
s =o; 

a*Y o 

mj= - (1% 

3.2. Equations for orientation field 

In order to characterize the flow behavior of suspensions, Eq. (14) needs to be 

solved in conjunction with the equations describing the evolution of orientation 

structure. Towards this end, the components of the S,,, tensor need to be deter- 

mined at each grid point throughout the flow domain. Although a number of 

different methods exist to evaluate S,,, components, satisfactory accuracy often 

requires significant computational effort. 

In most of the constitutive models of fiber suspensions, the evolution of orienta- 

tion field is usually based on the rotation of a single, inertialess ellipsoidal particle 
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moving affinely with the bulk fluid. The expression for the rotation of such a 
particle is obt&cd by Jeffery [32], and can be expressed as 

(20) 

(21) 

(22) 

where bi is the time rate of change of the unit orientation vector coinciding with the 
particle’s axis of revolution, and Q, and D,, represent the vorticity and strain rate 
tensors, respectively. The parameter 1 is a function of particle aspect ratio, up. as 

I 
a2 - I 

=-I!-- 

a;+1- 
(23) 

However, instead of a single orientation vector, one may choose to utilize an 
orientation distribution function, $(@,t), to characterize the orientation field. For 
non-Brownian, rigid fibers, the governing equation for the orientation distribution 
function is a form of the Fokker-Pianck equation and can be written as 

(24) 

where $i is expressed by Eq. (20). Although the definition of the second- and the 
fourth-order orientation tensors is based on the orientation distribution function as 

So = (PiPi > = 
s 

Pip&P) dP’, (25) 

s,k , = ti,P,P&) = 
I 

P,P,Pti#@) dd, (26) 

the direct use of Eqs. (25) and (26) is not convenient for complex flows due to the 
difficulties associated with the accurate numerical solution of Eq. (24) throughout 
the flow clornain. Therefore, from Eqs. (25) and (26) alternative orientation 
evolution equations can be obtained [33-371. The final expressions are usually in 
the diffetenbal form in which integration over the orientation distribution function 
is avoided. Using Eqs. (25) and (20). the evolution of the second-order orientation 
tensor can be expressed as 

d% 
dP - (% + &G,j + (n, + mj,)%, - 2~&%,t+ (27) 

Similarly, from Eqs. (26) and (20), the expression for the evolution of the 
fourth-onjer tensor is obtained as 

d&j,, 
- = (Qm + nDi”,)sm,k, f (Qjm + ~ Djm)smlk/  

dt 
+ (sr,, + ~Dkm)%,g, + I% + %n)%jk - 4~&k,rr (28) 
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Eqs. (27 and 28) can be separately used depending on the desired level of 

orientation description. Eq. (28) is potentially more accurate, and its solution 

contains the second-order tensor components. However, compared to Eq. (27), 

solving Eq. (28) would require more computational power. Obviously, both equa- 

tions contain the unknown higher order orientation tensors which need to be 

approximated by lower order tensorial components. For homogenous flows where 

the velocity gradient tensor is spatially uniform, the accuracy and usefulness of 

various closure approximations have been investigated by many researchers [36- 

40]. Generally, using such closure approximations,can introduce considerable error 

and, as in the case of linear [33,36] and some hybrid [35,373 closure approxima- 

tions, may lead to unstable orientation predictions. Similar studies on the accuracy 

of closure approximations are not available for the complex flows of suspensions, 

where the encountered problems of numerical stability and convergence [ 14,29- 

23,411 may potentially be due to surh approximations. Nevcrthclcss, both Eqs. (27) 

and (28) have been extensively used in complex suspension flows. In particular, 

quadratic closure approximation has the simplest form and is used most of?en 

[20,21,23,41]. For the fourth- and sixth-order orientation tensors, quadratic closure 

approximations are given as 

Eqs. (27) and (28), when used with Eqs. (29) and (30), perform reasonably well 

for the aligned orientation states and predict correct preferred orientation angle 

values for both finite and infinite aspect ratio fibers [40]. On the other hand, for 

random or partial particle alignments, the results for individual tensorial compo- 

nents contain significant errors. Such inaccuracies become particularly crucial in the 

numerical simulation o: complex suspension tfows where accurate prediction of 

each S,,, component is needed regardless of the orientation state and tlow kinemat- 

ics. It should also be emphasized that, the use of Eqs. (29) and (27) together with 

Eq. ( 14) to obtain the coupled flow and orientation fields involves using the same 

closure approximation twice. This approach, although the simplest, does not 

conserve the required tensorial symmetry for the cot~titutive models and may lead 

to inconsistent and erroneous results as shown in Ref. [40]. In a recent article by 

Szeri and Lea1 [42], the shortcomings of using closure approximations arc also 

disr:ustid where nonphysical orientation behaviour is observed due to such approx- 

imations. Therefore, a more accurate and efficient method to evaluate and describe 

the orientation state in suspensions needs to be developed. In the next section, we 

present an altemativg: technique to describe the orientation field. The technique 

presented shows that the construction of the orientation distribution function and 

the subsequent calculation of orientation tensors can be achieved with satisfactory 

accuracy from the rotational characteristics of relatively few fibers. The technique 

presented here is very similar to the one proposed by Szeri and Lea1 [42,43J. In Ref. 

[42], a theoretical foundation of the so-called double Lagrangian method is 

developed for two- and three-dimensional orientation fields with Brownian effects. 
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In a subsequent paper [43], this method was applied to one-dimensional, time 

dependent pressure driven flow between parallel plates. 

3.3. Construction of orientation distribution function 

The expression governing the rotation of a single ellipsoidal particle can be used 

as the basis of constructing the orientation distribution function. An adequate 

number of orientation angles can be followed in the orientation space, thus forming 

a Lagrangian approach to orientation evolution. The conformation of these orien- 

tation angles can be used to construct the distribution function or its moments with 

considerable efficiency. 

For an arbitrary homogeneous flow, the solution of Eq. (20) with the initial 

condition for the orientation vector y, =py can be shown to be 

pi = TE,,,Evp.;p’pp,,) 1/2 ’ 
where Ey are the components of a particle’roidion tensor, defined by 

(31) 

Eq. (3 1) provides the analytical solution of the rotation of the orientation vector, 

and is valid for both two- and three-dimensional flows and orientation fields, For 

infinite aspect ratio fibers (i.e., slender fibers) 1 = 1, and Eq. (32) reduces to 

where xi and xj” are the fluid particle coordinates at times t and to (t” < t), respectively. 

Hence, for i = 1, Eii is defined as the strain tensor for the undisturbed flow. 

In order to determine the particle rotation tensor components in terms of velocity 

gradients for planar orientations, two sets of differential equations, given by Eq. (32) 

need to be solved with the initial condition E = I (unit tensor) [44]. Each set contains 

two coupled ordinary differential equations and can be solved independently. After 

obtaining analytical solutions of Eq. (32), the orientation vector components can be 

easily calculated for any initial fiber orientation by using Eq. (3 1). In order to describe 

a theologically meaningful orientation state, the same equations can be used for 

numerous fictitious fibers with each one starting from a different initial orientation. 

Then, at any given time, the orientation conformation of these fibers can be utilized 

to generate the orientation distribution function. 

In order to construct the orientation distribution function, one can select uon- 

uniform angular intervals which are based on the angular spacing between two neigh- 

boring fibers. The orientation angles of N fibers will specify N different intervals 

defined within the orientation space. First, consider the orientation angles of N 

fibers which are given as b,,. .., 9i_l, di, di+, ,..., &, where OS&< .‘. < 

+i-I<44c41+I< “ . 
< t # ~ ~  < IC. Accordingly, the angular intervals are expressed as 

Wi=4i+i -k i=l...N-1, 

A+i=a-$,+4, i = N. (34) 
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Then, the value of the orientation distribution function for the angular interval A+i 

can be taken to be inversely proportional to that interval as 

1 
*iK1_loi. (35) 

Considering that the distribution function for planar orientations satisfies the 

normalization condition as 

‘n 

J $(d) d4 = 1. o (36) 

the proper scaling of distributioii function values can be performed on Eq. (39, 

(37) 

Obviously, in Eq. (37), each fiber provides a datum point for the construction of 

the distribution function, and since the data points are mostly at regions with 

smaller angular intervals (i.e., around the preferred orientation where the curve is 

steeper), the accurate and efficient construction of the distrubution function is 

automatically achieved. The efficietlcy and accuracy of implementing such adaptive 

methods to evaluate the distrubution function and its moments for non-Brownian 

suspensions is also emphasized in Ref. [43]. 

Fig. 3(a) shows the exact and constructed orientation distribution function m 

simple shear flow for two total shear values (i.e., y = 2, and 5). The fiber aspect 

ratio is taken to be 10 and the exact solution is calculated from [38,44] 

where AU is the inverse of the particle rotation tensor Eii. Initially the fibers are 

taken to be randomly oriented and orientation angles of 45 fibers, which are 

evaluated from Eqs. (32) and (3 I), are used to generate the orientation distribution 

function. Hence, the 45 markers shown in Fig. 3(a) correspond to $i values defined 

at the midpoint of each angular interval A&. For a total shear of 5, the constructed 

orientation distribution %cction is practically indentical with the exact solution 

except near the peak point. For a total shear of 2, excellent agreement is observed 

with the exact values throughout the domain. As shown in Fig. 3(a), the markers 

representing tJi are concentrated around the preferred direction which automatically 

provides an efficient description. 

Fig. 3(b) shows the exact and constructed distribution functions for planar 

elongational flow. Again, the fiber aspect ratio is taken as IO, and starting from 

random orientation, orientation angles of 45 fibers are used to construct the 

distribution function. For two different total elongation values (i.e., ??= 0.5 and 

1.5) shown in Fig. 3(b), excellent agreement is obtained with the exact solution. 

It is also found that following fewer fibers does not significantly decrease the 

accuracy of the constructed orientation distribution function. In fact, only ig fibers 

are satisfactorily used to determine both the second- and fourth-order orientation 

tensor components. 
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Fig. 3(a). orientation angle 

3.4. Evaluation of orientation tenosrs 

After the orientation distribution function is determined, the calculation of 
orientation tensors can be easily performed from their definitions in Eqs. (25) and 
(26). Taking $I as the weighting function, the integration becomes a finite summa- 
tion that can be calculated numerically. For N fibers, N + 1 integrals can be 
evaluated for each one of the S, components, 

S, = 
I 

‘P~P~JI(O) d+ 
0 

1 

‘01 

= 
PiPjHd) d$ + . . + 

0 s s 

(3% 
@“nr 

’ PiPjdd4) db, + . . * + 

on, - I 

ON PiPjti(+) d4- 

Similarly, for the S,,, components, the integrals become 



L. Tang, M.C. Alton 1 J. Non-Newtonian Fluid Mech. 56 (1995) 183-216 195 

8.0 

c 
7.0 

.s 
g 6.0 

2 

5 5.a 
‘S 

2 
._ 2 4.0 

.g 

s 3.0 

._ 

tj 
E 2.0 

.P 

b 
1 .o 

0.0 

total elongotion=l.5 

-10 4 . 

-90 -60 -30 0 30 60 90 

Fig. 3(b). orie ntdion a ng le  

Pig. 3(a). Orientation distribution function for simple shear flow constructed from the orientation angles 

of 45 fibers: up = 10; total shear, 2.5. (b) Oreiqtation distribution function for planar elongational Row 

constructed from the orientation angles of 45 fibers: CI,, = IO: total elongation, O&IS. 

Among several techniques, the individual integrals are efficiently calculated by the 

trapezoid rule. Higher order numerical integration schemes can also be imple- 

mented; however, increased computational time and limited improvement in the 

accuracy do not warrant their use in this context. 

s 

4,” 
~~,, _ PS#(~) d4 = f{[PiPjti(~)L + biPjN4~lm - 1>(4m - +m- I 1, (41) 

I 

s 

b”, 
mywrW4 d4 = fU~,m~r~C4)lm + [P,P~PA.P,W)I,,, - I Hbm - A, - I )- 

hn-1 

(42) 

It should be noted that to evaluate Eqs. (39) and (40), the distribution function 

value at C#J = 0 needs to be known. This can be obtained by considering the 

distribution function values of two points, $, and tiN, and utilizing a linear fit that 

would yield IL(O). 
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I( 
hi i\ II, : ,: r 1 11:. _ 

Before implementing this method in complex flows, a cornpara&e study is 

performed for simple shear and planar elongational flows to investigat; $he accu- 

racy and the efficiency of this method. Comparisons are performed with t:>e exact 

solutions’ ano with the results obtained from both orientation evolution eq;l:‘,ri 

expressed by Eqs. (27) and (29) (i.e., denoted by S,), and by Eqs. (28) and i 

r+; 

Oy 
(i.e., denoted by S,,,). 1, 

Simple shear fIow 

It is well known that the rotation of finite aspect ratio fibers in simple shear flow 

is periodic. As a corollary to this, the orientation structure, described by S,,, 

components, is also periodic. This is observed in Figs. 4(a) and 4(b) that show the 

predictions for Si, , , and S1122 for a fiber aspect ratio of 10. The orientation angles 

of 18 fibers are used to determine the tensor components a process which is 

’ Exact solutions for the planar orientation tensors in arbitary homogeneous flows are given in Ref. 

[40]. Simplified expressions used in this paper for simple shear and planar elongational flows are given 

in the Appendix. 
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Fig. 4(a). Fourth-order tensor components S, , , , as a function of total shear: up = 10. (b) Fourth-order 

tensor component S, I*2 as a function of total shear: up = 10. 

computationally much faster than solvine evolution equations. The results obtained 

by following only 18 angles are in excellent agreement with the exact solutions. It 

is observed that all the details and the periodicity of the orientation structure are 

captured with this method. Since the results are extremely close to the exact values, 

markers are used in Figs. 4(a) and 4(b) for clarity. However, the results from both 

evolution equations contain significant inaccuracies. It should be noted that the 

implementation of the fourth-order quadratic closure approximation cannot be 

uniquely defined in Fig. 4(b). Specifically, since S, ,22 = Slzlz, two different 

quadratic approximations can be written as 

f&122 = &IS223 

s1122 = s12s12. 
(43) 

Therefore, the results obtained from both of these approximations are presented for 

S 1122. 

A similar level of accuracy is obtained for infinite aspect ratio fibers. For this 

case, the orientation structure is not periodic and fibers attain a steady perfect 
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alignment along the flow direction The steady orientation state is correctly pre- 

dicted by both evolution equations; however, at low total shear values, where the 

fibers are moderately aligned, significant discrepancies with the exact solutions are 

observed. 

Such comparisons are also performed for the other nonzero components of the 

fourth-order tensor (i.e., S, , ,?, S,222, and S,,,, ) where following 18 orientation 

angles yields much better results compared to evolution equations. The stability of 

predictions is also tested at high deformations for both finite and infinite aspect 

ratio fibers. For all the values of total shear, the errors generated by following 18 

or more fibers are found to be less than l%, whereas the errors from evolution 

equations are observed to be as much as 300%. 

Planar elongat~ooii jlow 

Similar to shear flow predictions, the orientation angles of 18 fibers are used to 

determine all nonzero S,,, components (i.e., S,, ,, , S, ,22r and SZZZ2). In planar 

elongational flow, the orientation structure is not periodic, and the fibers align 

quickly in the flow direction regardless of the aspect ratio. Fig. 5 shows the 

1.1 I---.--.‘...... .. ., I.~.~.~~.-.~-... . . . . . . . . . . . . . . 

’ I 

_ 0.7 I ’ =I/ i/ 

~0.5 ,I 

- analytic solution 
---- Sij 
-_- Sijkl 

0 18 fibers 
, 

total elongation 

Fig. 5. Fourth-order tensor component S,, , , as a function of total elongation: a, = 10. 
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predictions of S, !, , for a fiber aspect ratio of 10. As exemplified by Fig. 5, the 

proposed method depicts excellent agreement with the exact results for all S,,, 

components. On the other hand, for all three nonzero S,,, components, both 

evolution equations yield inaccurate results for moderately aligned fibers. Further- 

more, S, , 22 is erroneously predicted to be zero when the quadratic closure approx- 

imation is used as S,,zZ = S,&. 

Stability of predictions is also tested at high deformations for both finite and 

infinite aspect ratio fibers. At high total elongations, accurate and stable results are 

obtained from both evolution equations and from the new technique using discrete 

fibers. If orientation angles of 18 or more fibers are used, the error is always less than 

1%. However, at low elongation values, the evolution equations are in error by as 

much as 30%. 

The method described in this section can be easily utilized in the numerical 

simulation of complex suspension flows, and as demonstrated in Figs. 3-5, performs 

much better than differential evolution equations in predicting S,,, components. As 

opposed to closure approximations, there is no inherent approximation involved in 

its development, and its numerical implementation is rather straightforward. In 

addition, inaccuracies involved are numerical in nature and may become significant 

only when an inadequate number of data points is selected (i.e., fibers followed in 

the orientation space) to form an orientation structure. We believe that this method 

can also be applied to recirculating flows. The complex orientation patterns of rigid 

particles in two- and three-dimensional recirculating flows was analyzed in detail by 

Szeri [45]. In accordance with the available theory, the orientation structure can be 

determined throughout the circulation regions and later utilized in the numerical 

solution of complex suspension flows in an Eulerian reference frame. 

4. Steady velocity profile in a channel 

Before attempting to solve the governing flow and orientation numerically, it 

is of importance to investigate the steady velocity profile. The enhancement of the 

shear viscosity due to the presence and the tumbling of the fibers needs to be 

throughly understood. It is well known that fibers with infinite aspect ratio reach 

a perfect alignment with the flow in the channel downstream. At this infinite- 

aspect-ratio limit, the fiber tumbling ceases and a stable parabolic profile develops 

provided that the fibers are uniformly dispersed. However, at higher fiber con- 

centrations, particle diffusion across the streamlines exists which leads to a nonuni- 

form particle concentration across the channel. Such concentration variations, 

naturally generate a nonparabolic profile which is often observed to be similar to a 

plug flow. 

The steady flow behavior of finite-aspect-ratio fibers can be analyzed by simplify- 

ing the governing momentum equation as 

dp 
* 

dx=‘ddy 
(1 +cs,,22)$ 1 . (44) 
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Eq. (44) cannot be readily solved without analyzing the behavior of S, ,22. The 

value of S,,,, is periodic and can be determined as a function of the aspect ratio 

and the total shear y a particle has experienced. Consequently, the variation of S, ,22 

with respect to the y coordinate is dictated by the variation of total shear across the 

channel width. One can show that as x goes to infinity, the difference in tota! shear 

experienced by two neighboring points on they axis also goes to infinity. Therefore, 

in the downstream channel, the average value of S1,22 can be used across the 

channel. For planar orientation, the average value of S,,22 can be calculated as 

&*=L :‘f s YT II 

S, ID(Y) dr = --!L-- 
2( i +up)2’ 

where yr is the period of S,,2z and is given as 

u2 + 1 
YT = L x. 

aP 

(45) 

(46) 

After using Eq. (45) in Eq. (44), the fully developed profile can be expressed as 

1 

U(Y)=~{1+C[a,/2(1+ar,)2/}2dx 
~-_S!(y”_ 1). (47) 

Hence, Eq. (47) represents a parabolic fully developed profile with an effective 

viscosity ,Q* dependent on the aspect ratio and C values as 

P*=P(l +cs,,21j =p 1 +c 
[ 

up 1 2(1+ap)2 . (48) 

As shown in Eq. (48) the enhancement of the shear viscosity due to the tumbling 

of the fibers is accounted for by the term a,/2( 1 + a,)‘, and if C is kept constant, 

the increase in aspect ratio would lower the effective viscosity due to less frequent 

tumbling. However, as Eqs. (2) -( 6) illustrate, C is a nondimensional parameter 

that depends on the fiber volume fraction and the aspect ratio, and if the fiber 

aspect ratio is increased, one needs to decrease the volume fraction to keep C 

constant. In the dilute concentration regime, if Eqs. (2) and (4) are used slender 

fibers, the effective viscosity p* can be expressed as 

p*=c1 1+4, 
[ 

4 
2( 1 + ap)2 In up 1 . (49) 

Hence, if the fiber volume fraction is kept constant in dilute suspensions (i.e., 

4,, < l/at), effective viscosity is increased by increasing the fiber asrlect ratio. 

5. Numerical technique 

5. I. Stream function 

The governing momentum equation (14) is discretized by a standard second- 

order accurate, conservative finite difference formulation. The grid generated 
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throughout the channel is concentrated toward the channel entry by using an 

exponential coordinatetransformation alongxgiven asx* = x’. Aftertryingr = I- 1.6, 

efficient and accurate solutions are obtained using r = ? .5 for all the numerical results 

presented in this study. The Gauss-Seidel explicit iteration technique with a relative 

convergence criterion, ct = 1 x 10e6 is utilized to determine the stream function values 

at the interior nodal points. The imaginary nodal points outside the flow domain are 

updated using the sclution dependent boundary conditions after completing each 

iteration throughout the inner nodes. A number of different meshes with 21 x 11, 

31 x 16,41 x 21,Sl x 31,anddl x 31gridpointsareutilimd,andthemeshwith41 x 2X 

grid points is found to yield accurate results with reasonable computational effort. 

In addition, since the emry length depends on the suspension parameter C, and the 

Reynolds number Re, at least three runs with different channel lengths are performed 

to ensure a fully developed condition is achieved before imposing such conditions 

downstream. Hence, the channel aspect ratio used in the numerical solution is increased 

from 8 to 240 as the C and Re values are increased. 

5.2. Orientation field 

In order to solve Eq. i i&j, tive components of the S,,, tensor need to be known. 

Since the trace of the second-order tensor S, is unity, only four of the SW, 

components are independent. As discussed earlier, using a number of orientation 

angles to construct S,,, values yields much superior results compared to using 

second- or fourth-order evolution equations. The behaviour of these three methods 

is also studied in the channel entry flow in addition to comparisons for simple shear 

and planar elongational flows provided before. 

In all these difftirent solution methods for the orientation field, the Q, values at 

each grid point are determined by a Lagrangian approach in the flow domain. In 

other words, the orientation equations are solved along particle pathline. In order 

to improve accuracy, the pathlines terminating at each grid point are constructed. 

Then, starting from the inlet, the orientation evolution along that particular pathline 

is determined by using local velocity gradients. This tracing method is particularly 

suitable for deformation dependent constitutive models and is implemented for all 

three solution methods for the orientation field. The tracing method is also employed 

for the centerline (i.e., symmetry axis) as described above. The acceleration of the 

fluid on the centerline leads to a preferred orientation along the flow direction with 

a high degree of alignment. Although the specification of orientation field on the 

channel wall is not needed to determine the orientation evolution throughout the 

channel, the numerical solution of stream function requires some orientation 

information on the wall. To alleviate this problem, a perfect alignment given as 

S - 1; IIII - St I12 = s, 122 = s,zzz = s,,,, = 0, 

is specified at the grid points on the channel wall. At the channel entry, together with 

the uniform velocity profile, fibers are specified to be randomly oriented. Using Sti 

components, the random inlet condition can be written as 

s,, = 0.5; S,, = 0.5; s,2 = 0. (51) 
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Similarly, for Siik,, 

S -S 1 I I I - 2222 = 29 

s ’ 1122 =sr (52) 

S Iliz- 1222=0. -S 

Random orientation is also represented by using uniform angular intervals for 

fictitious fibers. For example, at the channel inlet, the angular interval between 45 

randomly oriented fictitious fibers is specified to be 180”/45. 

5.3. Solution algorithm 

The coupled solution of the velocity and orientation fields is achieved by an 

iteration scheme between the stream function and the orientation structure. Based 

on the change in stream function values after each iteration, the solution algorithm 

adopts a second relative convergence criterion, c,. The numerical algorithm can be 

briefly summarized as follows. 

(1) Initially, the stream function is solved from Eq. i 14) for the zero-volume-frac- 

tion limit to start the iterations. The velocity field is that of a Newtonian fluid. 

(2) The orientation structure, specified by S,,, components, is evaluated at each 

grid point by tracing the particles along their pathlines. 

(3) Utilizing the required suspension parameter C, the stream function is solved 

with the orientation structure determined in step 2. 

(4) The stream function values obtained in step 3 are compared with the values 

obtained before. If the convergence criterion c, is satisfied, then the final stream 

function and the orientation structure are obtained. 0rherwise, step 2 is repeated and 

a new orientation structure is calculated, thus continuing the literation. 

Compared to criterion c, used in the Gauss-Seidel iterations, a higher value for 

c, needs to be used. Therefore, the value of c2 is selected to be 1 x 10m4. The number 

of iterations necessary between the flow and the orientation field increased steadily 

as the C value is increased, and for most cases, the final converged solution is 

obtained after 5-45 iterations. 

6. Results 

6.1. Comparisons of orientation solution techniques 

The planar channel entry flow of slender, rigid, and neutrally buoyant fibers 

suspended in a Newtonian fluid is studied by using three different techniques to solve 

the orientation field. The main emphasis in this section is to determine the accuracy 

and the stability of these methods in a complex suspension flow where the presence 

of particles significantly affects the flow kinematics. In order to compare the three 

different solution methods, the results are presented for C = 30 and Re = 50 among 

a number of computer runs performed for various C and Re values. 

Fig. 6(a) shows the velocity profile at half-channel-width downstream (i.e., x = 1). 

The solid line represents the profile obtained by following 90 orientation angles (i.e., 

denoted by 90 fibers), whereas the dashed lines show the results obtained 
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from the differential evolution equations for the second- and the fourth-order 

orientation tensors with quadratic closure approximations (i.e., denoted by S, and 

S+,, respectively). As Fig. 6(a) indicates, all the three methods predict qualitatively 

similar profiles across the channel at x = 1. However, some discrepancies are observed 

in Fig. 6(a); in particular, starting from thecenterline, 5-- lS%variations in the velocity 

profiles exist across the channel width. Although these variations seem to be minimal 

in the velocity profile, St, predictions (i.e., in a sense, the degree of alignment in the 

flow direction) differ 20-35% along the channel length as shown in Fig. 6(b). Fig. 

6(b) depcits S, , values only up to x = 40 since most of the orientation transients take 

place near the entry. After x = 40, a high degree of alignment in the flow direction 

is achieved, and the difference between S,, predictions is reduced to less than S%. 

Overall, both evolution equations are observed to overpredict the degree of alignment. 

As a result, the evohtion equations for the second- and the fourth-order tensors 

inaccurately predict a atuch faster development of the flow and the orientation fields. 

Fig. a(c) depicts the S, , values obtained from three different mesh sixes. It is clearly 

observed that the St, results are not mesh dependent and that, as stated in Section 

5.1, a mesh with 41 x 21 grid points provides adequate accuracy. Mesh dependence 

of the other components of the orientaticn tensors and the velocity field 

throughout the flow domain is also found to be similar to that of S,, . 
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It should be noted that for C values higher than 30, converged solutions are not 
obtained from both evolution equations for the second- and the fourth-order 
tensors. The iterations between the stream function and the orientation field do not 
satisfy the relative convergence criterion c,, and the maximum error does not 

asymptotically approach a r Gnimum value. Such numerical stability problems for 
higher C values are also encountered by a number of previous studies which (a) 
utilized the evolution equations for the second- and the fourth-order tensors 
[21-23,411, or (b) used a more simplistic approach by assuming fibers are perfectly 
aligned along the streamlmti [14,20]. However, following the conformation of the 

orientation structure throu:::,h discrete orientation angles does not lead to any 
stability or convergence .~roblems, even at much higher C values. Therefore, one 
may conclude that the aplk,Jximations involved in the calculation of the orientation 
structure may be one of the reasons for the stability problems encountered in 
anisotropic suspension flows. 

In order to determine the number of fibers that need to be traced, a number of 
computer runs are performed by following 18, 36, 45, and 90 fibers, and the 
accuracy obtained from 45 fibers is found Co be adequate for all the cases. The 
improvement in accuracy by using 90 fibers is less than 0.5% in most cases which 
does not justify the increased computational effort. Consequently, in all the other 



L. Tang, M.C. Alran 1 J. Non-Newtonian Fluid Mech. 56 (1995) 183-216 205 

0.9 

0.8 

0.6 

0.5 

0 10 20 30 40 50 60 

Fig. 6(c) X 

Fig. 6(a). Comparison of velocity profiles obtained from differem .o!-!ion techniques: .r = 1; Re = 50; 

C = 30. (b) Comparison of S,, obtained from different solution techniques: j’ = 0.3; Re = SO; C = 30. (c) 

Comparison of S,, obtained from different meshes: y = 0.6; Re = SO; C = 30. 

results provided in this section, 45 orientation angles are utilized to characterize the 

orientation evolution. 

6.2. Velocity und orientution profiles 

The velocity profiles at one channel-width downstream (i.e., x = 2) are shown in 

Figs. 7(a) and 7(b) for C = 0 and 15, respectively. Fig. 7(a) illustrates the 

well-known behavior of a Newtonian fluid at C = 0. For Re = 0, the flow is almost 

fully developed with a parabolic profile at x = 2; whereas for Re = 50, the flow is 

not yet developed, and the concavity of the velocity profile near the midsection of 

the channel is observed. As the C value is increased to 15, the effect of the Reynolds 

number on the flow kinematics diminishes as shown in Fig. 7(b). Hence for higher 

particle concentrations, the development of the velocity profile is retarded, the 

concavity in the profile is lost, and the suspension behaves similarly to a plug flow. 

For C = 30 and 60, these effects are even more pronounced, and the effect of the 

Reynolds number on the velocity profile becomes negligible compared to that of C. 
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Fig. 7(a). Velocity profiles across the channel at x - 2 for C = 0. (b) Velocity profiles across the channel 

at x = 2 for C = 15. 

The effect of the fibers on the flow kinematics at x = 2 can be clearly observed in 
Figs. 8(a) and 8(b) for Re = 0 and 25, respectively. In particular, the C value is 
found to affect the development of the flow significantly for Re = 0 compared to 
Re = 25. For higher C values (i.e., C = 90), Re does not affect the flow ?nd both 
figures yield nearly the same profile. 
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Fig. 8(a). Velocity profiles across the channel at .Y =2 for Re = 0. (b)Velocity profiles across the 

channel at .Y = 2 for Re = 25. 

Fig. 9(a) and 9(b) show the St, values along the channel length for different C 

and Re values. As in the case of velocity profiles, the Reynolds number affects the 

orientation profile significantly at C = 0. S,, increases steadily and appraches 1 

along the channel length. An increase in C or Re retards the orientation develop- 

ment; however, for higher C values, the effect of the Reynolds number on the 
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orientation profile is decreased. Further downstream (i.e., x > 20), the flow and the 

orientation fields approach to a fully developed profile. The rate of the flow and 

orientation development is mainly dependent on the value of C and can be very 

slow for high C values. Eventually, the fow attains a parabolic profile in the case 

of uniformly dispersed slender fiber suspensions. At the same time, the rotational 

speed of the fibers gradually decreases after a few channel-widths downstream 

where almost perfect alignment with the flow is obtained. 

6.3. Fully developed length 

From the numerical solution of suspension flows in a planar channel, it is of 

interest to investigate the length scale at which the flow becomes fully developed. 

The location at which 95% of the fully developed centerline velocity is obtained is 

shown in Fig. 10(a) as a function of C for Re = 0, 25, and 50. In Fig. 10(a), the 

entry length is shown to be almost linearly proportional to the C values for C 2 10. 

For C c 4, the entry length is strongly dependent on the Reynolds number, whereas 

for C > 4, the entry length is mainly dependent on C. For example, for C = 30 and 

Re = 25, the 95% fully developed length is increased by 75% by boudling the C, 

whereas doubling Re only increases the entry length by 6%. Similar observations 
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Fig. 9(a). S,, profiles along the channel at y = 0.3 for C = 0. (b) S,, profiles along the channel at 

y=0.3for c=15. 

can be made based on locations of the 98% fully developed centerline velocity. 

However, the difference between the 95% and 98% fully developed lengths is quite 

significant, and in many cases, more than 100%. For instance, the 95% fully 

developed entry length is 52-58 half-channel widths downstream for C = 60 and 

0 < Re I 50; however the 98% fully developed profiles are reached only after 

1 IS- 124 half-channel widths downstream for the same C and Re values. This slow 

flow development is basically due to the decrease in the rotation rate of the fibers. 

As the alignment of the fibers is increased along the flow, the rotation rate is 

reduced and the maximum orientation angle asymptotically approaches 0”. In this 

study, in order to obtain the locations of the 98% fully developed centerline velocity 

accurately, the channel aspect ratio is selected to be high enough to achieve a profile 

more than 99% fully developed. For C = 90, a channel aspect ratio equal to or 

more than 240 is found to be adequate. 

If the second- and the fourth-order orientation evolution equations are used to 

calculate S,, compenents, the predictions of entry lengths change as shown in Fig. 

IO(b). Since both differential evolution equations with the quadratic closure ap 

proximation lead to faster fiber alignment along the flow, the predicted entry 
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lengths are substantially shorter than the actual numbers. The 95% and 98% fully 

developed lengths are underpredicted by the evolution equations by 30-60% for 

Re = 0. Similar behaviors are also observed for Re = 25 and 50. It should be noted 

that, in Fig. 10(b), C is taken only up to 30 since, as explained before, converged 

solutions are not obtained from evolution equations for higher C values. 

6.4. Pressure drop 

The pressure gradients throughout the channel can be calculated from the 

converged stream function values by using 

(53) 

(54) 
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Fig. lo(a). Entry length for the 95% fully developed centerline velocity. (b) Comparison of the entry 

lengths obtained from different methods for Re = 0. 

where the nondimensional pressure, P, is defined as 

For a dilute suspension of slender fibers, where dV -x I and ap >> 1, the asymptotic 

values of downstream pressure gradients can be written as dP/dx = -3 and 

dPldy = 0. 

In Fig. 11, the pressure drop on the centerline (i.e., dP/dxl,,,,) along the channel 

length is shown for Re = 0. As Fig. 11 indicates, for i?e = 0 and C = 0, the pressure 

drop approaches its steady value much faster compared to C = 30 and 60. In 

addition, for high C values, pressure drop is considerably increased throughout the 

channel. In particular, near the channel inlet, the pressure drop is increased between 
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Fig. 1 I. Variation of the pressure gradient, aP/ax, along the channel at y = 0.0 for Re = 0. 

50 and 300% depending on C. Similar behaviour is also observed for other Re 

values. The pressure drop decreased steadily along the channel, and a final value of 

3 is attained at several half-channel widths downstream. Nevertheless, the steady 

pressure drop is reached much earlier than the complete flow and orientation 

development. 

7. Conclusions 

The influence of Reynolds number, Re, and a nondimensional suspension 

parameter, C, on the planar channel entry flow of slender fiber suspensions is 
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studied numerically. At the inlet, a uniform velocity profile and a random fiber 
orientation distribution are introduced. Near the entrance, large velocity and 
orientation gradients are observed for different values of the suspension parameter 
C and Re. A detailed study of the inlet regions shows that the inlet length increases 
significantly when fibers are added to the flow,. and for high C values, the effect of 
Reynolds number becomes insignificant. In addition, when enough fibers are added, 
the concavity in the velocity profile near the entrance is eliminated. In the 
downstream region, the parabolic velocity profile and almost perfect fiber alignment 
along the flow direction are obtained after a rather long channel entry, depending 
on the values of C and Re. However, the steady pressure drop is achieved before the 
orientation and the flow fields are fully developed. 

The accuracy of differential orientation evolution equations with quadratic 
closure approximations in predicting the flow kinematics and the orientation field is 
also analyzed. Numerically stable and convergent numerical results are not ob- 
tained for C values larger than 30. Moreover, by using orientation evaluation 
equations, the fiber alignment is predicted to be much quicker in channel flows such 
that the channel entry length is calculated to be much shorter than the actual 
length. 

Appendix: Analytical solutions of planar orientation tensors in simple shear and planar 
elongational flows 

For planar orientation states, the integrals given in Eqs. (25) and (26) can be 
analytically evaluated for an arbitrary homogeneous flow. The general analytical 
expressions for the second- and fourth-order tensor components are provided by 
Altan and Tang [40]. In deriving these equations, the analytical expression for the 
orientation distribution function given in Eq. (38) is utilized. 

(1) For simple shear flow, the fourth-order orientation tensor components can 

be expressed as 

S 
4+5d,+2d:+d, 

“” = ?[(d, + ds) I- 212 ’ 

S 
(I + d,)d, 

1112 = - 
2[(d,+d,)+212’ 

S 
d, +2d,d,+d, 

“22=2[(d,+d3)+2]2’ 

S 
(I +d3)d2 

‘222 = -2[(d, + d3) + 212 ’ 

S 
4+d,+5d3+2d; 

2222 = 2[(d, + d3) + 212 ’ 

(AlI 
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where 

+1+& sin’ tit, 

d2 = - Js. sin 26x 

d3 = 1 - & sin’ it, 

(A3 

and, du/dy and t are shear rate and time, respectively. The parameter 1 depends on 

the particle aspect ratio as given in Eq. (23). 

(2) For planar elongation flow, the fourth-order orientation tensor components 

become 

s 
2d: - 3d, + d:, 

“” = 2(d, -d,)* ’ 

s - 0, 1112 - 

s 

d, +d,-2d,d, 
“22 = 2(d, -d,)2 ’ 

s -0, 1222 - 

s 
d, - 3d, + 2d: 

2222 = 2(d, _ d,)2 ’ 

where 

d, = e’“, 

d2 = 0, 

d, = e-=, 

du 
??-&t. I I 

and E is the total elongation. 

(A3) 

(A4) 
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