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Entry Trajectory Tracking Law via Feedback Linearization

Sanjay Bharadwaj,¤ Anil V. Rao,† and Kenneth D. Mease‡
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Asa step toward extending the two-dimensional (longitudinal) entry predictive/trackingguidance scheme used by
the U.S. Space Shuttle Orbiter to three dimensions, a control law for tracking a three-dimensional entry trajectory
is designed. The tracking law commands the angles of attack and of bank that are required to follow a ground track
speci� ed as a function of energy. Feedback linearization is used to design the tracking law. Some extensions to the
existing theory are required to accommodate features of the entry tracking problem. Downrange and crossrange
angles serve as output variables for the feedback linearization and lead to state and control transformations that
convert the entry dynamics to an equivalent linear system in an approximate sense, which is de� ned. A feedback
tracking law is then designed, taking advantage of the linear structure of the system dynamics in the transformed
variables. This tracking law is shown to achieve bounded tracking of the output variables. Simulation results
indicate the effectiveness of the tracking law in compensating for initial offsets from a reference trajectory.

Introduction

C URRENT efforts to develop reusable launch vehicles (RLVs),
a space station crew return vehicle, and a military spaceplane

provide motivation for investigating potential improvements to the
entry guidance capability for a lifting unpowered � ight vehicle. The
state of the art is represented by the U.S. Space Shuttle Orbiters’
entry guidance, as described by Harpold and Graves.1 The Shuttle’s
longitudinal guidance combines predictive guidance, i.e., model-
based reference trajectory planning with in-� ight updating, with ref-
erence trajectory tracking. Mease and Kremer2 revisited the Shuttle
tracking law derivation in the framework of feedback linearization
and showed that the Shuttle law is a linearized version of the propor-
tional integral derivative (PID) type law that the feedback lineariza-
tion approach can produce. By not linearizing the tracking law, the
nonlinearities in the dynamics can be compensated for, provided
they can be adequately modeled. Roenneke and Well3 simulated a
variety of low-lift re-entry � ights and showed that the longitudinal
PID tracking law with feedback linearization yields uniformly good
tracking performance and effectively compensates for 20% errors
in air density and large initial position errors. A related nonlinear
tracking law has been developed and applied to RLV guidance by
Lu.4

The entry guidance requirements for future unpowered entry ve-
hicles will likely be, as they are for the Shuttle, to steer the vehicle on
a feasible trajectory, a trajectory within the entry corridor, de� ned by
heating, acceleration, dynamic pressure, and controllability limits,
that achieves the speci� ed target condition within the speci� ed error
margin. Additional requirements that drive our study are � ying over
speci� ed waypoints and increased crossrange capability. The former
may be required to avoid � ying over populated areas; the latter may
be required for abort scenarios and to reduce the waiting time for
return from orbit. The Shuttle entry guidance handles crossrange tar-
geting by bank reversal logic. Crossrange targeting takes second pri-
ority to downrange targeting, and some crossrange capability is sac-
ri� ced as a result. The additional requirements suggest that it would
be desirable to extend the Shuttle longitudinal predictive/tracking
guidance to longitudinal and lateral predictive/tracking guidance.

The entry requirements can be met by a guidance scheme com-
prising a rapid trajectory planner that generates a feasible ground
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track and a control law that commands the appropriate angles of
attack and of bank to follow the ground track. Feasible ground track
means that a vehicle following this ground track will remain in the
entry corridor. To ensure this, it is important to plan the ground
track as a function of energy rather than time and to track the asso-
ciated drag pro� le, as well as the ground track itself. It is the drag
pro� le that can be directly related to the heating, acceleration, dy-
namic pressure, and controllability constraints that de� ne the entry
corridor. To realize more of the downrange/crossrange capability of
an entry vehicle, both the angles of attack and of bank have to be
considered as primary control variables for guidance. In the Shut-
tle entry guidance, the angle-of-attack pro� le is � xed for trajectory
planning, and only modest modi� cations in angle of attack are used
in tracking to smooth out transient behavior during bank reversals
and winds. While this simpli� es the guidance logic, it limits the en-
try capability. It is true that heating constraints dictate high angle of
attack early in the entry and that it is desired to be on the front side of
the L=D curve at the initiation of the terminal area energy manage-
ment phase; nonetheless, these requirements still leave considerable
freedom in the angle-of-attack pro� le. This freedom can be used to
enlarge the landing footprint, increase guidance accuracy, and mini-
mize bank reversals. Achieving these bene� ts requires extensions to
both the trajectory planning and trajectory tracking algorithms rel-
ative to those used for the Shuttle. This paper concerns the required
extensions to the tracking law.

We show that the translational entry dynamics can be approx-
imately linearized through feedback linearization. Feedback lin-
earization requires new state variables, and for these we use down-
range and crossrange angles and their derivatives with respect to
energy. The new state variables lead to approximate feedback lin-
earization. A theory for approximate feedback linearization has been
developed by Hauser et al.5 We develop a small extension to their
theory to handle the nonaf� ne nature of the controls. A linear control
design method is applied to the approximately linearized dynamics
to achieve bounded-input/bounded-output tracking globally in the
absence of control saturation. The simulated entry of a reusable
launch vehicle is conducted to validate the approximations made
in the derivation of the tracking law and to determine the tracking
performance under the ideal conditions of perfect state knowledge
and no modeling error. A detailed error analysis and consideration
of tracking law modi� cations for improving robustness are beyond
the scope of this paper.

Entry Guidance Problem
To formulate the entry guidance problem for tracking law design,

we assume that the vehicle’s center of mass evolves according to
the equations for unpowered atmospheric � ight over a nonrotating,
windless, spherical Earth given by6

Pr D V sin° (1)
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Pµ D
V cos ° cos Â

r cos Á
(2)

PÁ D
V cos ° sin Â

r
(3)

PV D ¡D ¡ g sin ° (4)

P° D .1=V /[L cos ¾ ¡ .g ¡ .V 2=r // cos ° ] (5)

PÂ D
1

V

L sin ¾

cos °
¡

V 2

r
cos ° cos Â tan Á (6)

where the position coordinates are the distance from the center of
the Earth r , the longitude µ , and the latitude Á and the velocity
coordinates are the velocity magnitude V , the � ight-path angle ° ,
and the heading angle Â . The heading angle is de� ned such that
Â D 0 is a due east heading. Also, ¾ is the bank angle de� ned such
that the lift vector is in the local vertical plane at zero bank, and
g D ¹=r 2 with ¹ as the gravitational parameter for the Earth. L and
D represent the lift and drag accelerations and are given by

L D
1

2

½V 2CL S

m
; D D

1

2

½V 2CD S

m
(7)

where S is the vehicle reference area, m is the mass, ½.r / is the
r -dependent density, and CL .®; M/ and CD.®; M/ are the lift and
the drag coef� cients as functions of the angle of attack ® and the
Mach number M . We assume an exponential atmospheric density
model

½ D ½0 exp[¡.r ¡ r0/=H ] (8)

where ½0 is the density at sea level and r0 is the radius of the Earth.
In the entry guidance of an unpowered vehicle, energy is a more

appropriate independent variable than time. The speci� c energy E
is given by

E D 1
2
V 2 ¡ [.¹=r/ ¡ .¹=r0/] (9)

de� ned such that the potential energy is zero at the Earth’s surface.
Using PE D ¡V D and denoting d.¢/=dE by .¢/0, Eqs. (1–6) with
energy as the independent variable are given by

r 0 D ¡.sin° =D/ (10)

µ 0 D ¡
cos ° cos Â

Dr cos Á
(11)

Á0 D ¡
cos ° sin Â

Dr
(12)

V 0 D
D C g sin °

DV
(13)

° 0 D ¡.1=DV 2/[L cos ¾ ¡ .g ¡ .V 2=r// cos ° ] (14)

Â 0 D
¡1

DV 2

L sin ¾

cos °
¡

V 2 cos ° cos Â tan Á

r
(15)

An advantage gained by the choice of energy as the independent
variable is that the system order is reduced from six to � ve. This
is because the r 0 equation and the V 0 equation are not independent.
This can be seen by differentiating both sides of Eq. (9) with respect
to energy, which gives

E 0 D
dE

dE
D 1 D V V 0 C gr 0

Therefore, a minimal realization of the system need only retain either
the r 0 equation or the V 0 equation. We will retain the r 0 equation.

The entry guidance problem is: given the model, Eqs. (10–15),
of the vehicle’s longitudinal (vertical-plane) and lateral (horizontal-
plane)dynamics, determine the controls, namely, theangles of attack
® and of bank ¾; as functions of the state x D [r µ Á ° Â]T and
energy E , that steer the vehicle on a feasible trajectory, a trajectory
within the entry corridor, de� ned by heating, acceleration, dynamic
pressure, and controllability limits, that achieves the speci� ed target
condition and � ies over selected waypoints within the speci� ed er-

ror margin. We limit our considerations primarily to the hypersonic
entry phase, and hence the target, i.e., � nal, state of our reference
trajectory is a state, e.g., a longitude, latitude point at an energy
corresponding to a speed of about Mach 2, from which further guid-
ance phases [such as the terminal area energy management (TAEM)
phase in the Shuttle entry guidance] would proceed.

Predictive/Tracking Guidance Scheme
We propose a three-dimensional entry guidance scheme that is a

natural extension of the two-dimensional predictive/tracking guid-
ance scheme for the longitudinal guidance of the Shuttle during
entry. The predictive part of the guidance plans a feasible reference
trajectory based on a model of the translational entry dynamics.
The tracking law commands angles of attack and of bank to the
autopilot for following the reference trajectory. With no updating of
the reference trajectory, the guidance scheme reduces to reference
trajectory tracking. Tracking guidance is less sensitive to modeling
errors. As the vehicle approaches the target, the effects of modeling
errors lessen, and a better reference can be computed. The new ref-
erence trajectory can also proceed from the current state, which may
be offset from the previous reference trajectory. Thus, the reference
trajectory should be updated several times during the entry. The ca-
pability for rapid, onboard trajectory planning is also desirable for
abort scenarios.

We develop a tracking law. We assume that the tracking law will
operate together with a trajectory planning algorithm. The planning
algorithm generates a reference trajectory and control consistent
with the dynamic model. The planning algorithm ensures that the
reference trajectory and controls are feasible and leave suf� cient
margin in satisfying the constraints that the tracking problem can be
solved with little concern for the trajectory constraints. In the case
of the control ®, there may be segments of the entry during which it
should not deviate much from ®ref , for example, when ®ref is a high
value for the purpose of temperature control.

To synthesize a feedback tracking law, we shall use feedback
linearization, speci� cally, input–output linearization via static state
feedback. The theory of feedback linearization for the control af� ne
case is presented in Refs. 7 and 8. The entry dynamics are not af� ne
in the control variables ® and ¾ . We, therefore, need to extend
the existing theory of feedback linearization to apply to systems
in which the control does not appear af� nely. We will see that the
reference drag acceleration D is an important variable to track. Both
® and ¾ in� uence D. One means of avoiding large deviations in ®
is to build a priority for changing drag via ¾ into the tracking law.
This leads us to the use of approximate feedback linearization as
described in the next section.

Feedback Linearization and Bounded Tracking
The theory to support the tracking law design is presented. To

present the theory, we refer to a dynamical system of the general
form

Px D f .x; u/; y D h.x; u/ (16)

where x 2 Rn is the state, u 2 Rm is the control, and y 2 Rm is the
output. In exact feedback linearization,7;8 each element of the output
vector is differentiated with respect to the independent variable until
the � rst explicit dependence of one or more control variables. The
number of required derivatives ½ for a given output variable is called
the relative degree of the system with respect to that output. Some-
times, however, the control effect on the ½th derivative is weak (and
perhaps nonminimum phase). In applying feedback linearization for
aircraft autopilot design, Lane and Stengel9 neglected the weak ef-
fect of the elevator on lift and differentiated further to arrive at the
more signi� cant effect of elevator on the pitching moment. Hauser
et al.5 used a similar approach for autopilot design and developed a
supporting theory called approximate feedback linearization. Their
theory applies to control-af� ne systems, i.e., systems of the form

Px D f .x/ C G.x/u (17)

where G.x/ 2 Rn £ m . In the following, we extend their theory to
noncontrol-af� ne systems of the general form Px D f .x; u/.
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We consider the problem of tracking a reference trajectory yref.t/,
which is smooth and bounded and has components that have
bounded derivatives of requisite order over a time interval [0; 1/.
We assume knowledge of uref.t/ for all t 2 [0; 1/ and of xref.0/
that produce the reference output yref on [0; 1/ consistent with the
system dynamics in Eq. (16).

The output function y D h.x; u/ can be expanded in a Taylor’s
series about the reference control to get

y D h.x; u/ D h.x; uref.t// C
@h

@u
.x; uref.t// ¢ .u.t/ ¡ uref.t// C ¢ ¢ ¢

(18)

If for the output yi all of the components of .@h i=@u/ are
small, we express yi as yi D Á.i;0/.x; uref.t// C ²Ã.i;0/.x; u; uref.t//,
where Á.i;0/.x; uref.t// D h.x; uref.t// and ²Ã.i;0/.x; u; uref.t// D
h i .x; u/ ¡ Á.i;0/.x; uref/. This means that, for reasonable values of
the controls, ²Ã.i;0/ is negligible compared to Á.i;0/ . Although our
application does not involve the use of outputs that have a direct
dependence on the control, we present the following theory for the
more general case.

We now successively differentiate the output until the control
appears and is such that its effect on the appropriate derivative of
yi is signi� cant. This involves neglecting additional terms in the
derivatives of the output. Each output yi is differentiated ½i times

Pyi D Á.i;1/.x; uref.t// C ²Ã.i;1/.x; u; uref.t/; Puref.t//

::: D
::: C

:::

y.½i ¡1/

i D Á.i;½i ¡1/.x; uref.t// C ²Ã.i;½i ¡1/.x; u; uref.t/; Puref.t/; : : :/

y.½i /

i D Á.i;½i /.x; u; uref.t// C ²Ã.i;½i /.x; u; uref.t/; Puref.t/; : : :/

(19)

where ½i is the smallest integer such that the control u has a sig-
ni� cant effect on y.½i /

i and ²Ã.i; j /.x; u/ contains the time derivative
of ²Ã.i; j ¡ 1/.x; u/ and possibly some other terms arising from the
time derivative of Á.i; j ¡ 1/ that are small. For example, if the term
.@Á.i; j ¡ 1/=@u/ Pu in the time derivative of Á.i; j ¡ 1/ has a weak sensi-
tivity to control, i.e., .@Á.i; j ¡ 1/=@u/ is small, then it is included in
the ²Ã.i; j/ term. At each stage, the signi� cant terms are included in
the Á term, and the terms that are small are included in the ²Ã term.
Notice that the earlier derivatives of the output in which the con-
trol appears prematurely are approximated by substituting uref.t/ for
u.t/ in the corresponding Á term. Hence, for each i , only Á.i;½i / has
a dependence on u, whereas all of the previous Á.i; j/ do not depend
on u. We decide that the effect of the control on the correspond-
ing derivative of the output is signi� cant when .@Á=@u/ D .Á/
as .x; u/ ! .xref; uref/. For all earlier derivatives, the effect of the
control is weak because the corresponding .@Á=@u/ D .²Ã/ as
.x; u/ ! .xref; uref/. Here, the order symbol .¢/, has the usual
de� nition10 that when p.x; u/ D .q.x; u//, there exists a neigh-
borhood of .xref; uref/ in which the ratio p.x; u/=q.x; u/ is � nite as
.x; u/ ! .xref; uref/.

De� nition 1 (global approximate vector relative degree): A sys-
tem of the form

Px D f .x; u/; x 2 Rn ; u 2 Rm

(20)
y D h.x; uref.t// C ²Ã0.x; u/; y 2 Rm

is said to have a well-de� ned approximate vector relative degree
[½1; ½2; : : : ; ½m ]T where ½i is the least-order time derivative of yi

on which the effect of the control is signi� cant, if the equation

d.½1/ y1

dt .½1 /

d.½2/ y2

dt .½2 /

:::

d.½m / ym

dt .½m /

D 8.x; u; uref.t// C ²9.x; u; uref.t/; Puref.t/; : : :/

(21)

where

8.x; u; uref.t// D [Á.1;½1/.x; u; uref.t//; : : : ; Á.m;½m /.x; u; uref.t//]
T

and

9.x; u/ D [Ã.1;½1/.x; u; uref.t//; : : : ; Ã.m ;½m /.x; u; uref.t//]
T

is such that the Jacobian @8=@u is nonsingular 8x 2 Rn and 8u 2
Rm and for all values of uref.t/ for t 2 [0; 1/.

Theorem 1 (global approximate input–output linearizability): For
every system of the form (20) that has a well-de� ned global ap-
proximate vector relative degree [½1; ½2; : : : ; ½m ]T , there exists a
state-dependent control transformation u D k.x; w; uref.t// to the
new control w D [w1; w2; : : : ; wm]T D 8.x; u; uref.t// that glob-
ally transforms the system into m decoupled approximately linear
systems of the form

d.½1 /y1

dt .½1/
D w1 C ²Ã.1;½1 /.x; u; uref.t/; Puref.t/; : : :/

d.½2 /y2

dt .½2/
D w2 C ²Ã.2;½2 /.x; u; uref.t/; Puref.t/; : : :/

::: D
:::

d.½m / ym

dt .½m /
D wm C ²Ã.m;½m /.x; u; uref.t/; Puref.t/; : : :/

(22)

Proof: Because the system has a well-de� ned global approximate
vector relative degree, Eq. (21)holds such that @8=@u is nonsingular
8x 2 Rn , 8u 2 Rm , and all values of uref.t/ for t 2 [0; 1/. For
a global static feedback transformation u D k.x; w; uref.t// that
makes the system approximately input–output linear to exist, we
should be able to invert the implicit equation

w ¡ 8.x; u; uref.t// D 0 (23)

Invoking the implicit function theorem (stated in Appendix A of
Isidori7), we � nd that there exists a function u D k.x; w; uref.t// that
satis� es w ¡ 8.x; k.x; w; uref.t/// D 0 if and only if the Jacobian
@8=@u is nonsingular for all u 2 Rm and all values of uref.t/ for t 2
[0; 1/. But this is true because the system has a well-de� ned global
approximate relative degree. Hence, we have shown that for all
systems of the form (20) that have a well-de� ned global approximate
relative degree, there exists a static state feedback transformation
that renders the system globally approximately input–output linear.

Consider a system of the form (20) that is globally approximately
input–output linearizable. If the sum of the approximate relative
degrees

N½ D
m

i D 1

½i

is equal ton, then the closed-loop system is approximately linearized
both from input-to-state and input-to-output by the state transfor-
mation to the new state variables », where

» D Á.1;0/; : : : ; Á.1;½1¡1/; : : : ; Á.m;0/; : : : ; Á.m;½m ¡1/

has dimension n. If N½ < n, we have leftover dynamics that are un-
observable in the input–output system. To avoid the potential com-
plications when N½ < n, we shall seek output functions that achieve
input-to-state linearization.

Bounded Tracking of Approximate Outputs
Consider systems of the form (20) that are globally approximately

input-output linearizable via static state feedback.
De� nition 2 (bounded output tracking): Given a smooth bounded

reference trajectory yref , which has the derivatives of yiref up to
order ½i also bounded, 1 · i · m, the bounded output track-
ing problem is said to be solvable for a globally approximately
input–output linearizable system of the form (20), if there ex-
ists a control u D k.x; Y1; Y2; : : : ; Ym; Y1ref ; Y2ref ; : : : ; Ymref / where
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Yi D [ yi ; y0
i ; : : : ; y.½i /

i ]T and Yiref D [ yiref ; y 0
iref

; : : : ; y.½i /

iref
]T , such

that for any initial condition x.0/ 2 Rn , the closed-loop system

Px D f x; k x; Y1; Y2; : : : ; Ym; Y1ref ; Y2ref ; : : : ; Ymref

y D h.x; uref/ C ²Ã0.x; u/
(24)

is such that 1) kx.t/k is bounded 8t ¸ 0; 2) for each i , j yi .t/ ¡
yiref .t/j · ²¯M , where ²M is an upper bound on the error due
to the neglected terms and ¯ is a � nite positive constant; and 3)
limt ! 1. y.t/ ¡ yref.t// D 0 when ² D 0.

Theorem 2 (bounded output tracking): Bounded tracking of the
approximately � at outputs for a system of the form (20) is achieved
by setting

wi D y.½i /

iref
¡ k.i;1/ y.½i ¡1/

i ¡ y.½i ¡ 1/

iref
C¢ ¢ ¢¡ k.i;½i / yi ¡ yiref

(25)

where the gains are chosen such that the polynomial s½i C ki;1s½i ¡1C
¢ ¢ ¢ C ki;½i is Hurwitz.

Proof: With the control (25), the closed-loop system for y½i
i be-

comes

y.½i /

i ¡ y.½i /

iref
C k.i;1/ y.½i ¡ 1/

i ¡ y.½i ¡ 1/

iref
C ¢ ¢ ¢ C k.i;½i / yi ¡ yiref

D ²Ã.i;½i /

because y.½i /

i D Á.i;½i / C ²Ã.i;½i / and wi D Á.i;½i /. The tracking-error
dynamics are

e.½i / C k.i;1/e
.½i ¡1/ C ¢ ¢ ¢ C k.i;½i /e D ²Ã.i;½i / (26)

where e D . yi ¡ yiref /. The coef� cients k.i; j/ are now chosen so that
the unforced error dynamics

e.½i / C k.i;1/e
.½i ¡1/ C ¢ ¢ ¢ C k.i;½i /e D 0 (27)

are exponentially stable. The true error dynamics (26) can now be
viewed as the single-input/single-output (SISO) linear system (27)
with the right-hand-side of Eq. (26) as (disturbance) input and e as
the output. From a well-known result in robust control theory11 we
know that this SISO linear system is bounded-input/bounded-output
stable, i.e., the ratio of 2 norm of the output to the 2 norm of the
input is bounded by the 1 norm of the transfer function of the linear
system. Therefore, ke.t/k2 · ²¯M; 8t where

M D kÃ.i;½i /k2 D
1

0

Ã 2
.i;½i /

dt

1
2

and where

¯ D kE.s/k1 D sup
!

jE. j!/j

is the 1 norm of the transfer function E of the SISO linear system
(27). Hence, the second condition of de� nition (2) is satis� ed by the
control (25). Also, the choice of gains in Eq. (27) ensures that the
tracking error in each of the outputs tends to zero asymptotically
in the absence of approximations, and thus the third condition in
de� nition (2) is satis� ed by the control (25). Moreover, because we
have assumed that the choice of output functions is such that the
sum of the relative degrees N½ D n, the bounded behavior of the
tracking error ensures bounded behavior of the state. Therefore, the
� rst condition of de� nition (2) is also satis� ed.

Because all of the requirements of de� nition (2) are satis� ed by
the control law in Eq. (25), it achieves bounded-output tracking.

Remarks: 1) The theory only considers stability in the choice
of the gains. There are many sets of gains that satisfy this condi-
tion. Performance objectives, such as minimizing ¯ , can be used to
uniquely specify the gains. 2) Adding an integral feedback term of
the form

k.i;½i C 1/

t

0

Á.i;0/ ¡ Á.i;0/ref dt

has the well-known effect of zeroing the steady-state output error for
a constant disturbance without any detrimental effect on the other
properties of the control law that we have described. We will include
integral feedback in applying the theory in the next section.

Tracking Law Derivation
Downrange and Crossrange Angles

The vectors from the center of the Earth to the nominal reference
entry point and the nominal target point de� ne our reference entry
plane. The longitude, latitude, and heading angles can be rede� ned,
by an orthogonal rotation of the Earth frame, such that the zero
longitude line corresponds to the great circle in the reference entry
plane and such that, for � ight in the reference entry plane, the target
is at zero heading. For a nonrotating, windless Earth, no changes
in the equations of motion are necessary. With these rede� nitions,
we will refer to µ as the downrange angle and Á as the crossrange
angle.

Approximate Feedback Linearization
To illustrate the tracking law derivation we shall take the system

dynamics to be represented by

µ 0 D ¡.1=r D/ (28)

r 0 D ¡.° =D/ (29)

° 0 D .1=DV 2/[.g ¡ .V 2=r// ¡ L cos ¾ ] (30)

Á0 D ¡.Â=r D/ (31)

Â 0 D ¡
1
D

¡
Á

r
C

L sin¾

V 2
(32)

where µ , Á, and Â assume their new de� nitions. Equations (28–

30) represent the longitudinal dynamics. Equations (31) and (32)
represent the lateral dynamics. The small angle approximations for
Á, °; and Â serve to simplify the tracking law derivation for the
presentation. The approach, however, can be carried out without
making these approximations.

We want the bank angle ¾ to be the primary means of controlling
drag. The bank angle has a less direct effect on drag than the angle of
attack: ¾ affects ° , ° in turn affects r , and r in turn affects drag via
the air density. For example, at a given energy, if the drag is less than
required to achieve the speci� ed µ 0, we want the vehicle to bank,
reducing the vertical component of lift, and to � y to a lower altitude,
where the higher density will increase the drag. If the increased drag
does not produce the speci� ed Á 0, then ® is adjusted to change the
heading angle. The use of bank angle as the primary drag control is
consistent with the operation of the Shuttle. Especially in the early
part of the Shuttle entry, ® is kept high .¼40 deg/ for temperature
control and cannot be modi� ed too much. Note, however, that al-
though we want ¾ to be the primary control of drag, changes in ®
will affect the drag. The desired roles we have described for the con-
trols ® and ¾ are not achievable, strictly speaking, due to the nature
of their effects. The desired roles serve as guiding considerations
rather than hard constraints.

We pick the natural candidates for output functions for feedback
linearization, y1 D µ and y2 D Á. These outputs are now differen-
tiated with respect to energy until the effect of the control appears
explicitly. The control ® � rst appears through the drag in the � rst
derivative of the outputs as

y 0
1 D

¡1
D.®/r

(33)

y 0
2 D

¡Â

D.®/r
(34)

Because this dependence is insuf� cient to control the outputs in-
dependently and because we do not want the effect of ® on drag
as the means for trajectory control, we differentiate further after
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approximating the drag through the � rst term of its Taylor’s series
about the reference control ®ref.E/, i.e.,

D D
qS

m
¢ CD .®ref.E/; M / C

qS

m
¢

@CD

@®
.® ¡ ®ref/ C ¢ ¢ ¢

(35)

where q D 1
2 ½.r/V 2 is the dynamic pressure. Also, we can concep-

tually identify the parameter .@CD=@®/ with ² used in the theory
section. Thus,

D ¼ QD D .qS=m/ ¢ CD.®ref.E/; M/ (36)

Therefore,

y 0
1 D .¡1= QDr/ C ²Ã.1;1/ (37)

y0
2 D .¡Â= QDr / C ²Ã.2;1/ (38)

where ²Ã.1;1/ and ²Ã.2;1/ are used as in the preceding section to
denote the errors introduced by the approximation. Further differ-
entiation yields

y00
1 D .° = QD2r/[.1=H / ¡ .1=r/ C .2g=V 2/] C .2= QDV 2r/ C ²Ã.1;2/

(39)

and

y 00
2 D l.x; QD/ C m.x; QD/ ¢ L.®/ sin ¾ C ²Ã.2;2/ (40)

where

l.x; QD/ D
° Â

QD2r

1

H
¡

1

r
C

2g

V 2
C

2Â

QDV 2r
¡

Á

QD2r 2

(41)

m.x; QD/ D
1

QD2V 2r

Differentiating Eq. (39) again yields

y 000
1 D a.x; QD/ C b.x; QD/L.®/ cos ¾ C ²Ã.1;3/ (42)

where

a.x; QD/ D
1

QD3V 2r

1

H
¡

1

r
C

2g

V 2
g ¡

V 2

r

¡
° 2

QD3r 3
¡

4. QD C g° /2

QD3V 4r
¡

2 QD 0

QD2V 2r
(43)

C
1

H
¡

1

r
C

2g

V 2

° 2

QD3r 2
¡

2 QD0°

QD3r

b.x; QD/ D
¡1

QD3V 2r

1
H

¡
1
r

C
2g

V 2

and where Eqs. (7) and (8) and their energy derivatives can be used
to show that

QD 0 D .° =H / C .2 QD=V 2/ C .2g° =V 2/ (44)

assuming C 0
D ¼ 0. We can now make a direct association of these

terms in the derivatives of the outputs with the notation used in the
theory to get expressions for Á.1;0/; Á.1;1/; Á.1;2/; Á.1;3/; Á.2;0/; Á.2;1/,
and Á.2;2/. This gives

y000
1 .E/

y00
2 .E /

D 8 C ²9 (45)

where 8 D [Á.1;3/; Á.2;2/]T and 9 D [Ã.1;3/; Ã.2;2/]T .

To have a well-de� ned approximate global relative degree,
@8=@u should be globally nonsingular:

@8

@u
D

@Á.1;3/

@®

@Á.1;3/

@¾

@Á.2;2/

@®

@Á.2;2/

@¾

Because
@Á.1;3/

@®
D

@L

@®
b.x; QD/ cos ¾;

@Á.1;3/

@¾
D ¡ b.x; QD/L.®/ sin ¾

(46)
@Á.2;2/

@®
D

@L

@®
m.x; QD/ sin¾;

@Á.2;2/

@¾
D m.x; QD/L.®/ cos ¾

we have

det
@8

@u
D b.x; QD/m.x; QD/L

@L

@®
(47)

For the class of entry trajectories considered here, this determinant is
always nonzero. Assuming that ® will be restricted to values below
stall, .@ L=@®/ will be nonzero, and thus the Jacobian is nonsingular
ifb.x; QD/ 6D 0 and m.x; QD/ 6D 0. This is true everywhere. Therefore,
the Jacobian is globally nonsingular. Hence, the global approximate
vector relative degree is [3; 2]T .

Because the sum of the relative degrees N½ D 5, which equals the
state dimension for the dynamics given by Eqs. (28–32), there are
no leftover dynamics that would be unobservable with respect to
the outputs. Hence, this choice of outputs result in complete input
to state approximate linearization.

Bounded Tracking
Invoking theorem 1, we � nd that the system (29–32) can be glob-

ally approximately linearized to get

y000
1 .E/ D w1 C ²Ã.1;3/; y 00

2 .E/ D w2 C ²Ã.2;2/ (48)

Based on theorem 2, a control of the form

w1 D y 000
1ref

¡ k.1;1/ y00
1 ¡ y 00

1ref
¡ k.1;2/ y0

1 ¡ y0
1ref

¡ k.1;3/ y1 ¡ y1ref ¡ k.1;4/

E

E0

y1 ¡ y1ref dE

(49)
w2 D y 00

2ref
¡ k.2;1/ y0

2 ¡ y0
2ref

¡ k.2;2/ y2 ¡ y2ref

¡ k.2;3/

E

E0

y2 ¡ y2ref dE

with proper gain selection achieves bounded tracking of the outputs.
The unforced closed-loop error dynamics are given by

e000
1 C k.1;1/e

00
1 C k.1;2/e

0
1 C k.1;3/e1 C k.1;4/

E

E0

e1 dE D 0 (50)

e00
2 C k.2;1/e

0
2 C k.2;2/e2 C k.2;3/

E

E0

e2 dE D 0 (51)

where e1 D . y1¡y1ref / and e2 D . y2¡y2ref /. The integral terms have
been added to improve the performance of the controller. Because
the independent variable energy is decreasing, the gains must be
chosen such that the eigenvalues of the closed-loop error dynamics
lie in the open right-half complex plane for asymptotic stability.

The actual controls [®; ¾ ]T are obtained by inverting the equa-
tion w D 8.x; u; uref.t//. A feature of our formulation is that this
inversion can be performed semianalytically. From the equations

w1 D a.x; QD/ C .L.®/ cos ¾/b.x; QD/

w2 D l.x; QD/ C .L.®/ sin¾ /m.x; QD/

we can compute A D L.®/ sin ¾ and B D L.®/ cos ¾ as

A D
w1 ¡ a.x; QD/

b.x; QD/
; B D

w2 ¡ l.x; QD/

m.x; QD/
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The values of A and B computed from the preceding expres-
sion determine values of L cos ¾ and L sin ¾ needed to meet the
downrange and crossrange tracking objectives. This can be viewed
as a direct generalization of the Shuttle entry guidance logic that
computes the value of L cos ¾ needed to meet the downrange ob-
jective. In the Shuttle, this desired vertical-plane component of the
lift is achieved through a combination of ® and ¾ commands. For
the most part, ® is held � xed at ®ref.E/ and the desired L cos ¾ is
achieved using bank-angle modulation. But during bank reversals,
the bank angle is undergoing a � xed transition, so the angle of attack
is varied to achieve the desired L cos ¾: (Note that angle-of-attack
modulation has a direct effect on drag, which is being ignored in the
Shuttle logic, a feature in common with our approach.) In our ex-
tended formulation, both the angle of attack and the bank commands
are uniquely determined and can be found using

L.®/ D A2 C B2 (52)

¾ D arctan.B=A/ (53)

The value of ® has then to be backed out from the lift equation using
the aerodynamic model for CL.®; M/. This then gives the feedback
law that achieves bounded tracking of the downrange and crossrange
distances as functions of energy.

This procedure does not, however, limit the angle of attack to
stay close to the reference value. During certain segments of entry,
it may be important to restrict ® to an allowable band around the
reference, ®low.E/ < ® < ®high.E /, for example, during the high-
heating segment. If the solution to the preceding equations results
in an ® command that is outside the allowed band, it implies that
both tracking objectives cannot be simultaneously met at the current
energy with acceptable controls.Therefore,we can trade off between
the two objectives of tracking downrange and crossrange by solving
for the ® and ¾ commands that minimize the cost function

J D ´.L cos ¾ ¡ A/2 C .1 ¡ ´/.L sin ¾ ¡ B/2 (54)

subject to the constraint ®low.E/ · ® · ®high.E/ and possibly
¾low.E/ · ¾ · ¾high.E/ and where 0 < ´ < 1 is a weighting that
is chosen to emphasize either the downrange or crossrange tracking
objective. A similar approach where the control commands are cal-
culated by solving a pointwise optimization problem is described in
Ref. 12. The bounded tracking result still holds, provided the track-
ing errors remain bounded down to an energy E1, beyond which
J ´ 0 is achieved.

Simulation Results
Simulations were conducted to validate the approximations made

in the derivation of the tracking law and to determine the tracking
performance under the ideal conditions of perfect state knowledge
and no modeling error. Note that the tracking law used for simula-
tion was derived without the small heading angle assumption. The
derivation of this tracking law is similar to the one shown, but in-
volves many more terms in the computation of the derivatives of the
output. In the interest of clarity and brevity in explaining the method-
ology, the simpler derivation was shown. The reader is referred to
Ref. 13 for an earlier version of this research.

The aerodynamic model used to represent an RLV corresponds
to the SX-2 vehicle of McDonnell Douglas Aerospace, which has
a maximum lift-to-drag ratio of 1.6. The data for CL .®/ and CD.®/
include the effect of any � ap de� ections required to balance the
pitching moment on the vehicle. A suf� ciently accurate polynomial
� t of the aerodynamic data for CL .®/ and CD.®/ over the range 5 <
® < 25 deg is given by CL .®/ D 2:5457® ¡ 0:0448 and CD.®/ D
3:7677®2 ¡ 0:1427® C 0:1971, where ® is in radians. The vehicle
weightduring descent is 82,310 lb, and the reference area is709.2 ft2.
The exponential density model parameters are H D 2:3443 £104 ft
and ½0 D 2:3769 £ 10¡3 lb/ft3. The reference state and output tra-
jectories for the simulations are obtained by open-loop integration
of some chosen reference controls ®ref.E/ and ¾ref.E / so that the re-
sulting trajectory satis� es all of the constraints with enough margin
to accommodate dispersions. The initial reference state is

[r; µ; Á; V; ° ; Â ]T D [r0 C 200;000 ft; 0; 0; 17;000 ft/s2; 0; 0]T

where r0 is Earth’s equatorial radius, in feet.

Simulations were performed for a range of representative ini-
tial perturbations from the reference trajectory. In each of the sim-
ulations, the initial state variables were perturbed one at a time
from their initial reference values by an amount within the ranges
±r D §1000 ft, ±µ D §0:1 deg, ±Á D §0:1 deg, ±V D §100 ft/s,
±° D §0:1 deg, and ±Â D §0:1 deg. The � nal errors in downrange
and crossrange were found to be less than 1 n mile in all cases.

Figures 1–6 show the results for an initial perturbation vector

[±r; ±µ; ±Á; ±V; ±°; ±Â ] D [1000 ft; 0:1 deg; 0:1 deg; 0; 0; 0]

The initial deviations in longitude and latitude correspond to devi-
ations of about 6 n mile in downrange and crossrange from their
reference values. Figure 1 shows the downrange vs crossrange plot
of the reference and actual ground tracks. The vehicle successfully
follows the desired ground track, as shown more clearly by the track-
ing errors plotted in Fig. 2. It can be seen that the downrange and
crossrange are nearly asymptotically tracked and the � nal errors are
reduced to within 1 n mile.

Figures 3 and 4 show the reference and commanded control pro-
� les. The ® and ¾ commands were computed by solving the con-
strained optimization problem described earlier with equal weight-
ing on both downrange and crossrange, i.e., ´ D 0:5. The constraints
®low; ®high; ¾low , and ¾high are shown as functions of Mach number
in the respective plots. The commanded angle of attack rides the
upper and lower constraint lines in the initial portions and remains
close to the reference subsequently. Note that there is a reversal in

Fig. 1 Reference and actual downrange vs crossrange.

Fig. 2 Downrange error r0 D µ and crossrange error r0 D Á vs Mach
number.
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the reference bank angle at a velocity of about 10,000 ft/s. Figure 5
shows that the actual altitude tracks the reference altitude pro� le fol-
lowing a quick recovery from the initial deviation of 1000 ft. Figure 6
shows the reference drag and actual drag, which remain well within
the entry corridor determined by the constraints on heating, normal
load, dynamic pressure, and equilibrium glide. The � nal altitude is
about 84,000 ft at a velocity close to Mach 2:7. It is assumed that
the TAEM guidance would take over from there.

Fig. 3 Reference and commanded angle of attack vs Mach number.

Fig. 4 Reference and commanded angle of bank vs Mach number.

Fig. 5 Reference and actual altitude vs Mach number.

Fig. 6 Reference and actual drag vs Mach number.

Conclusions
A reference trajectory tracking law for a new entry guidance con-

cept that generalizes the two-dimensional Shuttle entry guidance
scheme to a full three-dimensional entry guidance scheme was de-
veloped. Both the angles of attack and of bank are commanded
to make the vehicle follow a reference ground track. Some exten-
sions to approximate feedback linearization theory were developed
to enable tracking law design. By posing the inverse control trans-
formation as a constrained optimization problem, tradeoffs between
tracking and other concerns, such as keeping the angle of attack high
during high-speed � ight to reduce heating, are enabled. Simulation
results indicate the effectiveness of the tracking law in compensating
for initial offsets from the reference trajectory.
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