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Abstract. In this paper we describe applications of functions from GF(2) m onto 
GF(2)" in the design of encryption algorithms. If such a function is to be useful it 
must satisfy a set of criteria, the actual definition of which depends on the type of 
encryption technique involved. This in turn means that it is important to ensure 
that the selected criteria do not restrict the choice of function too severely, i.e., the 
set of functions must be enumerated. We discuss some of the possible sets of 
criteria and then give partial results on the corresponding enumeration problems. 
Many open problems remain, some of them corresponding to well-known hard 
enumeration questions. 
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1. Introduction 

Functions from GF(2)" onto GF(2)" (m > n) are used in a variety of ways in the 
construction of encryption algorithms. Such functions are used in both stream 
ciphers and block ciphers as important components of the ciphering operation. In 
all cases the functions used have to be chosen with great care so that the resulting 
cipher is hard to break. 

Theoretical and practical studies reveal criteria which functions must satisfy for 
use (sometimes the criteria are the same for use in very different ciphers, such as the 
need for nonlinearity). Having specified criteria, it is important to know that there 
exist suitable numbers of functions satisfying them. 

As a result the problem arises of enumerating sets of functions satisfying various 
criteria. We discuss a number of such enumeration problems, many of which equate 
to classical counting questions with no previous obvious application. We con- 
eentrate our attention here on criteria identified as being of particular relevance to 
the design of stream ciphers, although some of these criteria are also relevant to the 
design of functions used in block ciphers. 
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In Section 2 below we describe how these functions are used, and then discuss 
some of the criteria which arise from the particular applications. This leads on to 
some specific enumeration problems and results, which are discussed in Section 3. 

2. Applications and Selection Criteria 

2.1. Introduction 

We start by describing in general terms how functions from GF(2) m onto GF(2) ~ 
are used in the construction of stream-cipher and, very briefly, block-cipher algo- 
rithms. Such functions are, in practice, often represented as a complete listing of all 
2 m n-bit outputs, and they are thus often referred to as Look Up Tables (LUTs). For 
convenience we now refer to all such functions as (m, n)-LUTs, where m _> n. 

The chief component of a stream-cipher encryptor is a pseudorandom binary 
sequence generator; for further details on the design and applications of stream- 
cipher algorithms see, for example, [5] or [27]. The output from this sequence 
generator (which is initially "seeded" using a secret key) is combined with the binary 
data sequence using modulo 2 addition. For such a cipher to be strong (i.e., resist 
cryptanalysis) the sequence generator must satisfy a number of properties, not least 
of which are that the output sequence should appear random, and that the output 
should not be a linear function of the key. To these and other constraints should 
be added the desirability of straightforward and fast implementation. 

Sequences generated using linear feedback shift registers are certainly easy and 
cheap to implement and they also have many properties required of stream-cipher 
generators (such as pseudorandomness). However, they fall down on the linearity 
constraint. One commonly used way of rectifying this problem is to combine two 
or more linear sequence generators using nonlinear feed-forward logic to produce 
a pseudorandom nonlinear sequence. In essence this means using the outputs from 
a number of registers as the inputs to an (m, n)-LUT, and using the output as the 
enciphering sequence. For added complexity without using LUTs of vast size, this 
"look up" process can be repeated a number of times. 

Block ciphers operate in rather a different way, and involve encrypting groups of 
data bits simultaneously. The basic idea is to combine a block of plaintext data with 
a key to produce a block of ciphertext, with the property that a small change to 
either key or plaintext results in a large, unpredictable change to the resulting 
ciphertext. For further details on desirable properties for block ciphers see, for 
example, Section 7.3 of [5] or [14]. There are many ways to construct good 
block-cipher algorithms, but we are concerned here with just two closely related 
families of techniques, namely SP-networks and Feistel Ciphers. 

Following a suggestion of Shannon [29], SP-networks have been proposed as 
good candidates for constructing block ciphers (see [14], [18], [19], and [1]). We 
do not describe the technique here, but suffice it to say that the use of (m, n)-LUTs 
is fundamental to their operation. The same is true of Feistel Ciphers, one 
particularly well-known example of which is the DES algorithm (see, for example, 
Section 7.3 of [5] or Section 3 of [9]). 

For both types of application we need to be very careful about the selection of 
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LUTs to use. To assist in the selection of suitable LUTs we introduce lists of 
selection criteria which LUTs must satisfy before they have the potential to be useful 
in the construction of strong ciphers. We now look at possible sets of criteria in 
more detail, concentrating on the stream-cipher application. 

2.2. Function Selection Criteria 

We have already outlined the main motive for using LUTs in constructing stream- 
cipher algorithms in Section 2.1 above. We now need to consider some desirable 
properties for stream-cipher sequences in order to appreciate how to choose these 
LUTs. 

As we have already mentioned, sequences used in stream-cipher applications 
must be both pseudorandom in appearance and nonlinear functions of the key. In 
addition, every key bit should affect the output sequence. These.simple requirements 
immediately give us three conditions on any (m, n)-LUT L used to combine linear 
sequence generators. Note that throughout this paper all algebra uses GF(2) except 
where otherwise stated. 

C1. Balance. Over the complete set of possible inputs, each possible n-bit output 
should occur 2 m-~ times, i.e., if y is any n-bit vector, then 

IL-X(y)l = 2m-n. 

C2. Nonlinearity/Affinity. L must be a nonlinear and nonaffine function for all n 
outputs, i.e., for every i(1 _< i _< n) there must not exist a vector h in GF(2) ~ and a 
fixed scalar a such that 

L(x) li = x.  h + a for every x in GF(2)/, 

where Y li denotes the bit in the ith position in vector y. 

C3. Nondegeneracy. Each of the n outputs of L must depend on all the m inputs; 
i.e., if each of the n output variables is expressed as an equation in the m input 
variables, then each equation must involve all of the m input variables. 

Note that C1 is essential if the output is to appear pseudorandom (of course C1 
does not in itself guarantee pseudorandomness). Condition C2 is present to ensure 
the nonlinearity and nonaffinity of the output sequence, and C3 ensures that every 
key bit affects each bit of the output sequence. 

The above criteria are widely accepted, and Beale [4] has given a recurrence for 
the number Q,  of(m, 1)-LUTs satisfying C1-C3. Beale goes on to suggest that, since 
Q,~ grows very quickly with m, some particular schemes he suggests are secure. 
However, although some such schemes may be secure, C1-C3 are by no means 
sufficient to guarantee this. We now consider some further criteria of importance. 

C4. Uncorrelatedness. Given any vectors 

x = (xl, x2 . . . .  , xm), Y = (Yl, Y2 . . . . .  Yn) 
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for which 

then 
Pr(xi = yj) = 0.5 

L(x) = y, 

for any i, j ( l _< i < m and l _< j _< n). 

The importance of C4 is clear from the recent work of Siegenthaler [-30]-1-33], 
Rueppel [26], and Retter [25]. Basically, if C4 is not satisfied, then it may be possible 
to cryptanalyse a sequence generator by attacking one component at a time. For a 
full discussion of the correlation property the interested reader is advised to consult 
the literature, since the definition of C4 above is a rather simplified version of the 
criterion developed by Siegenthaler. 

C5. Symmetry. If.P is any m by m permutation matrix, then 

L(x) = L(xP) 

for any x in GF(2) ~. 

This property was introduced by Brfier [7], who suggests that it is important 
because it means that no input is of any greater or lesser significance than any other 
input. Condition C5 means that (given w is the Hamming weight function) if 
w(x) = w(y), then L(x )=  L(y). Condition C5 is probably overrestrictive as we 
discuss in Section 3.2 below. 

Many other similar ad hoc constraints can be devised. Of particular relevance are 
strengthened versions of C2, which require the function to be nonaffine in all 
nontrivial subsets of the m input variables. For example, if the (m - 1, n)-LUT L' 
obtained from L by setting one input variable to 0 (or 1) does not satisfy C2, then 
the function is probably not "nonaffine enough" to form a cryptographically strong 
sequence generator. One very important point to note is that just because a function 
satisfies a list of criteria (C1-C3 say), it does not guarantee that it will produce a 
strong cipher. Other types of attack using other properties of the LUT cannot easily 
be ruled out. 

On the other hand, if too large a set of criteria is imposed, it may well happen 
that no such LUTs exist! It is at this point that the question of enumeration becomes 
of great importance. While some criteria (such as C1-C3) are of fundamental 
importance, others (such as C5) are perhaps less vital. The result of enumeration 
and classification work should help the algorithm designer decide which set of 
criteria to use. 

Before proceeding, we briefly mention three criteria of particular relevance to 
block ciphers. Before considering selection criteria in detail we need to specify 
exactly what we mean by S-box functions. As usually defined, an S-box is a collection 
of 2 r invertible (n, n)-LUTs. If we let m = n + r, then an alternative definition of an 
S-box is that it is an (m, n)-LUT L satisfying C6 below. 

C6. For any 
(al, a 2 ,  . . . ,  a,) in GF(2) ', 
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the (n, n)-LUT L* defined by 

L*(Xl, X 2 . . . . .  Xn) = L ( a l ,  a 2 . . . . .  a,, x 1, x 2 . . . . .  x , )  

is one-to-one. 

If we think of an S-box as consisting of 2" permutations on the set of all n-bit 
vectors, then a further possible criterion seems natural. When used in an SP- 
network, key bits are used to select which permutation is used, and so it might be 
desirable to make the permutations as different from one another as possible. One 
way in which we might do this is by requiring an S-box to satisfy C7 below. 

C7. For any 
(bt, b2 . . . . .  bn) in GF(2) ~, 

the function L** mapping GF(2)" into GF(2) n defined by 

L**(Xl, x2, . . . ,  x,) = L(Xl, x2 . . . . .  x,, bx, b2 . . . . .  bn) 

is one-to-one. 

In simple terms C7 has the effect of requiring that no two permutations agree in 
any position (and hence C7 can only be satisfied if r _< n). Alternatively, if we think 
of the 2" permutations in the S-box as forming rows in a 2" by 2 n matrix, C6 and 
C7 are precisely the same as requiring that the matrix form a La t in  Rectangle .  As 
a result we call S-boxes satisfying C6 and C7 Lat in  Rec tang le  S-boxes .  

Enumerating S-boxes satisfying C6 or C7 in isolation is very straightforward; by 
contrast, enumerating S-boxes satisfying C6 and C7 in combination is equivalent 
to enumerating Latin Rectangles. Computing this number is a "classical" hard 
problem. Asymptotes (for r small with respect to n) are known for this number, due 
to Erd/Ss and Kaplansky [13] and extended by Yamamoto [351 [36]. The van der 
Waerden-Egorycev theorem and the Minc-Brrgman upper bound can also be used 
to give bounds on the size of the number. For further details see Section 3.1 of Mine's 
update [24] to his earlier book [23]. 

Having looked at two possible requirements for S-boxes we next note that C1-C4 
above are also very significant for S-boxes. Condition C1 is in fact guaranteed by 
C6 (N.B. they are equivalent if m = n, i.e., if r = 0). A further criterion of relevance 
to S-box design is the following, originally proposed by Webster and Tavares [34]. 

C8. Strict Avalanche Criterion. Define the probability Pij as follows. Let c~ be the 
m-vector with a one in the ith position and zeros elsewhere. Then, if x is any 
m-vector, Pij is defined to be the probability that 

(L(x) + L(x + c,))lj = 1. 

Then L satisfies the Str ic t  Ava lanche  Cri ter ion ( S A C )  iff 

p i i=0 .5  forevery i , j ( l < i < m ,  1 <<_j<<_n). 

Before proceeding we briefly mention other existing work on the enumeration of 
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S-boxes satisfying certain criteria. For the combination of the two criteria C6 and 
C2, certain enumerative results have been achieved by Gordon and Retkin [ 16] and 
Ayoub I-2], I-3], albeit always for the m = n case. The emphasis of this work has been 
to demonstrate that for sufficiently large m almost all S-boxes satisfy a certain 
minimal set of criteria. Their purpose is to show that for sufficiently large m it is 
safe to choose S-boxes at random. Their results are given as corollaries of more 
general enumeration results in Section 3 below. Additionally, Lloyd 1,20]-1,22] 
has recently enumerated those (m, 1)-LUTs which satisfy certain cases of Forre's 
generalized version of C8 [15]. 

Finally we note that the criteria used to select the DES S-boxes remain classified. 
As a result a large effort has gone into trying to deduce the criteria used, and 
additionally to find weaknesses in the selected S-boxes. Some interesting work of 
this type can be found in a number of recent papers 1,6], [8], [10]-1,12], 1,28]. This 
work is also of significance in selecting new S-boxes for future block ciphers. 

3. Enumeration Problems 

We now consider the enumeration of (m, n)-LUTs satisfying various subsets of the 
criteria given in Section 2.2 above. To some extent the results are for those subsets 
of criteria for which enumerations have proved tractable, rather than necessarily 
those (probably larger) sets of criteria of direct cryptographic significance. 

As we have already stated, we concentrate our attention here on those criteria of 
particular relevance to stream ciphers, i.e., C1-C5. It is clearly of importance to 
know how many (m, n)-LUTs exist satisfying combinations of C1-C5, and in 
particular those satisfying all of C1-C3 together with one or both of the other 
conditions. We consider each of C1-C5 in turn. 

We immediately have: 

3.1. Condition C 1-Balance 

Theorem 3.1.1. The number of (m, n)-LUTs satisfying C1 (i.e., the number of 
balanced (m, n)-LUTs) is given by 

b",. = M[/[(M/N)!] N, 

where M = 2", N = 2 n, and C(n, k) denotes the binomial coefficient n!/k!(n - k)!, as 
it does throughout. 

Proof. Clearly, 

N - 1  

b",. = 1-I C(M -- i. M/N,  M/N)  
i = 0  

N - 1  

= I-I (M - iM/N)!/1,(M/N)!. (m-- (i + 1)M/N)!]. 
i=O 

The result follows. [] 
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3.2. Condition C2--Nonlinearity/Affinity 

We now enumerate those LUTs satisfying C1 and C2. 

l_emma 3.2.1. The number of  (m, n)-LUTs satisfying C 1 and for which some chosen 
set of k outputs are all affine functions of the inputs is given by 

k -1  

a .. . .  k = K .  1-I (M - I). [(M/K)!]~/[(M/N)!] s, 
i=0 

where I = 2 i, K = 2 k, M = 2", and N = 2 ~. 

Proof. Suppose L is any (m, n)-LUT with the desired properties. Then consider first 
L*, the (m, k)-LUT obtained from L by restricting attention to the k outputs which 
must be an affine function of the inputs. L* must be of rank k in order for L to be 
balanced. Hence there are 

k-1 
K" ]-I (M - I) 

i=0 

possibilities for L*. 
We now consider how many ways there are of extending L* to a balanced 

(m, n)-LUT. If we examine the k outputs determined by L* over all 2"` possible 
inputs, each possible pattern of k output bits o c c u r s  2 "`-k times. If we consider one 
collection of 2 "`-k inputs all having the same k outputs, then, in order for L to be 
balanced, the other n - k outputs must take each of their 2 ~-~ possibilities 2 "`-~ 
times each. As in Theorem 3.1.1, the number of ways this can happen is simply 

N/K-1 

I-I C(M/K -- j" M/N,  M/N)  = (M/K)!/[M/N)!] NIx. 
j=O 

This applies equally to all 2 k possible values for the k outputs determined by L* 
and the result follows. [] 

Using Lemma 3.2.1 we can now obtain: 

Lemma 3.2.2. The number of  balanced (m, n)-LUTs which are affine in precisely k of 
their outputs is 

n - k  

(-- 1) i" C(n, k + i)" C(k + i, k) 'a  ... .  k+i. 
i=0 

Proof. This result follows immediately from Lemma 3.2 on application of the 
inclusion-exclusion principle (see, for example, Section 2.1 of [17]). [] 

As an immediate corollary of Lemma 3.2.2 we now have: 

Theorem 3.2.3. The number of  (m, n)-LUTs satisfying C 1 and C2 (i.e., the number of 
balanced (m, n)-LUTs nonaffine in all their outputs) is given by 

din. n = ~ ( -1 ) i 'C(n ,  i)'am,n, i. 
i=0 
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Note that the above results generalize the work of Gordon and Retkin [16], who 
studied the special case m = n. In fact, they explicitly studied (m, m)-LUTs satisfying 
C6 and C2, which in this case turns out to be the same as enumerating (m, m)-LUTs 
satisfying C1 and C2. 

3.3. Condition C3--Nondegeneracy 

We next consider the number of (m, n)-LUTs satisfying C3. Before commencing 
note the following trivial yet useful result: 

Lemma 3.3.1. Suppose x .  is the number of (m, 1)-LUTs satisfying some combina- 
tion of C2, C3, C4, and C5. Then the number of (m, n)-LUTs satisfying the same set 
of conditions is simply (x~) ~. 

Proof. The lemma follows immediately from the definitions of C2-C5. [] 

Using this result we now have: 

Theorem 3.3.2. Let e.,. denote the number of (m, n)-LUTs satisfying C3 (i.e., the 
number of nondegenerate (m, n)-LU Ts). Then we have the following results enabling 
the simple computation of era.n: 

(i) era,1 satisfies the recurrence 
m - 1  

e~,l = 2 M - ~ c(m, i)'e,,l, 
i = 0  

where M = 2 m. 
(ii) e0,1 = 2. 

(iii) era,, = (em.1)n. 

Proof. (i) There are 2 u possible (m, 1)-LUTs. Each such function will be a non- 
degenerate function of some subset of the set of m input variables, and hence we have 

~ C(m, i).ei, 1 = 2 M. 
i = 0  

The desired recurrence immediately follows. (ii) is trivial and (iii) follows immedi- 
ately from Lemma 3.3.1. [] 

When we consider C3 in combination with C1 and C2, the problem becomes 
rather more complex. However, for the case n = 1 the problem is tractable, and we 
have the following result (previously obtained by Beale and Monaghan I-4]): 

Theorem 3.3.3. 
ing recurrence: 

The number Qm of (m, 1)-LUTs satisfying C 1-C3 obeys the follow- 

m - 1  

Q~ = din,1 - ~ C(m, i)'Qi, 
i=1  



Enumerating Boolean Functions of Crytographic Significance 163 

where din,1 is as in Theorem 3.2.3 above. In addition we have the initial condition 

Qx = 0 .  

Proof. The result follows by observing that an (m, 1)-LUT which does not satisfy 
C3 is simply a nondegenerate (k, 1)-LUT for some subset ofk of the input variables. 
The recurrence then follows immediately. Finally, note that 

d1,1 = 0, 

and hence 
(21 = 0 .  

3.4. Condition C4--Uncorrelatedness 

We next consider C4. Let um,n denote the number of (m, n)-LUTs satisfying C4 (i.e., 
the number of uncorrelated (m, n)-LUTs). As for C3, because of Lemma 3.3.1, we 
need only consider U~,x. However, even for this case the enumeration problem is 
rather difficult. What we can say is as follows: 

Lemma 3.4.1. Urn, 1 is the number of ways the elements of GF (2) m can be partitioned 
into two sets A, B (possibly empty) such that, if 

x = (Xl, x2 , . . . ,  Xm) 

is in A, and 
p / =  P r (x /=  1), 

then 
Pi = 0.5 for every i (1 < i _< m). 

Proof. For any (m, 1)-LUT L, let A and B denote the sets of m-vectors which are 
mapped by L onto 0 and 1, respectively. Then it is clear that L satisfies C4 if and 
only if A and B have the properties specified above. The lemma follows. []  

In the absence of a precise enumeration, a simple method of guaranteeing un- 
correlatedness is of potential interest. We have the following: 

Theorem 3.4.2. I f  an (m, 1)-LUT (with m >_ 2) satisfies 

L(x) = L(x + i) (.) 

for all m-vectors x (where i is the m-vector of all ones), then L satisfies C4, i.e., L is 
uncorrelated. Hence 

u~, 1 > 2 ~' where M' = 2 ~-1. 

Moreover, the number bu~,n of (m, n)-LUTs satisfying C1 and C4, i.e., the number 
of balanced uncorrelated (m, n)-LU Ts, satisfies 

bum,n ~ bm-l,n, 

where bin_ 1,~ is the number of  (m - 1, n)-L U Ts satisfying C 1 (see Theorem 3.1.1). 
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Proof. Suppose L is an (m, 1)-LUT satisfying the property (,) for all x. Then if A 
is the set of m-vectors which L maps onto zero, then x is in A if and only if x + i is 
in A. Hence the elements of A can be divided into pairs of vectors and their com- 
plements (where we define the complement of x to be x + i). Therefore, in any of 
the m bit positions, exactly half the m-vectors in A have a one in that position. 
Therefore L satisfies C4. 

The number of complementary pairs of m-vectors is simply 

M' = 2 m-1. 

A necessary and sufficient condition for an (m, 1)-LUT to satisfy property (,) is that 
the set A consists of some collection of complementary pairs. The number of choices 
for such an A is simply 2 M' and the bound for urn.1 follows. 

A necessary and sufficient condition for an (m, n)-LUT to satisfy C1 is that, for 
any n-vector y, the set L-:(y) must have cardinality precisely 2 m-n. In addition, as 
above, a sufficient condition for an (m, n)-LUT to satisfy C4 is that, for each n-vector 
y, the set L -1 (y) contains only complementary pairs of vectors. Hence a sufficient 
condition for an (m, n)-LUT to satisfy both C1 and C4 is that, for each n-vector y, 
the set L -1 (y) contains precisely 2 m-~-I complementary pairs of vectors. The desired 
bound follows. [] 

The condition (,) in Theorem 3.4.2 is rather restrictive. This is illustrated by the 
fact that if a (2N, N)-LUT satisfies C6 and C7, then it must also satisfy C4. We 
conclude this section by briefly considering the effect of requiring both C3 and C4. 
Suppose output yj does not depend on input x~; then it is clear that x~ and yj will 
be uncorrelated in the sense of C4. This indicates that C3 and C4 are related so that 
any pair (xi, yj) cannot be both independent and correlated. This suggests that 
enumerating (m, n)-LUTs satisfying C3 and C4 may be a nontrivial task. 

3.5. Condition C5--Symmetry 

We next consider (m, n)-LUTs satisfying C5. This is a strong condition, and there 
is a very limited set of LUTs which satisfy it. We first note the following trivial 
result, previously quoted informally following the definition of C5: 

Lemma 3.5.1. I f  L satisfies C5, i.e., if L is a symmetric (m, n)-LUT, and if w(.) is 
the Hamming weight function, then 

w(x) = w(x') 

implies that 
L(x)  = L(x ' ) .  

Having observed this simple result, we can now state: 

Theorem 3.5.2. The number Sm. n of symmetric (m, n)-LUTs (i.e., the number of 
(m, n)-LUTs satisfying C5) is given by 

Sm, ~ = (2m+1) n. 
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Proof. Since there are C(m, i) vectors of weight i, by Lemma 3.5.1 the number of 
symmetric (m, n)-LUTs is simply the number of ways the set of binomial coefficients 

{C(m, 0), C(m, 1) . . . . .  C(m, m)} 

can be partitioned into 2" sets. The result follows. [] 

3.6. Conditions C1-C5  

When we consider C5 in combination with other conditions, the enumeration 
problem becomes much more difficult. Before attempting to enumerate those (m, n)- 
LUTs satisfying some combination of C1-C4 in conjunction with C5 we observe 
the following. It is well known (and elementary to establish) that any (m, n)-LUT 
can be uniquely expressed as a set of n multinomial equations in m variables: 

X l ,  X2 ,  . . . ,  Xra, 

where each term is a product of between 0 and m of these variables. In such a 
multinomial equation, let the weight of a term be the number of variables appearing 
in the term (e.g., the term x lxsx7  has weight 3 whereas the term 1 has weight 0). 
Moreover, ifs is a term (i.e., a product of some subset of the xfs) and x is an m-vector, 
then s is said to be agreeable to x if all the variables in s have their corresponding 
positions in x set to 1. Using this notation we then have: 

Lemma 3.6.1. Suppose L is an (m, 1)-LUT with equivalent multinomial equation 

Yl = f ( x l ,  x2 . . . . .  x~). 

Then, if x is an m-vector of weight k, 

k 
L(x) = Z N(i), 

i = 0  

where N(i) represents the number of terms of weight i in f which are agreeable to x. 

Proof. If we considerf(x) term by term, then the terms that contribute a 1 to the 
result are precisely those agreeable to x. The lemma follows. []  

We may then state the following lemma, a version of which was informally stated 
by Briier [7]. 

Lemma 3.6.2. Suppose L is an (m, 1)-LUT with equivalent multinomial equation 

Yl = f ( x l ,  x2 . . . . .  xm). 

Then L satisfies C5 if and only if, for every i, f either contains all terms of weight i 
or no terms of  weight i. 

Proof. First suppose that L satisfies C5. We prove the desired result by induction 
on i. 

If i = O, then the result is trivially true since there is only one term of weight O. 
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Suppose the result is true for every i < k. Suppose also that W is the subset of 
{0, 1 . . . . .  k - 1} defined so that w is in Wifand  only i f f  contains all terms of weight 
w. Let x be any m-vector of weight k. By Lemma 3.6.1 we have 

k 

L(x) = N(i)  
i=O 

= ~ C(k , i )+d,  

where d = 1 or 0 depending on whether or not the unique term of weight k agreeable 
to x is present in f.  

But, by C5, L(x) is a constant for all x of weight k. The induction follows. 
Hence, if L satisfies C5, then, for every i, f either contains all or none of the 

possible terms of weight i. The converse is straightforward since the number of f 
with the property that, for every i, f contains either all or none of the possible terms 
of weight i is exactly the same as the number of(m, 1)-LUTs satisfying C5. The result 
follows. []  

Using this lemma we can now simply establish: 

Theorem 3.6.3. The number of (m, n)-LUTs satisfying C2 and C5 (i.e., the number 
of symmetric (m, n)-LUTs for which none of the outputs are affine functions of the 
inputs) is precisely (2 m+l - 4) n. 

Proof. We consider the number of affine symmetric (m, 1)-LUTs. It is clear that 
an LUT is affine if and only if its corresponding multinomial equation only contains 
terms of weight 0 or 1. By Lemma 3.6.2 there exist precisely four symmetric 
(m, 1)-LUTs with this property. Hence, by Theorem 3.5.2 there exist precisely 
2 ~§ - 4 nonaffine symmetric (m, 1)-LUTs. The result follows on application of 
Lemma 3.3.1. []  

We next observe that, by Lemma 3.6.2, the only (m, 1)-LUTs which satisfy C5 
and do not satisfy C3 (the nondegeneracy condition) are the trivial functions 

L(x) = 0 for all x 

and 
L(x) = 1 for all x 

which, in addition, are both affine. It is therefore trivial to show: 

Theorem 3.6.4. The number of (m, n)-LUTs satisfying C3 and C5 (i.e., the number 
of symmetric (m, n)-L U Ts nondeffenerate in all their outputs) is (2 m+l - 2) n. Moreover, 
if an (m, n)-LUT satisfies C2 and C5, then it also satisfies C3, and hence the number 
of (m, n)-LUTs satisfying C2, C3, and C5 is (2 m+l - 4) n. 

We now consider the effect of requiring C1 in addition to C5. Since there are 
C(m, i) vectors of weight i, the number of balanced, symmetric (m, n)-LUTs (i.e., the 
number satisfying C1 and C5) is simply the number of ways the set of binomial 
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coefficients 
{C(m, 0), C(m, 1) . . . . .  C(m, m)} 

can be par t i t ioned into 2" sets so that  the sum of the coefficients in each set equals 
2 m-". Fo r  the case n = i, two obvious  families of  examples  exist (in fact, these are 
a lmost  the only examples  known  to the au thor  for any  value of  n). These examples  
can be used to establish the following lower bound:  

Theorem 3.6.5. The number bs,,,1 of  balanced, symmetric (m, 1)-LU Ts satisfies 

bsm, 1 >_ 2 (re+l)/2 if  m is odd, 

bs,., a > 2 if m is even. 

Proof.  We establish these bounds  by showing how to construct  the required 
numbers  of  examples  of balanced,  symmetr ic  (m, 1)-LUTs. We write c i for C(m, i) 
th roughout ,  and consider par t i t ions  of  the values cl into two sets A and B such that  
[hi = Inl = 2 m-x. 

First  suppose  that  m is odd. Consider  the (m + 1)/2 pairs 

{Co, c .} ,  {c,,  c=_,}, . . . ,  

N o w  suppose  that  A and B are such that  they bo th  contain  exactly one element 
f rom each of these pairs. It  is s t ra ightforward to see that  a ba lanced symmetr ic  
(m, 1)-LUTresul ts .  There  are 2 (re§ such part i t ions,  and the desired bound  follows. 

N o w  suppose  m is even. In this case let 

A = { c o ,  c 2 . . . . .  Cm} and B = { c a , c 3  . . . . .  c , -1}  

or vice versa. I t  is again  s t ra ightforward to see that  bo th  part i t ions result in ba lanced 
symmetr ic  (m, 1)-LUTs. The  desired bound  again  follows immediately.  [ ]  

No te  tha t  there do exist examples  of balanced,  symmetr ic  (m, 1)-LUTs not  
included in the families of  Theo rem 3.6.5. Two  such examples  (in fact, the only 
examples  known  to the author)  are for an (8, 1)-LUT and a (13, 1)-LUT. In  these 
cases we can achieve the desired balance and symmet ry  by letting the sets A and B 
be defined as follows. 

Fo r  an (8, 1)-LUT let 

A = {c o = 1, C 3 = 56, c 4 = 70, c a = 1} 

and 
B = {c I = 8, c2 = 28, c 5 = 56, c6 = 28, c 7 = 8} 

or any of the eight obvious  var iants  of  the above.  
Fo r  a (13, 1)-LUT let 

A = {c o = 1, cl = 13, c2 = 78, c3 = 286, c 6 = 1716, c7 = 1716, Clo = 286} 

and  

B = {c4 = 715, c 5 = 1287, c s = 1287, c9 = 715, c l l  = 78, c12 = 13, c13 = 1} 

or any of the 16 obvious  var iants  of the above.  
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It is interesting to speculate whether further sporadic examples of balanced, 
symmetric (m, n)-LUTs may exist, in particular whether or not examples exist for 
n > 1. Briier tabulates the number of balanced symmetric (m, 1)-LUTs for all odd 
m < 17 and obtains 

bsra,1 = 2(m+1)/2, 

and 

which confirms 

modd,  m < 1 7 ,  m r  

bs13,x = 144 

that the above "sporadic" examples of balanced, symmetric 
(m, 1)-LUTs are the only such examples for odd m less than or equal to 17. 

We now consider which of the examples in the proof of Theorem 3.6.5 satisfy 
C2-C4. We first consider C3, the nondegeneracy condition. We already observed 
that the only (m, 1)-LUTs which satisfy C5 and do not satisfy C3 are the trivial 
functions L = 0 and L = 1. Neither of these are balanced and hence we have: 

Corollary 3.6.6. The number bnsm, 1 of balanced, nondegenerate, symmetric 
(m, 1)-LUTs, i.e., the number of(m, 1)-LUTs satisfying C1, C3, and C5, satisfies 

bnsm, l > 2 (re+l)/2 if m is odd, 

bnsm, 1 > 2 if m is even. 

We also observed above that the only (m, 1)-LUTs which satisfy C5 and do not 
satisfy C2 are the trivial functions L = 0 and L = 1, and the two functions L 1, L 2 
having multinomial equations: 

Lt =Xl  "[- X2 "~ " ' "  "[- Xm 

and 
L 2 = x  l + x  2 + . . . + x  m + l .  

Unfortunately both L1 and L2 are balanced. If we let Ai denote the set of m- vectors 
which L i maps onto 0 (i = 1, 2), then A: contains all the m-vectors of even weight 
and A 2 contains all the m-vectors of odd weight. Therefore, for m even, L1 and L 2 
correspond to both the examples of Theorem 3.6.5, and for m odd, L:  and L 2 
correspond to two of the 2 (m+1)/2 examples. We therefore have: 

Corollary 3.6.7. The number bans,,,1 of balanced, nonlinear, nonaffine, nondeoener- 
ate, symmetric (m, 1)-LUTs, i.e., the number of (m, 1)-LUTs satisfyin9 C I - C 3  and 
C5, satisfies 

bansm, 1 > 2 (re+x)/2 - 2 if m is odd. 

We conclude by considering C4 in conjunction with C1 and C5. Of the examples 
given in the proof of Theorem 3.6.5, the only ones which are obviously uncorrelated 
are the two which do not satisfy C2, i.e., L~ and L2 (in the above notation). Therefore 
there are no obvious candidates for (m, 1)-LUTs which satisfy all of C1-C5. Indeed, 
there may well not be any such functions; this is a matter for future research. 

In any case, it should be clear from this discussion that C1-C5, when taken 
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together, are too restrictive. While the need for CI-C3 (or something like them) is 
difficult to dispute, the strict versions of C4 and C5 require some relaxation. Indeed, 
it is not clear how useful constraint C5 is for stream-cipher applications. 
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